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The mechanism responsible for spatially localized strong coupling electron

pairing characteristic of high-temperature superconductors (HTS) remains

elusive and is a subject of hot debate. Here we propose a new HTS pairing

mechanism which is the binding of two electrons residing in adjacent

conducting planes of layered HTS materials by effective magnetic

monopoles forming between these planes. The pairs localized near the

monopoles form real-space seeds for superconducting droplets and strong

coupling is due to the topological Dirac quantization condition. The pairing

occurs well above the superconducting transition temperature Tc. Localized

electron pairing around effective monopoles promotes, upon cooling, the

formation of superconducting droplets connected by Josephson links.

Global superconductivity arises when strongly coupled granules form an

infinite cluster, and global superconducting phase coherence sets in. The

resulting Tc is estimated to fall in the range from hundred to thousand

Kelvins. Our findings pave the way for tailoring materials with elevated

superconducting transition temperatures.
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Introduction

The discovery of HTS about 40 years ago promised a new era of industrial and

technological advances, ranging from the power-loss free electric grids spanning

continents to superconducting kitchen appliances in every household. However,

materials superconducting at room temperature are still a dream. A dearth in

understanding of the HTS pairing mechanism [1–3] hinders the desired technological

progress. In HTSs, pairing has to fundamentally differ from that in conventional

superconductors: the electron pairs should be spatially localized and have a size

comparable or less than the distance between them [4].

Anderson’s resonating valence bond (RVB) theory of HTS based on electron

correlations [5], proposed recently in [6], as well as the alternative route, deriving

HTS from Cooper pairing near a quantum critical point (QCP) associated with an

antiferromagnetic order-itinerant electron spin transition [7, 8], beautifully capture many

important features of superconducting and related pseudogap phases of HTS, [1, 2, 9–21].
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However, neither of them succeeded to reveal the HTS pairing

mechanism. Early attempts to induce local pairing in the

Hubbard model framework [22–26] had to introduce an

attractive interaction by hand. This, however, is different from

a dynamically generated attractive potential as in BCS theory or

in our model. Many aspects of the HTS, especially of the Fe-based

ones, seem to be fairly well described by multi-band Hubbard

models [27, 28]. In this type of models, the attractive pairing

interaction is genuinely different from any other one mediated by

an exchange interaction and arises from the resonant hopping

between the different bands [29]. Yet, again, despite its

remarkable successes [30, 31], also for the cuprates, in

reproducing the correct HTS phase diagram, even this model

fails to capture essential fundamental aspects of HTS. Further,

building on the relevance of quantum criticality for HTS [8], one

can derive the superconducting transition temperature as

Tc ~ EF/
��
g

√
, with EF being the Fermi energy and g being the

coupling constant, in remarkable contrast to the standard BCS

behavior, Tc ~ exp (−const/g). Yet, a strong coupling still has to be

assumed, and the origin of the characteristic feature of HTS, the

small superconducting coherence length ξ, resulting in non-

overlapping Cooper pairs, i.e., the fact that the size of the

pairs is less than the inter-pairs distance [4], which is

opposite to what occurs in conventional superconductors is

not explained. The other unexplained fundamental HTS

feature is that unlike in conventional superconductors, the

transition temperature of thin cuprate films does not

essentially depend on film thickness and remains the same as

in the bulk, see, for example [32]. Even an extremely thin

monolayer BSCCO film containing a half of the elemental cell

(but still comprising two CuO planes) has practically the same

bulk Tc [33]. This posits a quest for a mechanism of localized

electron pairing in real space which, at the same time, remains

effective even in the thinnest films of the HTS material.

Here we propose a new pairing mechanism straightforwardly

leading to localized, strong coupling electron pairs. We propose

pairing by effective magnetic monopoles forming between the

conducting planes of a layered material. Magnetic monopoles

bind two electrons residing in two respective adjacent conducting

planes, see Figure 1, localizing the seed pairs around them. The

strong coupling of the pair potential emerges from the

topological Dirac quantization condition [34, 35] which

guarantees that the product of magnetic and electric charge is

a coupling constant of order unity. This leads immediately to

high critical temperatures. The pairing model that we propose

establishes the local character of pairs in the real space and

predicts precisely that the pair size is smaller than their

separation, explaining thus their emergence well above Tc, in

accord with the experimental findings [3].

Experiments [32] provide strong evidence for the proposed

mechanism which pairs electrons locally and involves two

conducting planes separated by atomic scales. Further

experimental support follows from the data of [36], which

have reported a rise of Tc in a cuprate superconductor when

disorder eliminates the effect of charge density waves that

suppress coupling between the adjacent CuO planes.

Monopoles and gauge fields in
condensed matter systems

It has been known for a long time that defects in condensed

matter systems can be described by effective gauge fields [37].

Examples include curvature defects in graphene sheets [38–41], see

[42] for a review, and spin defects in magnetically ordered

materials, like the cuprates [43–45]. In certain configurations,

the defects appear to itinerant electrons like effective magnetic

monopoles [45, 46]. Here we show that such effective magnetic

monopoles mediate a strong-coupling, real-space pairing

mechanism which can explain hight-Tc superconductivity. The

pairing is localized around the effective monopoles and occurs well

above the superconducting transition temperature Tc.

In graphene sheets, strains, dislocations and curved

protuberances, typically called ripplocations [47–49], are

equivalent to an effective gauge field coupled to the low-lying

electronic degrees of freedom [38–41] which typically amounts to

a magnetic field B = hK/4πe locally perpendicular to the sheet,

with K being the Gaussian curvature, see [42] for a review. This

field is referred to as pseudo magnetic field since it does not

represent a real magnetic field but is an effective description of

the geometric curvature effects induced by the defects. Most

interestingly, it has been recently shown that the curvature of

graphene nanobubbles is equivalent to a pseudo magnetic

monopole at the center of the bubble [46]. Note in this

context that for general closed graphene sheets the Dirac

quantization condition for the pseudo magnetic charge g

contained within the volume V enclosed by the sheet S is

FIGURE 1
A sketch of the minimal model for HTS pairing. The
conducting planes are shown in gray. Heavy monopoles appear in
themiddle between the planes and paired electrons are located on
opposite planes, their motion being restricted to their
respective planes.
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equivalent to the Gauss-Bonnet theorem, see e.g., [50], and, thus

the magnetic charge is entirely fixed by the Euler number χE (or

the genus) of the closed sheet:

g � gDirac � ∫
V
div B � h

4πe
∫

S
K � h

e

χE
2
� h

e
1 − genus( ). (1)

Here we consider configurations arising with two sheets, each

one carrying a matching “half-sphere” of a total defect, like “two

cupped hands.” Note that such matching “half-spheres” are the

energetically favored configurations for realistic, strictly convex

repulsive potentials among the sheets. Let us consider, thus,

matching curvature defects of diameter D in a system of two

sheets separated by a distance s. In the extreme limit that s → 0

outside the defect, this would correspond to a bubble with the

topology of a sphere S2 and, according to (1), the magnetic charge

within this defect would be a Dirac monopole. There are

corrections, however, due to the fact that the real defect is not

a full sphere because of the finite inter-plane separation. Therefore,

the defect can be continuously deformed to two planes by making

the diameter smaller than the typical lattice spacing, or, in other

words, the magnetic charge inside it can be extracted by moving it

within the planes. To compute themagnetic charge of the defect we

can first consider the total flux through a closed sphere, which is

independent of the geometric details of the curvature, and then

correct it by themagnetic flux flowing through a strip of radiusD/2

and width s around the equator,

g � gDirac 1 − s

D
( ). (2)

In the limit s → 0 at fixed D we recover the topological Dirac

monopole. In the opposite limitD→ s the magnetic charge vanishes

because the defect has flattened out. In this paper we shall consider

exclusively defects for which s≪ D and g ≈ gDirac. Since there is no

topological protection, it is an energetic question if such defects form

or not. As we now show, they are indeed favoured energetically since

they can lower the system’s overall energy by forming Cooper pairs

in their vicinity. To give a numerical estimate we use the value g =

4.136 × 10–15 Wb for the charge of a singleDiracmagneticmonopole

to obtain the value B = ×3.3 104 T for the magnetic field on two

planes separated by 1 Å.

Effective gauge fields appear also in magnetically ordered
Mott insulators, like the CuO planes of cuprates. The motion of
an itinerant electron in a non-collinear magnetic structure is
subject to forces that can be represented as an effective compact
U (1) gauge field [43–45]. Quantized topological defects forming
spin hedgehogs correspond then to emergent magnetic
monopoles [45]. It is known that spin hedgehog defects with
non-trivial topology can arise within Heisenberg
antiferromagnets [51]. The Mott insulating state of the HTS
cuprates is precisely such a Heisenberg antiferromagnet, and the
idea is that spin-hedgehog defects arising in this state are seen by
charges, that become increasingly itinerant upon doping, as
effective magnetic monopoles.

Common to all these effective Abelian monopole [52]

configurations is that they require at least two planes in a

layered material to be realized. In graphene sheets the two

planes carry, by construction, the matching half-spheres

forming an effective quasi-spherical bubble containing the

quantized magnetic monopole [up to the corrections of O (s/

D)]. In magnetically ordered materials, the presence of effective

magnetic monopoles also requires at least two planes, otherwise

no hedgehog configuration would be possible. This condition is

realized in cuprates, for example in BSCCO which is an

exemplary HTS system, whose elementary cell contains,

indeed, two CuO planes. The minimal model of a HTS

material is thus taken as two conducting planes separated by

the distance s of the atomic scale. In material realizations, the two

planes can be, e.g., the two CuO planes of cuprates or two

graphene sheets in graphite. An effective magnetic monopole

emerging between these planes binds two electrons, each residing

at the respective opposite planes. The radical difference of the

monopole-based binding mechanism from other commonly

considered mechanisms [6, 8, 21, 29, 30, 53] is that electron

pairs are spatially localized around the monopoles. Heavy

monopoles anchoring the electron pairs serve, thus, as

nucleation points for a superconducting granular array that

emerges upon cooling the system down from the temperature

of pair formation, Tpair to Tc. In a system supporting a sufficient

monopole density, global superconductivity sets in when the

droplets comprising the electron pairs and linked by tunnelling

junctions form an infinite cluster. It thus occurs as the

temperature compares with the coupling energy, and our

estimate gives Tc � O(102)K for a typical granule size of

O(1) nm. We predict thus possible room-temperature

superconductivity in layered materials in which the density of

effective magnetic monopoles is sufficiently high. An appealing

candidate is graphite, in which local superconductivity,

concentrated around defects, has indeed been detected with

critical temperatures of up to 300 K [54–56] and has been

shown to form exactly the Josephson-junction-array-like

structures [57, 58] that can lead to global superconductivity

once the mechanisms establishing the global superconducting

phase coherence set in.

Electron pairing by a singlemonopole

In this section we present detailed derivation of pairing of

two electrons confined to respective adjacent conducting planes

by the magnetic monopole confined between these planes. This

new pairing mechanism is the main result of our work.

Although they do not stem from real electromagnetism, the

effective gauge fields induced by phenomena like curvature of

conducting sheets or Berry phases in non-collinear magnetically

ordered structures, couple to matter in the precisely same way as

real electromagnetic gauge fields do. Hence, we can use a
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standard formalism like, e.g., Schrödinger equation in an external

magnetic field, to derive the quantum effects of the action of the

effective on electrons.

We start our derivation with considering two electrons

interacting via the spherically symmetric repulsive 1/r

Coulomb potential (we use natural units c = 1, Z = 1, ε0 = 1)

and a short-range repulsion potential VR(r). Decomposing the

wave function into spherical harmonics yields the additional ℓ(ℓ

+ 1)/r2 repulsive centrifugal barrier for states with angular

momentum ℓ > 0. If the short-range repulsion VR(r) is

stronger than the centrifugal barrier, the electrons settle into a

state with sufficiently high angular momentum. Due to rotational

symmetry, the z-component m, |m| ≤ ℓ, of the angular

momentum falls out of the Hamiltonian. What happens,

however, if the spherical-symmetry-breaking mechanism

encoded in a vector potential makes the Hamiltonian

explicitly dependent on the z-component of angular

momentum? On dimensional grounds, this brings in an

additional 1/r2 term that can have either negative or positive

sign. If the sign is negative, it can counterbalance the centrifugal

barrier resulting in an attractive 1/r2 potential at intermediate

distances before the Coulomb repulsion takes over. Then the

potential well forms, resulting in a discrete spectrum of the

bound states with the finite angular momentum.

Magnetic monopoles provide precisely such a spherical-

symmetry-breaking mechanism [34]. In the presence of the

magnetic monopole of the strength g, an electron acquires an

additional angular momentum LM � (eg/4π)̂r, with r̂ being the

unit vector pointing from the monopole to the electron. The

Dirac quantization, eg = 2πn, n ∈ Z, requires for this additional

angular momentum contribution, originating from the interplay

of the electric and magnetic fields of two point particles, to match

the spectrum imposed by the rotation group. This is just a

spherical symmetry breaking contribution to the angular

momentum since it singles out the vector connecting the

monopole to the electron. As we now show, this monopole-

induced angular momentum can bind electrons, and the optimal

angular momentum of the resulting pair depends on the

monopole density. Lower densities favor higher angular

momenta and vice versa.

Importantly, monopoles change the statistics of original

electrons, which become bosons themselves for odd eg/2π but

remain fermions for the even values of eg/2π [35]. The exact

centrifugal barrier cancellation takes place only for odd values

of eg/2π. The overall centrifugal potential, however, vanishes or

turns negative for all values of the total angular moment ℓ

satifying 2ℓ ≤ |eg/2π|. For such values magnetic monopoles

induce pairing of electrons. Paired electrons can then Bose

condense into droplets localized near the monopole. Because of

the Dirac quantization, magnetic monopoles are heavy

excitations, with the mass mM ∝ 1/α, where α = e2/Zc ≈ 1/

137 is the fine structure constant. The droplets are anchored in

space and mediate a pairing mechanism giving rise to

superconductivity at elevated temperatures. Since the

product of the electric and the magnetic charge is O (1) due

to the Dirac quantization condition, this automatically provides

the strong-coupling pairing mechanism without any further

assumption.

Note the dimensional dichotomy of these emerging high-

temperature superconductors (EHTS) which they share wiht the

cuprates. From the viewpoint of the charge- and

magnetotransport, the EHTS materials exhibit a profoundly

2D behavior [32, 59]. However, phenomena related to

topological aspects of the electronic spectrum, like the

magnetoelectric effect in the pseudogap state [60], require the

full underlying 3D microscopic nature. The proposed pairing

mechanism is aligned with this dichotomy. The monopole

pairing rests on the 3D quantum mechanical structure

comprising two conducting planes separated by an atomic

scale distance so that the charges can tunnel between the

planes, providing robust Josephson links between them. At

the same time, as long as the thermal coherence length LT =����������
2πD/(kBT)

√
exceeds the interplane distance s, the system

exhibits two-dimensional transport properties. Here D = (π/

2γ) (kBTc/eBc2(0)) is the electron diffusion length and γ =

1.781 is Euler’s constant. Since the dephasing length Lϕ �����
Dτϕ

√
≫LT as long as kBT ≫ Z/τϕ, the quasiparticle

description holds well in this 2D electric response regime and

the 3D quantum mechanical consideration of electron binding

applies. This explains why a cuprate monolayer consisting of two

conducting planes retains the same high transition temperature

[61] as a 3D sample, whereas 2D films of conventional

superconductors have Tc much lower than the bulk of the

same material.

Let us consider a heavy magnetic monopole of charge g

formed in the middle between the two conducting planes, see

Figure 1. Using the remarkable result of [62] that the

quasiparticle lifetime within the layer is proportional to the

intraplane scattering rate, we conclude that electrons are

bound to intraplane motion with rare interplane hops, and

that this intraplane electron motion becomes even more

pronounced with increasing disorder and doping. We obtain a

three-body quantum mechanical problem involving two

electrons of charge e restricted to respective parallel planes

and showing the short-range repulsion, and the Dirac

magnetic monopole of magnetic charge g in between. We

proceed with the simpler formulation of an infinitely heavy

magnetic monopole located at the center of mass of the two-

electron system. This reduces to a single-body problem of an

electron of reduced massm/2 in the external field of the magnetic

monopole, which is amenable to an analytical, albeit approximate

solution, maintaining the generality of the monopole pairing

mechanism.

Dirac monopoles are particles carrying an attached Dirac

string. If the string is aligned with the negative z-axis, the vector

potential Au of the monopole is [34].
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Au � fu r, θ( ) φ̂,
fu r, θ( ) � g

4πr
1 − cos θ( )
sin θ( ) ,

(3)

which has a singularity at θ = π. Here r, θ and φ denote spherical

coordinates and φ̂ is the unit vector in the φ direction. The value of

the coupling constant g will be taken henceforth as that of a

fundamental magnetic monopole, g = 4.136 × 10–15 Wb. To solve

the eigenstate problem in the field of a Diracmonopole one cannot

use a single set of coordinates for the whole sphere butmust use the

Wu-Yang formalism [70] to cover the sphere with the so-called

atlas of maps, supplemented by gauge transformation conditions

on the overlap regions between the different maps. The simplest

atlas comprises two maps, the upper hemisphere, 0 ≤ θ ≤ π/2 + ε,

with the gauge potential (3) and the lower hemishpere, π/2 − ε ≤
θ ≤ π, with the gauge-transformed potential

Al � fl r, θ( ) φ̂,
fl r, θ( ) � − g

4πr
1 + cos θ( )
sin θ( ) ,

(4)

corresponding to the same magnetic monopole at the origin of

coordinates but with the Dirac string now along the positive z-

axis

Al � Au − ∇
g

2π
φ( ). (5)

In both hemispheres, the gauge potential is now regular

allowing for solving corresponding Pauli equations. The price

to pay is the gauge transformation connecting wave functions in

the overlap region [π/2 − ε, π/2 + ε].

The Hamiltonian for two electrons with charges e andmasses

m and a fixed magnetic monopole with the magnetic charge g at

the origin is

H� 1
2m

p1 − eA x1( )( )2 + 1
2m

p2 − eA x2( )( )2 − e

m
s1 ·B x1( )

− e

m
s2 ·B x2( )+VR |x1 −x2|( )+VC |x1 −x2|( ),

(6)

where A is the monopole gauge potential defined by Eqs 3, 4, s1,2
denote the spin vectors of two electrons, VC(r) = e2/4πεr is the

repulsive Coulomb potential, with ε the relative dielectric

permittivity of the material and VR(r) is the short-range

repulsion. We introduce the center of mass and relative

coordinates as R = (x1 + x2)/2 and r = (x1 − x2) and we set

R = 0. To make the model amenable to an analytical solution we

make further simplifying assumption that the infinitely heavy,

external magnetic monopole sits exactly at the center of mass of

the two-electron system. The time-independent Pauli equation

becomes then

− 1
2m

∇− ieA r
2

( )( )2

− 1
2m

∇+ ieA −r
2

( )( )2

− |eg|
2πm|r|2[

+VR |r|( )+VC |r|( )]ψ �Eψ,
(7)

where we have specialized to a total spin 0 state in which the spin

of each electron has a hedgehog configuration parallel or

antiparallel to the monopole magnetic field, depending on the

sign of g.

Suppose now that the motion of electrons is constrained to

the two conducting planes at z = ±s, with total angular momenta

± ℓ, 2ℓ ∈ N, on the upper and lower planes, respectively. If the

monopole charge satisfies |eg/2π| = 2ℓ condition, Eq. 7 reduces to

a single 2D radial equation, see Appendix A1,

− 1
m

1
x

z

zx
x

z

zx
( )( ) + VR x( ) − |eg/2π|

m s2 + x2( ) + VC x( )[ ]F x( )

� EF x( ),
(8)

where x = r sin(θ) is the radial distance on the planes and

VC(x) � α/ε
������
s2 + x2

√
. The short-range repulsion models, e.g.,

the quantum statistical pressure of electrons when they are

squeezed by two conducting planes. Its exact form does not

matter; however, it forces electrons to fall into the non-zero

orbital angular momentum states ℓ > 0 in order to avoid the

energy price to be too close: F(x)∝ xℓ for x≪ s and the higher ℓ,

the more the wave function is suppressed at the origin. Yet, for

|eg/2π|= 2ℓ, the resulting repulsive centrifugal barrier gets

completely canceled by the additional, monopole-induced

angular momentum, and only an attractive interaction due to

the electron magnetic moments survives. If |eg/2π| > 2ℓ, which

can occur only for higher magnetic charges, the centrifugal

“barrier” turns negative and the attraction gets even stronger.

So, for |eg/2π|≥ 2ℓ, the potential well forms between the two

relevant scales s and a = ε/mα, where the Coulomb repulsion

takes over, and the electrons form pairs that can Bose condense in

a droplet localized around the positions of the heavy monopole.

To estimate the optimal value of ℓ, note that, on one hand,

increasing ℓ makes the attraction stronger, and on the other

hand, the higher the monopole charge, the heavier they are and

the higher the energy cost of creating them between the planes.

Given the large mass of monopoles, one expects that at small

monopole densities larger values of ℓ are favored and vice versa.

In any case, the proposed mechanism accommodates all types

and the possibilities of pairing, including s-wave, p-wave and

d-wave pairings, depending on the magnetic charge of the

pseudo-magnetic monopoles forming between the planes.

The construction of the potential well results again from the

interplay of dimensionalities. The angular momentum of the

electrons constrained to two planes is a 2D effect. The additional

angular momentum due to the monopole and the magnetic

moment interactions, however, are the 3D effects, since they

are directed from the monopole at the center to the locations of

the electrons on the planes. At sufficiently large distances, the

additional angular momentum cancels out the centrifugal barrier
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and the magnetic moment interaction causes the overall

attraction.

The potential well is determined by the combination of the

magnetic moment attraction with the short-range repulsion

representing quantum statistical pressure of electrons of inter-

layer atoms squeezed between the two conducting planes. As

such, it should be a scale-free, i.e., 1/x potential. Therefore, in

general, both the position of the minimum of the potential well

and the bound state energy, are functions of the two spatial scales

s and a. If they are comparable, there remains only a single spatial

scale and, accordingly, a single energy scale. To estimate it, one

can neglect VR(x) and VC(x) in Eq. 8. By multiplying the whole

equation by m we see that the scale mE in the right-hand side is

determined by the unique remaining scale s in the left hand-side.

Therefore E0 � O(1/ms2). As shown in [63], the numerical

coefficient is of order one so that

E0 ≃
Z2

ms2
, (9)

where we restore physical units. Since the interplane spacing s ≃ k−1F ,

with kF being the Fermi wavevector,E0 � O(EF). The corresponding
localization size of the bound state within the plane is ℓ‖ ≃ s, and as

discussed above it is the same orthogonal to the plane, ℓ⊥≃ s.

We have until now discussed only the electron pairing by a

single monopole. A complete model, however, should also take

into account how these potential wells behave in presence of

many monopoles. A full many-body theory lies beyond the scope

of this paper but one give qualitative arguments for the changes

introduced by many monopoles. At finite monopole density ρ,

when monopoles are brought near each other, the binding energy

E0 first keeps increasing as long as the two-dimensional, parallel

to the plane inter-monopole distance d = (ρs)−1/2 > ℓ‖ ≈ s [64].

This is the effect of the 2D Lifshitz localization [65]. However, at

d < s, the “flat” bottoms of the potential wells in the many-

monopole generalization of Eq. 8 overlap. Then the pairs are

localized by fluctuations in the monopole density rather than by

single potential wells, see [65], where a similar problem was

discussed, and E0 starts to decrease with increasing ρ. Therefore,

one expects that the optimal binding is achieved at d ≃ s. This

prediction for the optimal monopole density is in accord with the

recent experimental data of [66] showing that the highest

transition temperature in carbonaceous sulfur is indeed

achieved at some optimal distance s between the conducting

planes. An exact calculation of E0 would require a microscopic

treatment, but for present purposes the estimate (9) is sufficient.

Here, a comment is in order. Our proposed pairing

mechanism is predicated upon the strong residual attractive

Pauli interaction induced by the field of the pseudo-magnetic

monopole on the two-electrons state with the total spin Stot = 0

after the same pseudo-monopole field cancels the centrifugal

barrier. The resulting Maki parameter, describing the relative

importance of the orbital- and Pauli pair breaking mechanisms,

αM ≃ E0/EF, is of order unity. One may expect then that the

magnetic field-induced depairing occurs at fields exceeding the

Pauli limit for conventional superconductors and that the re-

entrant superconductivity similar to that observed in trilayer

graphene [67] and, possibly, in [68], may develop as a result of

the monopole pairing. The effects of high magnetic fields,

however, require a detailed investigation and will be the

subject of the forthcoming publication.

Discussion and conclusion

The localized pairs with the binding energy E0 are the

nucleation centers for superconducting droplets. As we have

derived above, the T = 0 dimension of such droplets is s. At higher

temperature the droplet dimension ξ(T) will typically be larger.

Global superconductivity sets in at the temperature when

sufficient monopoles have formed so that these droplets form

an infinite three-dimensional cluster and is given by the Ioffe-

Larkin [69] formula for the transition temperature Tc in highly

inhomogeneous superconductors

kBTc � ω e−0.89d/ξ Tc( ), (10)

where ξ(T) is the characteristic size of the localized pair and ω is the

attempt frequency in the matrix element t = ω exp (−d/ξ) describing

tunneling of the bound pair between adjacentmonopoles. Themean

inter-monopole distance is itself a function of temperature and

material characteristics, but, for an estimate, we take the optimal

monopole density providing the strongest binding, i.e., d ≃ s. To

favor the factors that can lower the expectedTc, however, we take the

smallest possible size of the pair, i.e., ξ ≃ s. The tunneling matrix

element between monopoles at the distance d is found following

[65], and gives ω � ���
8/π

√ (Z2/ms2) ���
s/d

√
. The resulting estimate for

the transition temperature is

Tc ≈ 0.65 · Z2/ ms2kB( )[ ], (11)

where we have restored physical units. Taking the interplane

distance s as 1 nm, one obtains Tc � O(102)K.

The proposed real-space monopole pairing mechanism
reveals the microscopic nature of HTS. It solves the puzzle
why the pairing size in HTS does not exceed the inter-pair
distance; this follows from the fact that, since the optimal d ≃
s, then, in general, d ≳ s. Therefore, the distance between paired
electrons is larger than the pair size in HTS. Our findings pave the
way for tailoring superconducting materials with enhanced Tc.
To that end, one has tomaximize the number of curvature defects
on the adjacent conducting planes while minimizing the inter-
plane distance s. The elevated curvature density promotes an
enhanced generation of monopoles, thereby lowering the
system’s overall energy. Determining the optimal monopole
density and finding the corresponding optimal material
parameters requires a detailed self-consistent microscopic
treatment of the intertwined electron-monopole ensemble and
the derivation of the superconducting transition temperature Tc.
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This self-consistent microscopic theory will be the subject of a
forthcoming publication. Here we conclude that our estimate
predicts the possibility of realizing room-temperature
superconductivity in layered compounds like graphite and
cuprates or similar with the sufficient density of dopants or
topological defects providing the sufficient density of topological
curvature centers hosting monopoles.
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Appendix A: Derivation of the pauli
equation on the planes

Using that the monopole gauge potentials (3) or (4) are
divergenceless, we can simplify Eq. 7 of the main text to

− 1
m
∇2 + ie

2m
A

r
2

( ) · ∇ − A
−r
2

( ) · ∇( ) + e2

2m
A2 r

2
( ) + A2 −r

2
( )( )[

− |eg|
2πm|r|2 + VR |r|( ) + VC |r|( )]ψ � Eψ.

(12)
Starting from this generic equation, one has to formulate two

Pauli equations, one for each hemisphere, as explained in the main
text. Let us begin with the upper hemisphere, denoted by the subscript
“u”. Since we restrict to values 0 ≤ θ ≤ π/2 + ε, the arguments of the
second gauge potentials A in Eq. 12 relate to the lower hemisphere,
denoted by subscripts “l”. Therefore, we have to use Eq. 3 for the first
instance of the gauge potential andEq. 4 for the secondone. This gives
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(13)
Repeating the same reasoning for the lower hemisphere π/2 −

ε ≤ θ ≤ π, we obtain the second Pauli equation

[ − 1
m
∇2 + ie

2m
fl

r

2
, θ( ) − fu

r

2
, π − θ( )( ) 1

r sin θ( )
z

zφ

+ e2

2m
f2
l

r

2
, θ( ) + f2

u

r

2
, π − θ( )( ) − |eg|

2πmr2

+VR r( ) + VC r( )⎤⎦ψl � Eψl.

(14)
Using Eqs 3, 4, we obtain, finally, the explicit expressions of

our pair of Pauli equations

− 1
m
∇2 + i

eg/2π( )
mr2

1 − cos θ( )
sin2 θ( )

z

zφ
+ eg/2π( )2

mr2
1 − cos θ( )
sin θ( )( )2[

− |eg|
2πmr2

+ VR r( ) + VC r( )]ψu � Eψu,

− 1
m
∇2 − i

eg/2π( )
mr2

1 + cos θ( )
sin2 θ( )

z

zφ
+ eg/2π( )2

mr2
1 + cos θ( )
sin θ( )( )2[

− |eg|
2πmr2

+ VRR r( ) + VC r( )]ψl � Eψl.

(15)
The presence of the magnetic monopole is reflected in three

new terms, the first two of which, as anticipated, break the
spherical symmetry of the original Coulomb problem. The first
embodies the monopole-induced additional contribution to the
z-axis component of the angular momentum: it has a different sign
in the upper and lower hemispheres since, as we discussed above, it
points from the monopole to the electrons and the monopole sits
exactly in the middle. Its coefficient is only weakly dependent on θ

since it varies from one on the equator to 1/2 at the poles. The
second new term, instead is a repulsive term concentrated around
the equator and vanishing near the poles. Finally, the third new
term is the magnetic attraction due to electron magnetic moments.

Since the vector gauge potentials in the lower and upper
hemispheres are gauge transforms of each other, we must impose
the Wu-Yang gauge conditions also on the wave functions in the
overlap region [π/2 − ε, π/2 + ε] of the maps of the atlas [70],

ψl � e−i
eg
2π φψu. (16)

We can thus make the Ansatz

ψu r, θ,φ( ) � e+i
eg
4π φFu r, θ,φ( ),

ψl r, θ,φ( ) � e−i
eg
4π φFl r, θ,φ( ). (17)

Because an exchange of the two electrons involves necessarily
also a swap of hemispheres, the exchange operator on the wave
function must take into account the Wu-Yang gauge
transformation [70]. Therefore, for eg/2π an odd integer the
exchange implies a factor (−1) and the statistics of the electrons
is changed to bosons. For eg/2π an even integer, instead there is no
additional (−1) factor and the statistics of the individual electrons
remains fermionic. Correspondingly, for eg/2π an odd integer the
additional gauge factor is a double covering representation of 2π
rotations, while it is single-valued for eg/2π an even integer. This is
the statistical transmutation induced by magnetic monopoles (for a
review see [34]). Independently of this statistical transmutation of
the individual components, however, the total spin 0 pair is a boson.

We now constrain the electron motion to two parallel

horizontal planes at z = ±s with the monopole at the origin.

As a consequence, the Laplace operator reduces to

∇2 � z2

zx2
+ 1
x

z

zx
+ 1
x2

z2

zφ2
, (18)

where x denotes the radial distance on the two planes. We are

interested primarily in small values of x and the second new term

in (15),O(θ2), is subdominant with respect to the first one,O(1) near
the poles: we will henceforth neglect it. In addition, since the electrons

are forced tomove on the two horizontal planes, we do not have to use

the usual monopole harmonics [70] but we canmake use of the much

simpler cylindrical harmonics decomposition by making the Anstaz

Fu r, θ,φ( ) � e−iℓφ F x( ),
Fl r, θ,φ( ) � e+iℓφF x( ), (19)

where r and θ are bound by the condition x = r sin θ and ℓ, 2ℓ ∈ N is

the total angular momentum. The z-components of the angular

momentum of the electrons on the two planes cancel out, but the

total angular momentum ℓ can well be different from zero. It is this

value that indicates how much the axis of the composite wave

function is tilted with respect to the z-axis. Combining Eq. 19 with

Eq. 17 gives the announced result. When |eg/2π| = 2ℓ, the effective

angular momentum and the ensuing centrifugal barrier vanish

altogether (note that for negative values of the magnetic charge

the two Eq. 19 are interchanged). We obtain thus a single radial

equation for both planes, Eq. 8 of the main text.
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