
A New Four-Dimensional Chaotic
System and its Circuit Implementation
Xuan Wang, Yiran Feng* and Yixin Chen

School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian, China

A new four-dimensional chaotic system is designed in the paper. The equilibrium point and
stability of the chaotic systemare analyzed, and the dynamical behaviors of the systemunder
different parameters are analyzed by using Lyapunov exponents, Bfurcation diagram, SE
and C0 complexity algorithms. The special phenomenon of the coexistence of attractors is
also found. Finally, the implementation of circuit of the new system is carried out using digital
signal processing (DSP) technology, and the results are consistent with the numerical
simulation results, which prove the validity of the theoretical analysis. Through analysis and
simulation of the system, it can be found that it has relatively rich dynamic characteristics and
can be applied in areas such as confidential communication and image encryption.
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1 INTRODUCTION

In 1963, Lorenz proposed the famous Lorenz chaotic system [1], which has complex dynamical
behavior although it is only three-dimensional. As an important branch of nonlinear systems, chaotic
systems have good prospects for applications in secure communications, image encryption and
neural networks because of their unique properties [2–24]. As the research progresses, chaotic
systems have been expanded to the fractional-order domain [25–33], not only in the integer-order
direction [34–40]. In both integer-order and fractional-order systems, some of them have the special
phenomenon of hidden attractors.

The Sil’nikov criterion considers that a chaotic system requires at least one unstable equilibrium
point [41]. However, the Sil’nikov criterion is a sufficient and unnecessary condition for the
emergence of chaotic phenomena. A class of systems discovered in recent years may have only
stable equilibrium points, no equilibrium points or infinitely many equilibrium points, the chaotic
state is still apparent, with the attractor basin not meeting the adjacent domain of the equilibrium
point, such fields of attraction are called hidden attractors [42–44].

For classical systems of chaos, such as Lorenz [1], Chen [45] and Lü [46] systems, the equilibrium points
of these systems are unstable and therefore generate self-excited attractors. However, if the equilibrium point
of the system is unstable, then hidden attractors may be created. Since the 21st century, more studies has
been done on hidden attractors. In 2010, Vagaitsev et al. [47] discovered hidden attractors in generalized
Chua’s circuits firstly, and since then there has been a boom in the study of hidden attractors. In 2012, G.A.
Leonov et al. [48] studied hidden attractors in smoothChua’s systems and proposed an algorithm for hidden
attractors localization. In 2014, Lao et al. [49] introduced a cost function in chaotic systems with hidden
attractors and used it for parameter estimation in chaotic circuit systems. In 2015, Chen et al. [50] discovered
the coexistence of hidden attractors by improving the classical Chua’s circuit using memristors. In 2017, M.
Borah et al. [51] proposed a fractional-order chaotic system and it does not have an equilibriumpoint, which
is a system of chaos with hidden attractors. In 2019, Cang et al. [52] discovered the coexistence of hidden
attractors under different parameters in a class of Lorenz-like systems. In the same year, Zhang et al. [53]
introduced amultiscroll hyperchaotic systemwith hidden attractors based on the Jerk system. In 2020, Deng
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et al. [54] proposed amulti-wing systemof hidden attractors with only
a single stable equilibrium point. In addition,Mou et al. [55] presented
a chaotic circuit based onmemristor–memcapacitor, which is a circuit
system with an abundance of hidden attractors.

In addition, the coexistence of attractors is an interesting
phenomenon that occurs in some chaotic systems where the
parameters remain the same and the system enters different
orbits and thus forms different attractors under different
initial conditions due to the properties of the chaotic system
itself. In dynamical systems, the presence of this phenomenon can
lead to very complex behavior of the system. In the article, a novel
four-dimensional chaotic system is arised from a modification of

Wei system [54]. It is found that the system has stable equilibrium
points and can be classified as a chaotic system with hidden
attractors, while the system also has complex dynamical
phenomena, including the coexistence of periodic windows
and attractors. The stability, interchangeability, and agility of
system can be significantly improved by using software
implementation, and therefore the effectiveness of the system
is verified by execution onto a DSP platform.

The remainder of this article is presented below. In Section 2, the
mathematical model of the system is presented and the type of
equilibrium points and their stability are analyzed. In Section 3, the
dynamical behavior of the 4-dimensional system is analyzed, including
Lyapunov exponent spectrum (LEs) and bifurcation diagram (BD),
coexistence of attractors, SE and C0 complexity. In Section 4, a circuit
realization of the 4-dimensional chaotic system is performed through a
DSP platform. Finally, conclusions are given in Section 5.

2 MATHEMATICAL MODELS

2.1 Analysis of Equilibrium Points
A new chaotic system is created by inserting extra variables w and
a constant k into the three-dimensional system of chaos, as
follows:

FIGURE 1 | Hidden chaotic attractor of system (1), (A) x–y plane (B) y–z plane.

FIGURE 2 | Dynamical analysis with parameter a, (A) LEs, (B) BD.

TABLE 1 | The state and LEs under the change of parameter a.

Range LEs State Range LEs State

1–2.69 +0 - - Chaos 3.72–3.79 +0 - - Chaos
2.70–2.75 0 - - - Period 3.80–3.81 0 - - - Period
2.76–2.95 +0 - - Chaos 3.82–4.00 +0 - - Chaos
2.96–2.97 0 - - - Period 4.01–4.03 0 - - - Period
2.98–3.23 +0 - - Chaos 4.04–4.09 +0 - - Chaos
3.24–3.30 0 - - - Period 4.10–4.11 0 - - - Period
3.31–3.59 +0 - - Chaos 4.12–4.20 +0 - - Chaos
3.60–3.71 0 - - - Period 4.21–7.00 0 - - - Period
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
_x � a(y − x)
_y � −by + xz + k
_z � d − exy

_w � czw

. (1)

The dispersion of the system is obtained from the system
dynamical equations and can be expressed as

∇V � z _x

zx
+ z _y

zy
+ z _z

zz
+ z _w

zw.
(2)

Setting a = 2.6, b = 0.2, c = 5, d = 17, k = 3, and the initial
conditions as (1, −3, 0.1, 7). And then

∇V � z _x

zx
+ z _y

zy
+ z _z

zz
+ z _w

zw
� −2.3< 0, (3)

FIGURE 3 | Phase diagram of the system, (A) a = 6.8, (B) a = 5.8, (C) a = 4, (D) a = 1.2.

FIGURE 4 | Dynamical analysis with parameter b, (A) LEs, (B) BD.
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Eq. 2 smaller than zero, it is proved that the system is
dissipative and therefore may have chaotic attractors.

Setting _x � _y � _z � _w � 0, it means that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a(y − x) � 0
−by + xz + k � 0.
d − exy � 0
czw � 0

(4)

It can be obtained that when d > 1, the system has two
equilibrium points E1 ( ����

ln d
√

,
����
ln d

√
, k���

ln d
√ + b, 0) and E2

( ����
ln d

√
,

����
ln d

√
, k���

ln d
√ + b, 0).

Let the set of equilibrium points be P. The Jacobian matrix of
system 3) at the set of equilibrium points p is

J �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a a 0 0
z −b x 0

−yexy −xexy 0 0
0 0 cw cz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (5)

and then the characteristic equation for point set

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 � 0, (6)
where a1 = 3.3, a2 = 2.2298, a3 = 0.9327, and a4 = 0.2589. The
eigenvalues can be calculated from the characteristic equation as
λ1 = −2.5545, λ2 = −0.5, λ3 = −0.1227-0.4332i, λ4 = −0.1227 +
0.4332i, λ1 and λ2 are negative real roots, and λ3 and λ4 are a pair
of complex conjugate eigenvalues, so these two equilibrium
points are saddle-focus equilibrium points, which are
important for chaotic systems. According to the Routh-
Hurwitz criterion, the real part of all roots is negative and
satisfied with

Δ1 � a1 > 0, (7)
Δ2 � a1a2 − a0a3 > 0, (8)

Δ3 � a1a2a3 − a21a4 − a0a
3
3 > 0, (9)

Δ4 � a4Δ3 > 0, (10)

TABLE 2 | The state and LEs under the change of parameter b.

Range LEs State Range LEs State

0.010–0.142 +0 - - Chaos 0.786–0.798 0 - - - Period
0.143–0.156 0 - - - Period 0.799–0.939 +0 - - Chaos
0.157–0.234 +0 - - Chaos 0.940–0.945 0 - - - Period
0.235–0.241 0 - - - Period 0.946–1.052 +0 - - Chaos
0.242–0.546 +0 - - Chaos 1.053–1.057 0 - - - Period
0.547–0.662 0 - - - Period 1.058–1.078 +0 - - Chaos
0.663–0.665 +0 - - Chaos 1.079–1.081 0 - - - Period
0.666–0.777 0 - - - Period 1.082–1.119 +0 - - Chaos
0.778–0.785 +0 - - Chaos 1.120–2.000 0 - - - Period

FIGURE 5 | Phase diagram of the system, (A) b = 0.70, (B) b = 0.46.

FIGURE 6 | Dynamical analysis with parameter d, (A) LEs, (B) BD.
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Thus, both equilibria E1 and E2 are asymptotically stable.

3 DYNAMICAL BEHAVIORS

3.1 Chaotic Attractor
In system (1), let a = 2.6, b = 0.2, c = 5, d = 17, k = 3, and the initial
values are (1, −3, −0.1, 7). The phase diagrams of chaotic attractors
in the system in different phase planes are shown in Figure 1.

3.2 Lyapunov Exponents and Bifurcation
Diagram of the System
In the system, which is a four-dimensional chaotic system, the BD
is analyzed in combination with the LEs to obtain the states with
different parameters. In the following, parameters a, b and d will
be set as variables with initial values of (1, −3, −0.1, 7) and step
size h = 0.01. Only parameters a, b and d will be changed, the rest
will remain unchanged and the state of the system will be
observed.

With the parameters a∈ [1, 7], let b = 0.2, c = 5, d = 17, k = 3,
and initial values of (1, -3, −0.1, 7), the LEs and BD of the system
are shown in Figure 2.

The LEs can clearly see the change of the system state when
the parameter a changes, and the BD can be obtained from
the multiplicative period bifurcation into chaos, and it is
known after analysis that the BD corresponds exactly to the
LEs. The system states are shown in Table 1, which gives a
clear view of the range of parameters of the system in
different states.

According to the data inTable 1, the cyclical and chaotic states
of the system under the transformation of parameter a are shown
in Figure 3.

Taking the parameter b∈[0.01, 2], let a = 2.6, c = 5, d = 17,
k = 3, and the initial values are (1, −3, −0.1, 7), the LEs and the

TABLE 3 | The state and Les under the change of parameter d.

Range LEs State Range LEs State

0–11.13 0 - - - Period 13.65–13.84 +0 - - Chaos
11.14–11.43 +0 - - Chaos 13.85–14.12 0 - - - Period
11.44–11.45 0 - - - Period 14.13–14.37 +0 - - Chaos
11.46–11.91 +0 - - Chaos 14.38–14.39 0 - - - Period
11.92–11.93 0 - - - Period 14.40–14.73 +0 - - Chaos
11.94–12.01 +0 - - Chaos 14.74–14.82 0 - - - Period
12.02–12.03 0 - - - Period 14.83–16.48 +0 - - Chaos
12.04–12.39 +0 - - Chaos 16.49–16.71 0 - - - Period
12.40–12.42 0 - - - Period 16.72–18.30 +0 - - Chaos
12.43–12.62 +0 - - Chaos 18.31–18.32 0 - - - Period
12.63–12.64 0 - - - Period 18.33–19.45 +0 - - Chaos
12.65–13.55 +0 - - Chaos 19.46–19.47 0 - - - Period
13.56–13.64 0 - - - Period 19.48–20.00 +0 - - Chaos

FIGURE 7 | Phase diagram of the system, (A) d = 7.0, (B) d = 19.0.

FIGURE 8 | The phase diagram of coexistence attractor, (A) initial values are (1, −3, −0.4, 7) and (−0.1, 0.4, −0.1,7), (B) initial values are (−2, 3.6, −0.1, 7) and
(1, −3, −0.1, 7).
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BD under this condition are displayed at Figure 4. As the
parameter b varies, cyclical and chaotic regions are evident in
the system.

The state table of the system as the parameters b change is
shown in Table 2. It is evident that the system undergoes
another period-doubling bifurcation after going through a

period-doubling bifurcation into chaos. The analysis shows
that the BD corresponds exactly to the LEs.

The state of the system with parameter b transformed is
displayed at Figure 5.

Taking the parameter d∈ [7, 20], setting a = 2.6, b = 0.2, c = 5,
k = 3, and initial values of (1, −3, −0.1, 7), LEs and BD for this
system are displayed at Figure 6. The system exhibits complex
dynamics of chaos and alternating periods when the parameter d
is varied.

The state table of the system when the state varies with the
parameter d is shown in Table 3. It can be seen that the chaotic
range of the system is relatively large at this time, while there is a
clear periodic window.

When the parameter d is varied, the system produces the
periodic and chaotic state displayed at Figure 7.

3.3 Coexistence of Attractors
An interesting phenomenon that exists in chaotic systems,
namely the coexistence of attractors. When the parameters of
the system are constant and the initial values are varied, the
trajectory of the system can gradually vary to a different state of
motion. Setting a = 2.6, b = 0.2, c = 5, d = 17, k = 3. When the
initial values are set to (1, −3, −0.4, 7) and (−0.1, 0.4, −0.1, 7), the
coexistence of attractors of the system is displayed at Figure 8A,
and when the initial values are set to (−2, 3.6, −0.1, 7) and (1, −3,
−0.1, 7), the coexistence of attractors of the system is displayed at
Figure 8B.

3.4 Complexity Analysis
Another important aspect of the study of chaotic systems is the
study of their complexity. The degree of closeness of a chaotic
sequence to a random sequence, as shown using the
corresponding algorithm, is the complexity of a chaotic
system. The higher the value of complexity, the closer the
system is to a random sequence and the safer it is [56, 57]. In
this paper, the SE algorithm and the C0 algorithm are used to
analyse the complexity of the structure.

The SE (spectral entropy) algorithm performs a Fourier
transform on the sequence and then obtains the spectral
entropy value by combining the energy density in the
frequency domain with the Shannon entropy. The C0

FIGURE 9 | Structural complexity curve with parameter d, (A) C0 Complexity, (B) SE Complexity.

FIGURE 10 | The flow chart.
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algorithm, on the other hand, involves decomposing the sequence
to produce two parts of regularity and irregularity, and then
measuring the proportion of the irregular part to obtain the
result.

In the section, we will analyse the complexity of the system
under the variation of parameter d. When taking parameters a =
2.6, b = 0.2, c = 5, k = 3, and d∈ [7, 20], the results obtained are
shown in Figure 9.

As can be seen from Figure 9, the SE algorithm and the C0
algorithm are highly synchronized, and the system is in the
limit ring state when d < 11.30, in the chaotic state when

d∈[11.30, 12.43], in the limit ring state when d∈[12.44, 12.60],
in the chaotic state when d∈[12.61, 14.01], in the limit ring
state when d∈[ 14.02, 14.17], in the chaotic state when
d∈[14.18, 16.48], in the limit ring state when d∈[16.49,
16.82], and when d > 16.83, the system enters the chaotic
state again. By analyzing the SE complexity diagram and the
C0 complexity diagram, it can be found that the complexity is
at a low point when the system is in the periodic state and
increases significantly when the system enters the chaotic state,
and the presented results are consistent with the LEs and the
BD displayed at Figure 6.

FIGURE 11 | The phase diagram of DSP simulation, (A) x–y plane (B) y–z plane.

FIGURE 12 | DSP simulation physical picture.
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4 DSP IMPLEMENTATION

Since chaotic systems are susceptible to external perturbations
when implemented using analog circuits, the relevant
characteristic conditions in the actual circuit are more difficult
to control accurately, so they can be implemented using DSP. The
DSP chip F28335, with its fast computing speed, high accuracy
and low environmental impact, was chosen as the empirical
platform to validate the novel system of chaos. As software
can only receive digital signals, a continuous chaotic system
must be discretized in order to handle the system on a DSP
platform firstly. Therefore, we discretize the continuous system of
chaos and transform it into a discrete chaotic sequence by the
approach of fourth-order Runge-Kutta, and then write into the
DSP chip using a programming language. Here a stack operation
is devised to make sure the data is not corrupted as much as
possible. On the output side of the DSP, a D/A converter
(DAC8552) is used to convert the digital sequence into an
analogue sequence which is then sent to an oscilloscope
(EDS102C) so that the oscilloscope can better capture the
image. The overall workflow is shown in Figure 10.

The parameters are given as a = 2.6, b = 0.2, c = 5, d = 17, k = 3,
and the initial conditions as (1, −3, −0.1,7), the images are
obtained as shown in Figure 11. By comparing with Figure 1,
it is clear that the results obtained using DSP are consistent with
the simulations carried out in MATLAB.

The f28335 chip, D/A converter and oscilloscope used for the
system DSP simulation are shown in Figure 12.

5 CONCLUSION

The article proposes a new four-dimensional chaotic system
and investigated its dynamic properties. In the study of this
chaotic system, different chaotic attractors are found. By

analysing the LEs, the BD and the complexity of this
system, it can be understood that the system exhibits a
dramatic degree of complexity in its dynamic properties as
the parameters changed of the system. By numerical
simulations, the peculiar phenomenon of the coexistence of
chaotic attractors was observed by us. The results show that
the chaotic system has very complex dynamic properties.
Finally, the circuit was built and tested on a DSP platform,
and a comparison of the test results with the numerical
simulation results shows a high degree of consistency. The
article provides a reference for the study of chaotic systems
and circuit experiments, and has good prospects for
applications in information encryption and secure
communication.
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