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Combinatorial optimization is of general interest for both theoretical study and real-world
applications. Fast-developing quantum algorithms provide a different perspective on
solving combinatorial optimization problems. In this paper, we propose a quantum-
inspired tensor-network-based algorithm for general locally constrained combinatorial
optimization problems. Our algorithm constructs a Hamiltonian for the problem of interest,
effectively mapping it to a quantum problem, then encodes the constraints directly into a
tensor network state and solves the optimal solution by evolving the system to the ground
state of the Hamiltonian. We demonstrate our algorithm with the open-pit mining problem,
which results in a quadratic asymptotic time complexity. Our numerical results show the
effectiveness of this construction and potential applications in further studies for general
combinatorial optimization problems.
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1 INTRODUCTION

Combinatorial optimization is the process of finding an optimal object from a discrete and finite set
of objects. Combinatorial optimization has extensive applications in almost every field of industry,
such as supply chain optimization [1], transportation networks and power grids [2], and finance [3].
The search space of a combinatorial optimization problem increases rapidly with the problem size.
Problems like the Boolean satisfiability problem can have an exponentially large solution space,
making an exhaustive search inapplicable for large-scale problems. From the complexity theory
perspective, many combinatorial problems fall into the class ofNP − hard, which is generally believed
to be unsolvable in polynomial time on classical computers. Classical algorithms often use heuristics
and approximations to find nearly optimal solutions [4]. Quantum algorithms [5], on the other hand,
harness the power of randomness, superposition, entanglement, and interference from quantum
mechanics, which might lead to an advantage in exploring the solutions of a combinatorial
optimization problem [6–8]. The implementation of quantum algorithms is currently limited by
small-scale, noisy, and error-prone contemporary hardware [9]; nevertheless, they view the problems
from a different perspective, motivating many quantum-inspired classical algorithms to appear
[10, 11].

Tensor networks (TNs) have undergone rapid development in the last 2 decades, gaining
tremendous success in quantum many-body physics, quantum information sciences, statistical
physics, and so on. Tensor network algorithms based on matrix product states (MPS) [12, 13],
projected entangled pair states (PEPS) [14, 15], and variational renormalization group
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methods [16–18] are very efficient in simulating a large class
of quantum many-body systems. The tensor network
structure can encode the combinatorial optimization
problem with local constraints, providing an idea of
utilizing the tensor network to solve combinatorial
optimization problems.

This paper presents a quantum-inspired tensor network
algorithm to solve constrained combinatorial optimization
problems and demonstrates the algorithm with a particular
problem with numerical results. The paper is structured as
follows: The general quantum-inspired tensor network
algorithm is proposed in Section 2, and the open-pit
mining problem is provided as an example in Section 3.
Section 4 shows our numerical results with the quantum-
inspired tensor network algorithm and concludes with a
discussion of open questions and directions for future work.

2 A GENERAL TENSOR NETWORK
ALGORITHM FOR COMBINATORIAL
OPTIMIZATION
In this section, we divide our algorithm into four components
and describe each in detail. Section 2.1 explains how to
construct the Hamiltonian for a classical combinatorial
problem to transform it to a quantum problem. Section 2.2
serves as inspiration for our core idea, Section 2.3, where the
former studies how to satisfy the constraints without
introducing a penalty term, and the latter details how to
construct a tensor network state that represents the
superposition of all feasible solutions. Finally, in Section
2.4, we show how to find the optimal solution by evolving
the tensor network state to the ground state of the problem
Hamiltonian.

2.1 Hamiltonian Construction/Problem
Mapping
We use an objective function f and a discrete set of feasible
solutions x to specify the combinatorial optimization problem. In
many such problems, each solution involves a binary selection of
the individual components under certain constraints, denoted as
x = (x1, . . ., xn) with binary variables xn ∈ {0, 1}, satisfying
constraints c = (c1, . . ., cm). The goal is to find the solution x+ in
all feasible solutions to maximize the objective function f, i.e.
x+ � arg maxx∈{0,1}nf(x). This goal can be achieved by mapping
the problem to a Hamiltonian and looking for the ground state in
the Hilbert space. The Hamiltonian is written as

Ĥ � ∑
x∈ 0,1{ }n

ax|x〉〈x|, (1)

where ax are real values representing the elements of the
Hamiltonian and |x〉 = |x1〉 ⊗|x2〉⊗|xn〉. Note that in this
paper, we are interested in problems that require n qubits,
where n is the number of binary variables. Each variable xi of
the set of solutions x is assigned on the basis of the Pauli operator

Ẑi on the i-th qubit, that is, Ẑi � |0〉〈0| − |1〉〈1| with |xi〉 ∈ {|0〉, |
1〉}. Thus, a general quantum state can be expressed as

|Ψ〉 � ∑
x∈ 0,1{ }⊗⊗n

bx|x〉. (2)

Here bx represents the linear coefficient that meets the
normalized condition, i.e. ∑n

i�1|bxi|2 � 1. Consider a general
unconstrained binary linear optimization problem:

min wTx: x ∈ 0, 1{ }⊗n{ } (3)
with weights w = (w1, . . ., wn). Then the Hamiltonian is
transformed as

Ĥ � ∑
i

wi

2
Ẑi − Î( ), (4)

where I is the identity. Such transformations take linear time in
the number of variables.

The ground state of this Hamiltonian, denoted as |ψg〉, is the
state that minimizes the energy defined as
E(|Ψ〉) � 〈Ψ|Ĥ|Ψ〉/〈Ψ|Ψ〉. With an appropriate mapping, the
original optimization problem is equivalent to solving the ground
state of the Hamiltonian. Then the ground-state solving
techniques in quantum many-body physics can be utilized to
achieve an optimized solution of the combinational optimization
problem.

2.2 Postselection: A Penalty-Free Approach
For constrained problems, additional terms are usually needed in
the Hamiltonian to penalize constraint violations. These penalty
terms should be conditioned by multiplying with appropriate
penalty factors to ensure that the overall Hamiltonian behaves as
intended. Optimization of such a Hamiltonian containing penalty
terms inevitably involves tuning additional hyperparameters,
which greatly increases the difficulty of the overall
optimization process.

In our study, we present a hyperparameter-free algorithm that
directly projects a randomized initial quantum state into a
subspace that satisfies the constraints. We use a projector,
defined as P̂|Ψ〉 � |Ψv〉, to eliminate states that violate
constraints. |Ψ〉 is an arbitrary state in the Hilbert space, and
|Ψv〉 is the projected state that belongs to the subspace denoted by
V satisfying the constraints. The projector is then constructed as

P̂ � ∑
x∈V

|x〉〈x|. (5)

It satisfies P̂
2 � P̂. The ground state |ψg〉 under the projection is

written as follows:

|ψg〉 � min
|Ψ〉

E |Ψ〉( ), (6)

E |Ψ〉( ) � 〈Ψv|Ĥ|Ψv〉
〈Ψv|Ψv〉

� 〈Ψ|P̂ĤP̂|Ψ〉
〈Ψ|P̂|Ψ〉 . (7)

We can then extract the optimal solution to the combinatorial
optimization problem encoded in |ψg〉. It is worth noting that the
solver only works for a normalized state, i.e. 〈Ψ|Ψ〉 = 1, while the
projected states are not normalized since a general projector P̂ is

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9065902

Hao et al. Quantum-Inspired Algorithm for Combinatorial Optimization

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


not unitary. However, with prior knowledge that the ground state
is always a product state obeying the constraints, and thus
〈Ψ0|P̂|Ψ0〉 � 1, we could simply apply the solver for the
normalized ground state of P̂ĤP̂.

2.3 Tensor Network Construction of the
Projected State
Directly constructing the projector P̂ incurs an exponential cost
in time and memory. However, by encoding the constraints in a
tensor network state, we can significantly reduce the cost to
O(mn), or O(m + n) if the constraints are “local”, i.e. the number
of variables involved in each constraint is limited by a constant
and vice versa. The general form of the tensor network state can
be written as

|Ψ〉 � ∑
α,β/{ }

∏n
i�1

T xi[ ]
αiβ1/βx

R ci[ ]
β1/βc

|α1/αi/αn〉. (8)

There are two types of tensors, T[x] and R[c]. Each T[x] has a
single physical index labeled α with a bond dimension d = 2
reflecting the binary variable, that is, α = 0 and 1, and multiple
virtual indices labeled β also with the same bond dimension. Each
auxiliary tensor R[c] encodes the constraint c and connects to T[x]

tensors whose variable x is involved in the constraint c. To map
the selection of the binary variable from the physical index to
other indices, T[x]

0/0 and T[x]
1/1 are set to 1. The R[c] tensors are

constructed by traversing the allowed assignments of the
constrained variables and setting the elements located in the
corresponding indices to 1. We initialize the T[x] and R[c] tensors
as zeros. For example, if we have variables x1, x2, x3 ∈ {0, 1} and a
single constraint c1 : x1 + x2 + x3 mod 2 = 1, then we can use four
sparse tensors, i.e. T[x1]

αβ1
, T[x2]

αβ2
, T[x3]

αβ3
and R[c1]

β1β2β3
to encode this

particular constrained problem, with nonzero elements of the
tensors specified as:

T x1[ ]
00 � T x1[ ]

11 � 1 (9)
T x2[ ]
00 � T x2[ ]

11 � 1 (10)
T x3[ ]
00 � T x3[ ]

11 � 1 (11)
R c1[ ]
001 � R c1[ ]

010 � R c1[ ]
100 � R c1[ ]

111 � 1. (12)
The four possibilities to satisfy the constraint c1 have been

included in R[c1]; for example, R[c1]
001 � 1 with indices 001

represents x1 = x2 = 0 and x3 = 1. The construction of these
tensors is visualized in Figure 1.

By this construction, we encode all feasible variable
assignments in the initialized tensor network. Since traversing
the allowed assignments of each constraint requires exponential
time in the number of variables involved, the overhead of our
method is much lower for problems with local constraints,
compared to directly building the projector. Additionally,
existing tensor algebra methods and tensor network
algorithms are applicable to structured problems, helping us
solve problems efficiently.

2.4 Finding the Optimal Solution
The optimal solution is one of the basis vectors in Eq. 8, denoted
by |α1/αi/αn〉, with αi = 0, 1 on the i-th binary variable xi.
Having the superposition of all allowed variable assignments, we
can screen out the optimal solution by imaginary time evolution
(ITE), a technique to project the initial state to the ground state of
an objective Hamiltonian. ITE effectively performs a power
iteration by repetitively applying the ITE operator e−τĤ to find
the ground state of Ĥ. The ground state minimizes the energy,
which is equivalent to minimizing or maximizing the objective
function. The simulation of the ITE takes the form of

|Ψ〉 � lim
τ→∞

e−τĤ|Ψ0〉
‖e−τĤ|Ψ0〉‖, (13)

where τ is referred to as the imaginary time. If the Hamiltonian
only contains the summation of commuting terms, then e−τĤ can
be directly rewritten as the product of local evolution operators,
i.e. e−τĤ � Πie−τĥi . Otherwise, the Trotter-Suzuki decomposition
[19, 20], an approximation for doing the ITE if containing non-
commuting terms in the Hamiltonian, should be involved.

To extract the optimal solution from the tensor networks, we
take inspiration from measuring the spin magnetic moment. The
assignment of the variable xi is calculated as

x+
i � 1

〈Ψ|Ẑi|Ψ〉
〈Ψ|Ψ〉 < 0( ), (14)

where Ẑi is the Pauli matrix. That is, if the expectation value is
negative, xi is 1; otherwise, it is 0. Since we need to do this
calculation for each variable, there is an O(n) factor multiplied by
the complexity of computing a single expectation value, which we
will discuss shortly.

Note that there could be certain variables whose either
assignment gives the same final objective value and obeys the
constraints, known as the degeneracy. In this case, if we prefer xi

FIGURE 1 | Tensor network construction for a three-variable constrained problem. (A) The schematic for the three-variable constrained problemwith x1, x2, x3 ∈ {0,
1} and the constraint c1. (B) The tensor definitions in the general form of the tensor network for the three-variable constrained problem, with α as the physical index and β

as the virtual index.
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to be assigned a specific value, for example, zero, then the
measurement operator can be adjusted as

~̂Zi � 1 0
0 −μ[ ], (15)

where μ is a value larger than 1 so as to create a slight difference
between the expectation values of the 0 and 1 variable
assignments. Then we should measure

~x+
i � 1

〈Ψ|~̂Zi|Ψ〉
〈Ψ|Ψ〉 < ]⎛⎝ ⎞⎠, (16)

where ] is a threshold value related to μ used to detect the slight
difference. In practice, μ can be slightly larger than 1 and ] is a
small positive number approaching zero, such as μ = 3 and ] =
0.04, depending on how many degenerate states exist. We can
adjust μ until the degenerate states are properly separated; then
we can find our preferred one by setting an appropriate
threshold ].

We calculate the expectation values 〈Ψ|˜̂Zi|Ψ〉 by performing
tensor network contractions [21–23], which sometimes take
exponential time and space to obtain an exact result. Tensor
decomposition methods, such as singular value decomposition
(SVD), are regularly used in tensor network contractions to limit
the rapidly increasing bond dimension. Specifically, we can
preserve a predetermined number of columns and rows in the
decomposed matrices with the largest singular values. An
alternative common practice is to preserve columns and rows
whose singular values are above a threshold. Using these
techniques cleverly can reduce the complexity of the whole
contraction to be polynomial in m and n, while still resulting
in an accurate enough value. Moreover, for problems that have a
structured tensor network construction, we can utilize existing
tensor network algorithms to further optimize performance.

3 THE OPEN-PIT MINING PROBLEM

3.1 Problem Description
We use a real-world combinatorial optimization problem, the
open-pit mining problem, as an example to demonstrate our
algorithm. The goal of designing optimal open-pit mines is to
maximize ore production while avoiding unnecessary mining of
rocks. The planning is also subject to a variety of constraints on
the size, shape, and form of the mine, making it a computationally
taxing process. Theoretical studies of the problem often apply
simplifying assumptions, converting the problem into a simpler
and more well-understood form [24].

In particular, the 2D open-pit mining problem can be formally
stated as a combinatorial optimization problem. Consider a 2D
square lattice of mining blocks, where each block i has an
associated profit wi. The coordinate of block i is denoted as
(ix, iy). A feasible solution should follow physical constraints, i.e. if
the block i is excavated, then all its child blocks j should be
excavated as well. In this work, we consider the 45° slope
constraint: j ∈ {(ix − 1, iy − 1), (ix − 1, iy), (ix − 1, iy + 1)}, as

illustrated in Figure 2A. Equivalently, we can consider an n-node
directed graph G = (V, E) with node weight wi, as shown in
Figure 2B. G is structured into levels, where each level contains
twomore nodes than the previous level, starting from one node in
the first level. Each node before the last level has exactly three
child nodes at the next level, and each node after the first level has
one to three parent nodes.

By assigning xi = 0 (unexcavated) or xi = 1 (excavated) to each
node i, we can write the open-pit mining problem as

max∑n
i�1

wixi (17)

subject to

xi ∈ 0, 1{ } for i � 1, 2, . . . , n (18)
∑

j∈children i( )
xi 1 − xj( ) � 0 for i � 1, 2, . . . , n, (19)

where children(i) denotes the set of child nodes of node i.
Traditionally, the open-pit mining problem is solved by

reducing to the maximum closure problem or the maximum
flow problem and utilizing efficient graph algorithms. In
particular, the Lerchs-Gorssman (LG) algorithm [25, 26] was
the most widely used algorithm in the mining industry, giving a
provably optimal solution in polynomial time. In recent years, it
has been surpassed by the more efficient Pseudoflow algorithm
[27, 28], an O(|V||E| log |V|) algorithm for the maximum flow
problem. Recently, a quantum computing approach was
proposed as the first attempt to solve this problem with
quantum computers [29]. It modifies the objective function to

max ∑
i

wixi − λ ∑
i,j∈p i( )

xi 1 − xj( )⎛⎝ ⎞⎠, (20)

where λ is a hyperparameter introduced to regularize the penalty
for constraint violations. Then the problem Hamiltonian is
constructed using the method described in Section 2.1.

Our algorithm takes inspiration from the quantum computing
approach but is intrinsically different. Using tensor networks to
represent quantum states, our algorithm can use powerful non-
unitary operations, which are unavailable to quantum algorithms.
This fact allows us to directly construct the superposition state of
all feasible solutions and avoids having to optimize the
regularization of the penalty term. Our algorithm is also
completely different from the graph algorithms. It provides a
new perspective on such problems, utilizing the rapidly
developing tensor network methods. Moreover, the core ideas
can be applied to general combinatorial problems, not limited to
just this one.

3.2 The Tensor Network Framework
We construct the configurations of all allowed states obeying the
smoothness constraints as a tensor network state. Figure 3
visualizes the construction process using the 5 × 3 mine as an
example. Referring to the smoothness constraints that the walls of
the pit should not exceed a maximum steepness, the sites marked
dark brown in Figure 2A would, if excavated, violate the
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smoothness constraints, which therefore should be excluded from
the pit profile as well as the initialized tensor network construction.
The values of the tensors as defined in Figure 3C are as follows (here
we group the tensors corresponding to different variables or
constraints but have the same form together):

T 1[ ]
11 � T 1[ ]

00 � 1 (21)
T 2[ ]
1111 � T 2[ ]

0000 � 1 (22)
T 3[ ]
111 � T 3[ ]

000 � 1 (23)
T 4[ ]
111 � T 4[ ]

000 � 1 (24)
T 5[ ]
11111 � T 5[ ]

00000 � 1 (25)
R 1[ ]
1111 � R 1[ ]

1110 � R 1[ ]
1101 � R 1[ ]

1100 � R 1[ ]
1000 � R 1[ ]

0100 � R 1[ ]
0000 � 1 (26)

R 2[ ]
111 � R 2[ ]

110 � R 2[ ]
100 � R 2[ ]

010 � R 2[ ]
000 � 1. (27)

All remaining elements are zero, which means that the
corresponding projections are forbidden. The first index of the
T tensors is the physical index, where α = 0 represents an
unexcavated block and α = 1 represents an excavated block.
The virtual indices of T are used to transfer the status of

neighboring tensors. As in the illustration of the tensors
shown in Figure 3C, the arrow on each index is used to
distinguish the directions of the transferring status of the
geometrical bonds, where the indices with incoming arrows
carry the status originated from their parent blocks and vice
versa. The constraints of the excavated ore have been reflected in
our tensor network definition with very limited nonzero elements
of the tensor. Under the constraint that if a block (ix, iy) is
excavated, so must its parent blocks (ix − 1, iy − 1), (ix − 1, iy) and
(ix − 1, iy + 1), but an excavated block itself does not have to have
child blocks.

Since there is only a very limited number of nonzero elements
in the initialized tensor network, there is a lot of room for
optimization in terms of computational memory and time
cost. In addition, the three-dimensional open-pit mine can
also be defined in a similar way, just by adjusting the local
tensors T and the auxiliary tensors R to higher-order tensors
and designing the nonequivalent tensor for boundary conditions
in the three-dimensional mine.

The schematic of ITE is shown in Figure 4A. As the
Hamiltonian for the open-pit mining problem, the same as

FIGURE 2 | Two-dimensional open-pit mining problem and the equivalent graph representation. (A) A schematic of two-dimensional open-pit mining problem. The
blocks in light brown are excavatable. The blocks in dark brown are unexcavatable due to 45° slope constraint. ix and iy represent the vertical and horizontal indices,
respectively. (B) The schematic for a directed graph representing a problem equivalent to the two-dimensional open-pit mining in panel (A). Each node i = (ix, iy)
represents a mining block. Each directed edge (i, j) ∈ V represents the physical constraint: if block i is excavated, block j should be excavated too.

FIGURE 3 | Tensor network construction for open-pit mining problem. (A) Directed graph representation of the open-pit mining problem, with the excavatable
blocks expressed as nodes in light brown. (B) A corresponding tensor network construction, where the light brown blocks show the physical nodes and the gray blocks
show the virtual nodes. (C) The definition of nonequivalent tensors in our tensor network construction. α and β represent the physical and virtual indices, respectively.
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defined in Eq. 4, only contains single site commuting terms, we
can rewrite the evolution operator for the whole system, i.e. e−τĤ
in Eq.13 into the product of the local evolution operators, i.e.
e−τĤ � Πie−τĥi , with ĥi � wi

2 (Ẑi − Î). Then directly set the
imaginary time τ as a relatively large number, such as τ = 10,
to achieve the ground state in the complexity of O(n).

4 RESULTS AND DISCUSSIONS

We implement our algorithm for the mining problem as an
open source Python library, available at [30]. Specifically, the
tensor network construction described in Section 3.2 is a 2D
tensor network, which can be viewed as projected entangled
pair states (PEPS) [15], with trivial physical indices on the R
tensors. We use Koala [22], a high-performance PEPS
simulation library, to perform the imaginary time
evolution and calculate the expectation values by
contractions.

We perform numerical experiments on open-pit mining
problems with different size scales, as defined in Section 3.1.
Problem instances are generated randomly, where the value of
each site follows a normal distribution with a mean of 0.1 and a
standard deviation of 1. Each problem size is repeated five times
with different mine instances to account for the possible
fluctuating running condition of the computing device. In an
ideal world, the runtime should be the same given a fixed problem
size, since the algorithm is purely deterministic. The ITE is
conducted with τ = 6, which is large enough to achieve the
ground state, but not too large to cause numerical instability, such
as exceeding the maximum allowed value of the complex type in
Python. Note that one can also set τ with a heuristic related to
problem size to better achieve the goals. We obtain the solutions
by calculating the expectation values of the Pauli Z operators
following Eq. 14.

Figure 5 shows a comparison of our algorithm’s runtime with
different contraction approaches. If no bond dimension
truncation is desired, the “PEPS Exact” method in the figure
contracts a PEPS in a generally optimal order [23]. The boundary
matrix product state (BMPS) method has poorly scaled
performance on its own, but can be executed with bond
dimension truncation to significantly lower time and memory
complexities [22]. Following the references, we can calculate the
asymptotic time complexities of the three contraction

FIGURE 4 | The optimization process using imaginary time evolution (ITE) on the tensor network for the open-pit mining problem. (A) The schematic of ITE process
as described in Eq. 13. The left panel shows the ITE process using the local evolution gate exp(−τĥi)with ĥi � wi

2 (Ẑ i − Î), as shown in blue, to project the tensor network
state, as shown in light brown and grey square defined in Figure 3. The right panel shows the obtained ground state wavefunction, with each blue block being an
updated local tensor. (B) The schematic of measuring a local operator as described in Eq. 14 or Eq. 16. The operator may change to different form. The left panel
shows the tensor network construction of the expectation value calculation. The right panel shows the scalar tensor network for the local observation with renewed local
tensors.

FIGURE 5 | Computational time for two-dimensional open-pit mining
problems with mine side length ranging from 3 to 13, using three different
PEPS contraction approaches.
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approaches. While “PEPS Exact” and “BMPS no truncation” both
take 2O(

�
n

√ ), BMPS with truncation only takes O(d6n) = O(n),
where n is the number of sites. Since we need to do n full
contractions, the total time to calculate the expectation values
with truncation is O(n2). As all the other parts of the algorithm
run in linear time for the open-pit mining problem, the overall
time complexity is O(n2). In comparison, the state-of-the-art
classical algorithm Pseudoflow finds the optimal solution in O(|
V||E| log |V|) =O(n2log n) [27]. Note that although our algorithm
is asymptotically faster, its constant factor is larger, and it makes
approximations when truncating bond dimensions. In Figure 5,
we see that truncating the bond dimension to d = 2 incurs an
additional overhead but has a polynomial runtime in contrast to
the exponential runtime of both exact methods, which agrees well
with our theoretical analyses. We compare the results produced
with the optimal solution given by Pseudoflow. For all problem
instances that we run, given an appropriate ITE evolution time,
our algorithm can always find the optimal solution with
maximized profit and zero constraint violations. Thus, we
conclude that truncating the bond dimension to as small as
d = 2 does not affect the accuracy of our algorithm.

It is worth noting that the open-pit mining problem has some
desirable properties for our algorithm. First, the system has a
large energy gap between the ground state and the first excited
state, allowing ITE to efficiently separate the optimal solution.
Second, local and structured constraints decrease the complexity
of constructing the tensor networks and make them reducible to
well-studied tensor network forms. Third, the Hamiltonian
contains only local interactions, resulting in well-controllable
long-range entanglement, thus allowing aggressive bond-
dimension truncations. It would be intriguing to see how the
algorithm performs for more complicated and less suitable
problems. Furthermore, by increasing the initial bond
dimension, our algorithm can be extended beyond binary
variables. A study of the performance sacrifice due to the
increased initial bond dimension would be of interest.

Moreover, since most of the tensor elements are zero in our
construction, sparse tensor techniques could be applied, in
addition to parallel computing implementations, to further
improve performance.
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