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Longitudinal properties of electron bunches are critical for the performance of a wide range
of scientific facilities. In a free-electron laser, for example, the existing diagnostics only
provide very limited longitudinal information of the electron bunch during online tuning and
optimization. We leverage the power of artificial intelligence to build a neural network model
using experimental data, in order to bring the destructive longitudinal phase space (LPS)
diagnostics online virtually and improve the existing current profile online diagnostics which
uses a coherent transition radiation (CTR) spectrometer. The model can also serve as a
digital twin of the real machine on which algorithms can be tested efficiently and effectively.
We demonstrate at the FLASH facility that the encoder-decoder model with more than one
decoder can make highly accurate predictions of megapixel LPS images and coherent
transition radiation spectra concurrently for electron bunches in a bunch train with broad
ranges of LPS shapes and peak currents, which are obtained by scanning all the major
control knobs for LPS manipulation. Furthermore, we propose a way to significantly
improve the CTR spectrometer online measurement by combining the predicted and
measured spectra. Our work showcases how to combine virtual and real diagnostics in
order to provide heterogeneous and reliable mixed diagnostics for scientific facilities.

Keywords: free-electron laser (FEL), longitudinal phase space, machine learning, encoder-decoder, mixed
diagnostics

1 INTRODUCTION

Tuning and optimization of the longitudinal phase space (LPS) of electron bunches are of vital
importance for the performance of various scientific facilities such as free-electron lasers (FELs) [1],
ultrafast electron diffractions (UEDs) [2], laser-plasma accelerators (LPAs) [3], plasma wakefield
accelerators (PWFAs) [4], THz-driven accelerators [5] and so on. The prerequisite of quickly and
accurately manipulating the LPS of an electron bunch is being able to measure and monitor it rapidly
and reliably. The LPS of an electron bunch is usually measured directly in the time domain by
combining a transverse deflecting structure (TDS) and a dipole spectrometer magnet in a dispersive
section [6, 7]. An LPS image provides rich and important information such as the shape, the current
profile and the slice energy spread of the electron bunch. However, this diagnostic method interferes
with delivering photons to user experiments and thus cannot be employed online during machine
tuning and optimization. The current profile of an electron bunch can also be reconstructed by
measuring the coherent transition radiation (CTR) [8, 9] or the coherent diffraction radiation (CDR)
[10] spectrum generated by an electron bunch. Although CTR generation is invasive to an electron
bunch, it works as an online diagnostics at facilities such as FLASH, in which a single bunch from a
bunch train can be selected for this purpose without interfering with user experiments [8]. On the
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other hand, physics-based beam dynamic simulation plays an
important role in understanding the LPS of an electron bunch.
However, high-resolution physics-based simulation is extremely
time-consuming [11] and often does not agree with the
measurement very well.

In recent years, machine learning has demonstrated to be able
to learn relationships inside a complex system and produce
accurate and fast predictions [12, 13]. Using artificial neural
networks as a tool for electron bunch longitudinal property
prediction has garnered more and more attention in recent
years [14–18]. At the LCLS, early work has demonstrated
prediction of LPS images and current profiles at the linac exit
using two separated multi-layer perceptrons (MLPs) [14] and a
single input parameter. Later, a spectral virtual diagnostics was
proposed to improve the prediction accuracy and robustness by
using the CDR spectrum of the electron bunch as input [17].
Simulated CDR spectra were used in this study. Indicated by tests
with simulated LPS images for the LCLS-II, a neural network is
also expected to predict the microbunching structure in the LPS
on a shot-to-shot basis using the spectrum as input with a fixed
machine set point [17]. The latest work at the European XFEL
injector demonstrated that a deep encoder-decoder neural
network can achieve extremely high accuracy in predicting
megapixel LPS images using up to three RF phases as input.
The current profile, energy spectrum and slice energy spread
extracted from the predicted LPS image all show very good
agreement with the measurement [18]. In addition, an
innovative method was demonstrated to efficiently build large
models with multiple distinctive working points [18].

In this paper, we experimentally demonstrate training an
encoder-decoder neural network model with more than one
decoder to predict the LPS image and the CTR spectrum of
the electron bunches in a single bunch train concurrently at the
end of the FLASH linac. Building a model using the data-driven
approach heavily relies on the availability of the data. However,
the main focus of a user facility is to deliver electron or photon
beams to user experiments and thus cannot allocate a large
amount of time exclusively for routine data collection. We
demonstrate that only a reasonable amount of data is required
to train a performant model around a user working point, with all
major control knobs for LPS manipulation included. More
importantly, we propose a method which can significantly
improve the existing online current profile measurement using
a CTR spectrometer by combining predicted and measured CTR

spectra. Analogous to mixed reality, we call diagnostics which
provide a blend of predicted and measured signals mixed
diagnostics. This approach offers the possibility to provide
heterogeneous and reliable LPS information in real-time for
electron bunches with a broad range of parameters.

The applications of the above encoder-decoder model are
summarized in Figure 1. The model can serve as not only
virtual and mixed diagnostics for online machine tuning and
optimization, but also a digital twin of the actual machine on
which machine tuning and optimization algorithms [19–24] can
be tested efficiently and effectively before applying them in the
real world. These virtual experiments can even be performed in
advance to find an optimal or near-optimal setup for the real
machine. One of the major advantages of testing with neural
network models is that it is orders of magnitude faster than real
experiments or physics based simulations because the inference
time is typically on the order of milliseconds. Compared with
neural network models trained with simulated data [25–27],
models trained with experimental data provide better testing
environments by generating predictions which are almost
identical to the real-world signals.

2 EXPERIMENTAL SETUP

FLASH is a soft x-ray free-electron laser (FEL) user facility which
is capable of delivering MHz pulse trains to two user experiments,
FLASH1 and FLASH2, in parallel with individually selected
photon beam characteristics [28, 29]. The layout of the
FLASH1 beamline is shown in Figure 2. The longitudinal
properties of two electron bunches in a bunch train can be
measured concurrently by streaking one of the electron
bunches using the S-band TDS [30, 31] and picking up
another one for the CRISP spectrometer using a fast kicker
magnet [8]. It should be emphasized that the two diagnostics
cannot measure the same bunch in a bunch train simultaneously.
In this study, the electron bunch picked up by the CRISP
spectrometer travels immediately after the one streaked by the
TDS. A systematic comparison between these two diagnostics was
conducted recently, which shows excellent agreement on the
current profile down to the 10 fs level [9]. However, due to
the non-optimized optics required by the parallel user experiment
at the FLASH2 and a cap on the TDS power, the rms time
resolution of the measurement using the TDS is larger than 70 fs

FIGURE 1 | Applications of an encoder-decoder neural network model with more than one decoder for heterogeneous predictions of electron bunch longitudinal
properties.
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in our experiments. Moreover, the CRISP spectrometer has two
sets of remotely interchangeable grating sets, which cover
different frequency ranges. The low-frequency grating set
covers the range from 0.7 to 6.6 THz, and the high-frequency
grating set covers the range from 6.9 to 58.8 THz. In order to have
an accurate reconstruction of the current profile, the full spectra
range from 0.7 to 58.8 THz is required. For a meticulous
characterization of the current profiles at a few set points, this
can be achieved by recording data using the two grating sets
consecutively [9]. However, this is not practical for a large
number of machine set points. A detailed discussion about
how to address this issue when building a neural network
model is presented in Section 4.2.

Up to 6 control knobs, including the phases and amplitudes of
ACC1, ACC39, and ACC23, are scanned during data collection
around a user working point because of the following
considerations. During machine operation, the RF phases and
amplitudes of ACC1, ACC39, and ACC23 are commonly used to
adjust the LPS of the electron bunch in order to optimize the FEL
performance. The LPS is very sensitive to the phase and
amplitude changes of these three RF stations because they
affect the LPS of an electron bunch upstream the bunch
compressors. ACC45 and ACC67 are operated on-crest
downstream the 2nd bunch compressor and thus the LPS is
very insensitive to the phase changes of these two RF stations. The
amplitudes of ACC45 and ACC67 can be used to slightly tweak
the beam energy which have nevertheless negligible impact on the
LPS shape.

The scanned parameters are sampled uniformly within
predefined ranges, which are mainly restricted by the OTR
screen size for the TDS. For each combination, the new values
are written into the control system via the Python interface of
DOOCS [32] and the data readout has a delay of 0.5 s. Since it
takes time to collect data which belong to the same bunch train
but are sent out from different sources, the actual data collection
speed is about 1 Hz.

3 METHODS

3.1 Data Wrangling
The data quality is essential to the performance of a neural
network model. First of all, the data quality in this study is
controlled during data taking. A single data point is recorded
for each randomly selected machine set point. It prevents data

with the same machine set point from appearing in both the
train and test data, which leads to overfitting, as much as
possible. Secondly, the data are further normalized and
cleaned. The original size of the 12-bit camera image is
1360 × 1024 pixels. After background subtraction, the pixels
are normalized by 4095. All the pixel values below 0.01 are set
to 0 in order to remove negative pixel values and suppress
background noise. Although the model is expected to learn and
predict the position of the LPS on the screen [18], the
horizontal position of the beam (along the streaking
direction) depends on a lot of machine parameters,
including the phase and amplitude of the TDS. We noticed
that the beam sometimes moved significantly horizontally
even when the machine set point remained unchanged. As a
result, it is not possible to train a performant model even when
only a single control knob (e.g., the phase of ACC23) is
scanned. Since the horizontal position of the beam only
provides the timing information, which can actually be
measured using the bunch arrival monitors [33] installed at
different locations of the machine, all the LPS images are
cropped to 768 × 1024 and centered horizontally. Moreover,
an image will be removed from the dataset if the electron
bunch is completely or partially off the screen, or if the electron
bunch is very close to the left or right edge.

3.2 Modeling
The detailed structure of the encoder-decoder neural network is
shown in Figure 3. A MLP is used to build latent features from
the input parameters. Two different decoders then translate the
latent features to the LPS image and CTR spectrum (the raw
signal measured by the CRISP spectrometer), respectively. Latent
features are designed to be a compressed representation of the
LPS, just as it can be interpreted by decoders for different
longitudinal property diagnostics. It could also facilitate
building a larger model efficiently by sharing decoders among
multiple encoders which represent different machine working
points [18]. The neural network model is implemented and
trained using the machine learning framework TensorFlow
[34] version 2.4.3. For training, we adopt the weight
initialization in [35] and the Adam optimizer [36]. 80% of the
data are used for training with a minibatch size of 32, and the rest
are used for testing.

The loss function Ltotal for training is given by

Ltotal � LLPS + wLspectrum, (1)

FIGURE 2 | Schematic of the FLASH1 beamline. Components are not to scale. ACC1, ACC23, ACC45 and ACC67 are 1.3 GHz cryomodules which boost the
electron energy. ACC39 is a 3.9 GHz cryomodule which linearizes the LPS before the first bunch compression stage. The CTR radiation is generated by deflecting one
electron bunch onto an off-axis screen using a fast magnetic kicker and measured by the coherent radiation intensity spectrometer (CRISP).
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where LLPS and Lspectrum are the loss functions for the LPS image
decoder and the spectrum decoder, respectively, and w is the
weight which balances the influences of the two decoders. The
model is trained with a learning rate of 3 × 10−4 for 400 epochs,
and then a learning rate of 1 × 10−4 for another 400 epochs.
During the first 400 epochs, both LLPS and Lspectrum are the mean
squared error (MSE) and w is set to 1. During the second 400
epochs, LLPS is changed to the multiscale structural similarity

index measure (SSIM) [37] with hyperparameters defined in [18]
and w is set to 100 empirically in order to make the losses of the
two decoders at the same order of magnitude at the end of the
training. There are two advantages for using different loss
functions for the LPS image decoder in different training
phases. First, the multiscale SSIM loss is much more
computationally expensive than the MSE loss. In our
implementation, the training time for a single batch reduces

FIGURE 3 | Diagram of the encoder-decoder neural network. The leftmost blue box represents the input layer. It is followed by three fully-connected layers
(encoder) in purple with each layer activated by the Leaky ReLU (Rectified Linear Unit) function. The latent space is depicted in grey. The latent space leads to two
decoder branches. One consists of several fully-connected layers with each layer activated by the Leaky ReLU function. The other consists of ten transposed
convolutional layers in yellow. Each transposed convolutional layer is followed by a batch normalization layer and activated by the leaky ReLU function except the
last one, which is activated by the sigmoid function depicted in green. The kernel sizes of the first and second transposed convolutional layers are 3 × 4 and 3 × 3,
respectively, and the kernel sizes of the other eight transposed convolutional layers are all 5 × 5. The total number of trainable parameters is 2,096,681 with 6 input
parameters.

FIGURE 4 | (A) Example of a prediction from a model trained using only the multiscale SSIM loss for the LPS image decoder. The pixel values near the lower-left
corner of the predicted image are trapped in values around 1. This phenomenon occurs in all the LPS images. (B) SSIM and MSE losses calculated between two unary
images as a function of the pixel value difference. The pixel value of the first image is 0 while the pixel value of the second image ranges from 0 to 1.
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by about 30% when the MSE loss is used. Therefore, the
multiscale SSIM loss is only used to fine-tune the model in
order to learn high-frequency features in the LPS images [18].
Second, it is found that sometimes the model does not learn
correctly near a corner or an edge for all the images when only the
multiscale SSIM loss is employed, as shown in Figure 4A. This
can be explained by the gradients of both the loss functions, as
shown in Figure 4B. The pixel values near the lower-left corner of
the predicted LPS image shown in Figure 4A result in an

extremely small gradient of the SSIM loss on the plateau,
which prevents them from converging towards 0. However,
how those pixels are trapped on the plateau is not clear.

The performance of our model is reported separately for
the LPS image decoder and the spectrum decoder using the
single-scale SSIM and MSE as metrics, respectively, over the
test dataset. The single-scale SSIM value ranges between 0
and 1 with a value of 1 indicating two images are exactly
the same.

FIGURE 5 | Five typical results from the test data of a dataset of WP1. The compression strength increases monotonically from left to right. (A) Measured LPS
images. δ denotes the fractional energy deviation. (B) Predicted LPS images. (C) Comparisons between the measured and predicted spectra from the low-frequency
grating set of the CRISP spectrometer. (D) Comparisons of the current profiles calculated from the measured and predicted LPS images as well as reconstructed from
the measured and predicted spectra.
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4 RESULTS

We recordmultiple datasets during two different beam times with
different machine setups (working points). The beam energy is
~1124 MeV for the first working point (WP1) and ~1027 MeV
for the second one (WP2). The bunch charge is ~400 pC for both
the working points. As mentioned previously, the beam
parameters are not optimized for the LPS measurement due to
the parallel FLASH2 user experiment. Consequently, it is found
that the LPSs depend on the streaking direction of the TDS in a
non-trivial way for WP2 due to transverse-longitudinal
correlations [6, 9], which makes it difficult to compare the
current profiles measured by the TDS and the CRISP
spectrometer. Nonetheless, this does not affect the conclusion
of this study because the goal is to achieve an excellent agreement
between the prediction and the measurement. Actually, the
agreement between the current profiles measured by the TDS
and the CRISP spectrometer can be verified using the dataset
of WP1.

4.1 Prediction
Five typical prediction results from a dataset ofWP1 are shown in
Figure 5. The electron bunches have significantly different peak
currents. The histograms of the scanned parameters are shown in
Figure 6. The performance of the LPS image decoder is 0.9877 ±
0.00227 and the performance of the spectrum decoder is 7.9, ×,
10−5 ± 4.6 × 10−4. As shown in Figures 5A,B, the predicted LPS
images all agree with the measured ones excellently. There are
also excellent agreements between the measured and predicted
spectra, as shown in Figure 5C.

The current profiles calculated from the measured and
predicted LPS images as well as reconstructed from the
measured and predicted spectra using the combination of
analytical (Kramers-Kronig) and iterative phase retrieval
methods [9] are shown in Figure 5D. The spectra in the
left-most case (weakly compressed) contain only noise.
Therefore, no current profiles can be reconstructed from
them. In the right-most case, due to considerable energy
loss induced by the CSR effect, there are unknown portion
of electrons off the screen. Therefore, the peak current
calculated from the LPS image is much smaller than that
reconstructed from the spectrum. For the other three cases,
the current profiles calculated from the LPS images and
reconstructed from the spectra agree reasonably well. Due
to the lack of phase information in such spectral
measurements [9], minor deviations in measured and
predicted spectrum can lead to noticeable differences of the

reconstructed current profiles. Nonetheless, key features (e.g.,
peak current) are barely affected by this.

It is noticed that there are conspicuous density modulations in
the measured LPSs while the predicted LPSs are rather smooth.
The density modulation is indeed induced by the microbunching
instability which is seeded by the shot noise of an electron bunch
[11, 38–40]: an initial small density modulation inside the
electron bunch can result in sufficient energy modulation due
to the longitudinal space charge force, which in turn causes larger
density modulation in a magnetic chicane bunch compressor.
Because of the poor longitudinal resolution of the TDS
measurement, only very weak density modulation can be
observed in the current profile calculated from the measured
LPS of the longest bunch in Figure 5. The reconstructed current
profiles from the spectra also do not show any evidence of the
density modulation due to the lack of high-frequency
components in the spectrum. Because such density modulation
is not deterministic, it cannot be predicted by the neural network
model using only RF phases and amplitudes as input. However, it
is worth mentioning that the non-deterministic density
modulation does not degrade the performance of the model. It
appears that the model tends to predict the averaged LPS in which
the density modulation is smoothed out.

In order to demonstrate the scalability of the model, six
parameters are scanned for a dataset of WP2. The histograms
of the scanned parameters are shown in Figure 7. In total, more
than 9,000 data points are taken. However, only about 5200 data
points survive the data wrangling. Nonetheless, the performance
of the LPS image decoder is 0.9801 ± 0.00978 and the
performance of the spectrum decoder is 3.9, ×, 10−4 ± 3.2 ×
10−3. An example prediction is shown in Figure 8.

4.2 Mixed Diagnostics
As mentioned previously, it is essential to combine the spectra
from both grating sets of the CRISP spectrometer in order to
achieve an accurate reconstruction of the current profile. At
European XFEL, the high beam energy and short bunch length
make it possible to extrapolate the result measured by the high-
frequency grating set to the low-frequency regime [41].
However, this is not feasible for the typical electron
bunches at FLASH, especially when the electron bunches
have a broad range of bunch lengths. Although another
decoder could be trained to predict the spectrum measured
by the high-frequency grating set, there are two concerns with
this approach. Firstly, the spectra from the high-frequency
grating set generally contain microbunching information,
which fluctuates from bunch to bunch and train to train.

FIGURE 6 | Histograms of the scanned parameters for the dataset shown in Figure 5. The total number of data points is about 3000.
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Secondly, this will double the data collection time, which could
be unaffordable for user facilities with very limited beam time
for non-user experiments.

In order to improve the reconstructed current profile for
real-time measurement, a mixed diagnostics method is
proposed. The predicted spectrum for the low-frequency
grating set can be combined with the measured spectrum
from the high-frequency grating set so as to achieve the
full-range spectrum in real time. To this end, we recorded
two datasets using the high-frequency and low-frequency
grating sets, respectively. Each dataset contains about 3000
data points. Only three control knobs (the phases of ACC1,
ACC39 and ACC23) are scanned within the same ranges. A
neural network model is trained using the dataset recorded

with the low-frequency grating set. The performance of the
LPS image decoder is 0.9854 ± 0.00394 and the performance of
the spectrum decoder is 1.8 × 10−4 ± 1.3 × 10−3. The trained
model is also tested against all the LPS images in the dataset
recorded with the high-frequency grating set and the
performance of the LPS image decoder is as high as
0.9814 ± 0.00525. It indicates that the machine drift during
data recording is negligible. Three typical prediction results
with significantly different peak currents are shown in
Figure 9. They all show that it is essential to have the high-
frequency components to reveal the exact shape and structures
of the current profile although the low-frequency components
are good enough to estimate the bunch length and the peak
current.

FIGURE 7 |Histograms of the scanned parameters for a dataset ofWP2. The total number of data points is about 5200. The input data are not uniformly distributed
because of two reasons. First, the data are combined from two datasets taken successively. The parameter ranges of the second dataset are smaller than the first one.
Second, more than 40% of the data are dropped, as discussed in Section 3.1.

FIGURE 8 | An example result for the scan shown in Figure 7. (A) Measured LPS image. (B) Predicted LPS image. (C) Comparison of the current profiles
calculated from the measured and predicted LPS images. Because the LPS depends on the streaking direction of the TDS in a non-trivial way due to transverse-
longitudinal correlations, the current profile here is simply the projection of the LPS image in the vertical direction. (D)Comparison of the measured and predicted spectra
from the low-frequency grating set of the CRISP spectrometer. (E) Comparison of the current profiles reconstructed from the measured and predicted spectra.
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5 CONCLUSION

In summary, we have experimentally demonstrated highly
accurate megapixel LPS images and CTR spectra predictions
for electron bunches in a bunch train concurrently at the end
of the FLASH linac. Up to six major control knobs for LPS

manipulation are scanned in order to collect data for electron
bunches with broad ranges of LPS shapes and peak currents. The
model is capable of providing heterogeneous LPS information
and ensures reliable online diagnostics because a single type of
diagnostic cannot cover electron bunches with a broad range of
parameters. LPS images measured in the time domain are
essential for electron bunches longer than a few hundreds of fs
while CTR spectra provide more accurate current profiles for
strongly compressed electron bunches.

A mixed diagnostics method is proposed to significantly
improve the online current profile measurement using the
CRISP spectrometer. The predicted CTR spectrum for the
low-frequency grating set can be combined with the spectrum
measured by the high-frequency grating set, which enables
reconstruction of the current profile with a much higher
accuracy in real time. Although the current profile
reconstructed from the spectrum measured by the low-
frequency grating set is good enough to estimate the bunch
lengths and peak currents for typical electron bunches at
FLASH, the spectrum measured by the high-frequency grating
set is indispensable to reveal the exact shape and structures of the
current profile.
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