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The molecular geometries of the possible conformations of pyruvic acid–water complexes
(PA-(H2O)n = 1–4) have been fully optimized at DFT/B3LYP/6-311G++ (d, p) levels of
calculation. Among several optimized molecular clusters, we present here the most stable
molecular arrangements obtained when one, two, three, and four water molecules are
hydrogen-bonded to a central pyruvic acid molecule. Appropriate topological and
geometrical parameters are considered primary indicators of H-bond strength. Atoms
in molecules analysis shows that pyruvic acid can form a ring structure with water, and the
molecular structures are stabilized by both strong O–H···O and C–H···O hydrogen bonds.
In large clusters, classical O–H···O hydrogen bonds still exist between water molecules,
and a cage-like structure is built around some parts of the central molecule of pyruvic acid.
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INTRODUCTION

Pyruvic acid (CH3COCOOH, PA) is one of the important chemical components that exist in
atmospheric aerosols, fog, and clouds. This organic substance is widely distributed in nature as a
metabolic intermediate and supplies energy to living cells through the Krebs cycle when oxygen is
present (aerobic respiration), and when oxygen is lacking, it ferments to produce lactic acid [1, 2]. It
is also confirmed that the muscular contraction under physical efforts is associated with the level of
both pyruvic and lactic acids [3].

The PA monomer has been the subject of many computational and experimental studies [4–14].
The PA molecule displays conformational complications in the gas and solution phases due to the
possibility of intramolecular rotation around the C–C and C–O bonds. The most stable conformer is
generally a labeled trans–cis eclipsed form (Tce isomer) and has a planar structure. This conformer
has additional stabilization due to the intramolecular hydrogen bond between the acid hydrogen and
the α-carbonyl [4–9]. The intramolecular hydrogen bond energy, Eintra-HB which is classically defined
as the energy difference between the closed and open conformations of a PAmolecule, is theoretically
estimated to be about 8.80 kJ/mol, where a zero point in the energy scale is fixed [14].

Considerable effort has been devoted to the investigation of the structure and photochemistry of
PA in an aqueous solution [14–26]. Fischer et al. demonstrate that PA prefers to stay as a monomer
in nonpolar solvents, such as carbon tetrachloride, due to its ability to form intramolecular hydrogen
bonds [15], and when it comes to the water atmosphere, hydrogen bonds C=O···H-O and O-H···O-H
are established between pyruvic acid and water molecules [16]. The importance of intermolecular
hydrogen bonds in the effective molecular recognition of pyruvic acid—water mixtures has been
highlighted by Schnitzler et al. [17], where the rotational spectrum measurements confirm that the
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structure of pyruvic acid isomers is planar and the monohydrated
clusters of PA. Strong hydrogen bonds are formed between
pyruvic acid and water molecules where water acts as a
hydrogen bond donor and acceptor. The non-covalent
interactions (NCI) and the atoms—in—molecules (AIM)
analysis [17] indicate that water rotation has little effect on
the interactions between water and pyruvic acid molecules,
and ring structures are formed where two hydrogen bonds
connect the water and acid molecules. The tautomeric
equilibrium remains in favor of the keto form, and the energy
gap between the two isomers in solution is found to be smaller
than that in the gas phase [18]. The pair correlation functions as
determined by MD simulations show that important interactions
between PA and water molecules exist and the distribution of
water molecules around the PA anion is strongly dependent on
the acid molar fraction [19]. DFT calculations on the
monohydrated pyruvic acid complexes show that the
intramolecular hydrogen bond within the PA molecule is
broken and two intermolecular hydrogen bonds C=O···H–O
and O–H···O–H are formed between pyruvic acid and water
molecules and contribute to the stability of the Tce conformer
[20]. H1NMR experiments and molecular dynamics simulations
prove that small hydrate clusters of pyruvic acid with only four
water molecules are able to reproduce the solvation effect of
pyruvic acid [21].

The present study is considered a new contribution to the
studies of intermolecular hydrogen bonds established between
pyruvic acid and water molecules. With respect to the possible
binding sites in the pyruvic acid monomer, a large number of
possible molecular complexes are examined. In all considered
PA-(H2O)n = 1–4 clusters, DFT calculations and AIM analysis
were used to explore the geometrical properties and strength of
the established C=O···H-O andO-H···O-H hydrogen bonds in the
considered complexes. Several indicators of hydrogen bond
strength such as the H-bond X-H···O-H (X = O, C) length,
dO. . .H, H-bond energy, EHB, electron density at the bond
critical point, ρBCP, and the Laplacian of the electron density,
∇2ρ, are considered in our calculations.

THEORETICAL CALCULATIONS

The structures of the PA molecule and the PA-(H2O)n = 1–4 were
optimized using the GAUSSIAN 09 program [27]. To investigate
the relative stability of considered pyruvic acid–water complexes,
we have performed DFT/B3LYP calculations of the minimum
energy structures of all considered species implemented in the
Gaussian 09 using the 6-311++G(d,p) basis set [28, 29]. The
initial configuration searches for the pyruvic acid–water
complexes were based on two steps. First, the isomer
component of the ABCluster software [30] was used to
generate the initial structures of pyruvic acid–water complexes.
Both 2D and 3D initial guess structures have been considered to
make sure we get the true global minima of each structure. For
each structure, more than 500 guess structures are generated.
Second, each of the generated structures was then fully optimized
by the DFT/B3LYP /6-311++G(d,p) method using the Gaussian

09 package. To eliminate BSSE error, we have applied the full
counterpoise procedure in all the calculations [31]. The theory of
atoms in molecules (AIM) of Bader was used to examine
topological features of electron density on wave functions
obtained at the B3LYP/6-311G++(d, p) level using the
Multiwfn software package [32].

RESULTS AND DISCUSSIONS

Structural Analysis
The main goal of our study is to investigate the interactions in
the aqueous solutions of pyruvic acid. Many PA–water
complexes were considered based on the ability of the
pyruvic acid molecule to form hydrogen bonds with water,
and only the most stable complexes were identified. The most
stable structures of the pyruvic acid monomer and the pyruvic
acid—water complexes, PA-(H2O)1, PA-(H2O)2, PA-(H2O)3,
and PA-(H2O)4, were optimized at the B3LYP level of theory
with the basis set 6-311G++ (d, p) and represented with atomic
numbers in Figures 1A–E. One can easily see that in all
considered structures, ring parts are formed between the
acid and water molecules involving O-H···O and C-H···O
hydrogen bonds. The intramolecular parameters such as
bond lengths and bond angles within the pyruvic acid
molecule alone and in PA-(H2O)1–4 complexes were
obtained using the same method. The DFT calculations by
Yang et al. [21] show that hydrogen bond formation in the
monohydrated pyruvic acid has a weak effect on the
intramolecular bond lengths, especially the O-H and C-C
bonds. Our calculations strongly support this conclusion
and show that the C1–C2 decrease from 1.551 Å in the free
PA molecule to 1.541 Å in the PA-(H2O)4 complex and the C1-
O5 bond length is shortened when more water molecules are
linked to the PA molecule and various molecules from 1.340 Å
in the PA molecule to 1.313 Å in the PA-(H2O)4 complex. It is
worth noticing here that the hydrogen bond’s effect on the
other X-X (X = C and O) intramolecular bond lengths within
the pyruvic acid molecule never exceeds 1% of their values in
the free PA molecule.

The geometrical analysis of the structure of all the considered
complexes shows that hydrogen bonds are established in aqueous
solutions of pyruvic acid. The bond length between the donor and
acceptor atoms of the hydrogen bonds and the bond angles are
given in Table. 1 for PA-(H2O)n = 1–4 complexes. The energy of
interaction of all the PA-(H2O)n = 1–4 complexes is calculated by
the B3LYP/6- 311++G(d,p) method and listed in Table 2. The
intermolecular hydrogen bonding energy largely contributes to
the total energy of interaction inside each structure and is
evaluated from the following equation:

Eint � Ecomplex − [EPA + n × Ewater]. (1)
The molecular complex formed between one pyruvic acid and

one water molecule is treated previously by means of DFT
calculations [20] and rotational spectroscopic analysis [17].
Our DFT calculations come to confirm the previously
obtained results and show that if a pyruvic acid molecule is
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associated with only one water molecule, the most stable
geometry of the PA-(H2O)1 is cyclic dimer–stabilized by the
O11···H6-O5 and O11-H13···O3 hydrogen bonds, with bond lengths

of 1.765 Å and 2.101 Å, respectively. These two H-bonds
contribute by about—65.44 kcal/mol to the total energy of
stabilization of the PA-(H2O)1 complex.

FIGURE 1 | Optimized geometrics of pyruvic acid monomer and PA-(H2O)n = 1–4 (A–E) complexes with atom numbering using DFT/B3LYP calculations at the 6-
311 G++(d, p) basic set.
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The interaction energy of the hydrogen network in the PA-
(H2O)2 complex is -70.14 kcal/mol, and O-H···O and C-H···O
hydrogen bonds are formed between water and acid molecules
where the C-H···O hydrogen bond is found to be longer than
three O-H···O bonds. The molecular structure of this complex is
marked by two ring parts involving the O14-H16···O3, O11-
H13···O3, O5-H6···O11, and C7-H9···O14 hydrogen bonds The
H16···O3, H13···O3, H6···O11, and H9···O14 bond lengths are
1.954 Å, 2.184 Å, 1.739 Å, and 2.386 Å, respectively. It is
important to note here that our calculations on the PA-
(H2O)2 complex do not support the hydrogen bond formation
between water molecules alone as previously published [18].

When a pyruvic acid molecule is linked to three water
molecules, the most stable configuration is given in
Figure 1D. The oxygen atom of pyruvic acid (O4) is
hydrogen-bonded with two hydrogen atoms (H12 and H16) of
two neighboring water molecules to form the O14-H16···O4 and
the O11-H12···O4 intermolecular hydrogen bonds with 2.023 Å
and 2.452 Å bond lengths, respectively. The oxygen atom, O17, of
a water molecule serves as the acceptor and donor of hydrogen
bonds in this complex. In fact, it is involved in the O17···H6-O5

and O17-H19···O3 H-bonds, where the bond lengths are found to
be 1.706 Å and 2.183 Å, respectively. The C-H···O hydrogen bond
contributes also to the stability of the PA-(H2O)3 complex where

a cyclic form is established between the methyl group of pyruvic
acid and water molecules through the O14···H10-C7 hydrogen
bonded which is the longer one among all H-bonds in this
complex. The energy of interactions including H-bonds is
about -77.68 kcal/mol.

The large complex formed between pyruvic acid and water
molecules is PA-(H2O)4. In this complex, five O-H···O and two
C-H···O hydrogen bonds are established between acid and water
molecules. The hydrogen bond lengths are 2.301 Å for H19···O3,
1.978 Å for H22···O3, 1.665 Å for H6···O17, 2.200 Å for H12···O4,
and 1.984 Å for H16···O4. The C-H···O bonds are found to be
longer than the O-H···O bonds. In fact, the H9···O20 and H10···O14

bond lengths are about 2.326 Å and 2.514 Å, respectively. In this
complex, new hydrogen bonds appear between water molecules
alone which can form a cage-like structure around the hydroxyl
group of the central pyruvic acid molecule. We note here that the
H18-O17-H19 water molecule participates in the formation of
three hydrogen bonds (O17-H18···O11, O17-H19···O3, and
O17···H6-O5). The water–water hydrogen bond, labeled O17-
H18···O11, has a bond length of about 1.934 Å, which is slightly
shorter than that in pure water and very comparable to that of the
other existing O-H···O hydrogen bonds and consequently
contributes to the stability of the molecular structure of the
PA-(H2O)4 complex. The special structure of this complex has
the largest energy of interactions by H-bonds (Eint =−81.28 kcal/
mol) among all the considered structures. In this analysis of the
UV spectrum of pyruvic acid in water, Shemesh et al. [21] show
that small clusters such as PA-(H2O)4 are able to reproduce the
solvation effect of pyruvic acid.

Topological Study of PA-(H2O)n = 1–4

Complexes
To gain a better insight into the intermolecular interactions
between pyruvic acid and water, AIM analysis was performed
on the optimized geometries. The AIM theory [33, 34], based on
topological analysis of electron density at the bond critical point
(ρBCP) and its Laplacian (∇2ρBCP) provides a universally
applicable tool for the classification of the bonding
interactions occurring in any molecular system, ranging from
hydrogen bonds to van der Waals interactions [35–39]. In fact,
large values of electronic density and Laplacian interactions are
reliable with short distances, showing a clear relationship between
the topological properties of the charge density with the
interatomic distances within the systems and accordingly
associated to the power of interactions such as hydrogen
bonding [35, 36]. Furthermore, the positive sign of the
Laplacian indicates the reduction of the charge in the

TABLE 1 | Intermolecular hydrogen bond lengths (X···X and X ···H, where X = O
and C) within the different molecular associations in the pyruvic acid–(H2O) n
complexes.

Molecular complex X···X (in Å) H···O (in Å)

PA—(H2O) O3···O11: 2.810 H13···O3: 2.101
O5···O11: 2.708 H6···O11: 1.765

PA—(H2O)2 C7···O14: 3.383 H9···O14: 2.386
O3···O14: 2.893 H16···O3: 1.954
O3···O11: 2.847 H13···O3: 2.184
O5···O11:2.694 H6···O11: 1.739

PA—(H2O)3 O14···O4: 2.912 H16···O4: 2.016
O14···C7:3.363 H10···O14: 2.452
O11···O4:2.977 H12···O4: 2.023
O5···O17:2.667 H6···O17: 1.706
O3···O17:2.842 H19···O3: 2.183

PA—(H2O)4 O17···O11: 2.780 H18···O11: 1.934
O17···O5: 2.603 H6···O17: 1.665
O17···O3: 2.918 H19···O3: 2.301
O4···O11: 3.158 H12···O4: 2.200
O4···O14: 2.892 H16···O4: 1.984
C7···O14: 3.406 H10···O14: 2.514
C7···O20: 3.319 H9···O20: 2.326
O3···O20: 2.884 H22···O3: 1.978

TABLE 2 | Energy spectrum of different pyruvic acid–water complexes calculated by the DFT/B3LYP method at the 6- 311++G(d, p) basis set.

Energy (E) of complexes
(au)

Energy of pure
pyruvic acid (au)

Energy of pure water
(au)

Interaction energy (kcal/mol)

PA-(H2O)1 −418.98592768 −342.42310713 −76.4585308 −65.4417
PA-(H2O)2 −495.45193868 −342.42310713 −76.4585308 −70.1356
PA-(H2O)3 −571.9220206 −342.42310713 −76.4585308 −77.6786
PA-(H2O)4 −648.38675991 −342.42310713 −76.4585308 −81.2798
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internuclear zone if it is positive, and the strong covalent
character is related to the negative sign [40].

The topological parameters calculated, in all the bond critical
point (BCP) and ring critical point (RCP), for all the considered PA-
(H2O)n = 1–4 complexes, such as electron density (ρ), Laplacian of
electron density (∇2ρ), Lagrangian kinetic energy (G), Hamiltonian
kinetic energy (H), potential energy density (V), the H-bond energy
(EHB), and ellipticity of electron density (ε), are listed inTable 3. The
molecular graph of the molecular complexes is shown in Figure 2,
which shows the BCPs and RCP along with the bond path.

In the PA-(H2O)1 complex, the two C1-O3···H13 andO5-H6···O11

intermolecular interactions are retrieved, and the corresponding
electron densities are 0.01949 a.u. and 0.03765 a.u. and the
corresponding Laplacian are 0.06896 a.u. and 0.12325 a.u.,
respectively. The O-H···O and C-H···O interactions are found
between water and pyruvic acid molecules in the PA-(H2O)2
complex. The large value of the electron density (ρ = 0.04011
a.u.) is observed for the O5-H6···O11, and the lowest one (ρ =
0.0103 a.u.) is obtained for the C7-H9···H14 interaction. The
values of the corresponding Laplacian are 0.1278 a.u. and 0.03473
a.u., respectively. In the PA-(H2O)3 complex, we observed one
C-H···O (C7-H10···O14) and four O-H···O (O3···H19-O17, O4···H16-
O14, O5-H6···O17, and O4···H12-O11) types of interactions, where the
electron density values are 0.00844 a.u., 0.01711 a.u., 0.02166 a.u.,

0.04315 a.u., and 0.01983 a.u. respectively. The obtained values of the
Laplacian of the corresponding electron densities are 0.03229 a.u.,
0.05597 a.u., 0.06267 a.u., 0.12699 a.u., 0.05972 a.u., respectively.

In the largest complex considered in the present study, PA-
(H2O)4, we observed two C-H···O (C7-H10···O14 and C7-H9···O20),
six O-H. . .O (O4···H16-O14, O11-H12···O4, O17-H18···O11, O5-
H6···O17, O17-H19···O3, and O3···H22-O20), and one O···O
(O5···O11) type of interaction. The electron density values for
all these interactions are varying from 0.0057 a.u. (O5···O11) to
0.0253 a.u. (O17-H18···O11), and all the corresponding values of
Laplacian are positive varying from 0.0234 a.u. (O5···O11) to
0.0974 a.u. (O17-H18···O11).

In his topological analysis of the electron density in hydrogen
bonds, Espinosa [38] postulated that if a hydrogen bond exists,
the electron density and the Laplacian of the electron density will
be in 0.002–0.035 a.u. and 0.024-0.139 a.u., respectively. The
hydrogen bond energy is correlated with the potential electron
energy at the critical point by the formula [37]:

EHB � 1
2VBCP

. (2)

In all considered complexes, hydrogen bonds form ring
structures between acid and water molecules, and the obtained
hydrogen bond energies (EHB) values vary in the range

TABLE 3 | Topological parameters obtained from AIM analysis for the considered molecular associations in the urea–water mixture (ρ: electron density (a.u.); ∇2ρ: Laplacian
of electron density (a.u.); G: Lagrangian kinetic energy (a.u.); H: Hamiltonian kinetic energy (a.u.); V: potential energy density (a.u.); EH···O: H-bond energy (kJ/mol)), ε:
ellipticity of electron density. BCP: bond critical point; RCP: ring critical point.

Complex BCP/RCP ρ 2ρ G H V EH···O ε

PA-(H2O)1 H13···O3 0.0195 0.0689 0.0155 0.0017 −0.0137 −18.033 0.0924
H6···O11 0.0376 0.1232 0.0319 −0.0012 −0.0331 −43.430 0.0412
RCP 0.0123 0.0558 0.0122 0.0017 −0.0104 −13.690 −1.4547

PA-(H2O)2 H6···O11 0.0401 0.1278 0.0340 −0.0020 −0.0361 −48.396 0.0437
H13···O3 0.0167 0.0588 0.0132 0.0015 −0.0116 −15.313 0.1376
H9···O14 0.0103 0.0347 0.0074 0.0013 −0.0061 −8.029 0.1274
H16···O3 0.0227 0.0892 0.0195 0.0028 −0.0168 −21.995 0.0406
RCP1 0.0118 0.0528 0.0118 0.0017 −0.0098 −12.941 −1.5127
RCP2 0.0056 0.0237 0.0048 0.0011 −0.0038 −49.580 −1.5048

PA-(H2O)3 H10···O14 0.0084 0.0322 0.0070 0.0011 −0.0059 −7.828 0.0271
H19···O3 0.0171 0.0559 0.0138 0.0002 −0.0136 −17.849 0.1534
H16···O4 0.0216 0.0626 0.0162 −0.0005 −0.0167 −21.857 0.0271
H6···O17 0.0432 0.1269 0.0321 −0.0003 −0.0324 −42.530 0.0419
H12···O4 0.0198 0.0597 0.0149 −0.0001 −0.0151 −19.744 0.0105
RCP1 0.0059 0.0298 0.0058 0.0016 −0.0042 −5.489 −1.4684
RCP2 0.0117 0.0552 0.0120 0.0018 −0.0102 −13.389 −1.4748

PA-(H2O)4 H16···O4 0.0223 0.0831 0.0184 0.0023 −0.0016 −21.125 0.0354
H12···O4 0.0139 0.0467 0.0099 0.0017 −0.0082 −10.816 0.0421
O5···O11 0.0057 0.0234 0.0049 0.0008 −0.0041 −5.389 1.5072
H10···O14 0.0079 0.0275 0.0058 0.0010 −0.0048 −6.297 0.2393
H18···O11 0.0253 0.0974 0.0223 0.0021 −0.0202 −26.531 0.0547
H6···O17 0.0518 0.1342 0.0414 −0.0079 −0.0493 −64.789 0.0371
H19···O3 0.0138 0.0478 0.0108 0.0011 −0.0097 −12.682 0.3299
H9···O20 0.0118 0.0392 0.0084 0.0013 −0.0071 −9.259 0.0678
H22···O3 0.0221 0.0844 0.0185 0.0025 −0.0160 −21.050 0.0309
RCP1 0.0062 0.0276 0.0056 0.0013 −0.0043 −5.732 −1.6013
RCP2 0.0052 0.0234 0.0046 0.0011 −0.0035 −4.644 −1.6953
RCP3 0.0055 0.0242 0.0051 0.0009 −0.0041 −5.431 −2.1829
RCP4 0.0117 0.0521 0.0114 0.0016 −0.0097 −12.799 −1.6803
RCP5 0.0042 0.0195 0.0038 0.0010 −0.0028 −3.682 −1.2956
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of −64.8 kJ/mol to −5.39 kJ/mol. A large energy value is found for
the O5-H6···O17 hydrogen bond in the PA-(H2O)4 complex. We
note that in this complex, hydrogen bonds between water
molecules contribute to the stability of the molecular structure.
In fact, the O17-H18···O11 is established between two water
molecules and has an energy equal to −26.53 kJ/mol.

The relations between structural and topological parameters of
hydrogen bonds are useful and can give rise to some important
properties of the hydrogen bond network. For instance, the
hydrogen bond strength is known to be related to its length.
Therefore, it will be convenient to examine the relationship
between the hydrogen bond length, dH···O, and some topological
and energetic parameters such as electron density (ρBCP), Laplacian
of electron density (∇2ρBCP), Lagrangian kinetic energy (GBCP),
Hamiltonian kinetic energy (HBCP), and potential energy density
(VBCP). Here, these correlations are examined for all considered
acid—water complexes, except the PA- H2O cluster, where only
two bond critical points are obtained from the AIM analysis, and

this does not let us conclude about the relationship between
topological and structural parameters of H-bonds. The variation
of the electron density and the Laplacian of the hydrogen bonds
formed in the PA-(H2O)4 versus their H···O lengths is presented in
Figure 3 and those of the other complexes [PA-(H2O)2, PA-
(H2O)3] are given in Figure S1A and Figure S2A, respectively.

The obtained results here are in good agreement with the
empiric models developed by Tang [41] in 2005 and Vener [42]
in 2007, where the relation between H-bond lengths and electron
densities at the bond critical points in hydrogen-bonded systems is
deeply considered. It is identified that the values of topological
parameters in that reliance are defined by the nature of the heavy
atom forming the hydrogen bond [42], and their variation with the
hydrogen bond length gives rise to a classification of H-bonds in
open and closed molecular structure, especially in crystalline
phases. Similarly, to that obtained previously by Parra et al. [43]
in their AIM study of polyols, our calculations show an exponential
dependence of the ρBCP and the ∇2ρBCP on dH···O hydrogen bond

FIGURE 2 | AIM molecular graphs of pyruvic acid–(H2O)n = 1–4 complexes. The BCP and RCP are marked by the small orange and yellow circles, respectively.
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length in the examined clusters [PA-(H2O)2, PA-(H2O)3, PA-
(H2O)4]. The electron density (ρBCP) is analytically given by the
following empiric formula:

ρBCP � A + B exp( − C × dH...O). (3)
The A, B, and C coefficients obtained for the considered

complexes are listed in Table 4. In the largest complex PA-
(H2O)4, these topological parameters (ρBCP and the ∇2ρBCP) vary
with respect to the following regressions:

ρBCP � 0.079 + 14.42 exp(−3.47 dH...O)R2 � 0.993,
2ρBCP � 0.035 + 37.68 exp(−3.55 dH...O) R2 � 0.985.

(4)

The covalent character of the interactions in the PA-(H2O)n is
associated to the negative values of the Hamiltonian kinetic energy

(HBCP) at bond critical points which becomes clear when the dH···O is
smaller than 1.8 Å (Figure 3B). The dependence of the kinetic energy
density (GBCP) and the potential energy density (VBCP) at the bond
critical points in hydrogen-bonded systems is supported by the
promolecule model, presented by Spackman in 1999 [37], which
can explain the exponential variation of these energy densities on the
H···O hydrogen bond length [35]. In Figure 3B, we present the
variations of the GBCP and VBCP versus the dH···O distance for the PA-
(H2O)4 complex. The relative variation of these topological functions
with the hydrogen bond length for the other considered models (PA-
(H2O)2 and PA-(H2O)3) is plotted in Figure S1B and Figure S2B,
respectively. The exponential evolutions of GBCP and VBCP are
confirmed in all clusters and more pronounced in the largest
complex PA-(H2O)4 where they can analytically be expressed as
follows:

GBCP � 0.016 + 3.12 exp(−2.62 dH...O)R2 � 0.991,
VBCP � −0.003 − 22.85 exp(−3.73 dH...O)R2 � 0.993.

(5)

AIM analysis allows classifying atomic interactions as covalent
bonds (∇2ρ(r)< 0, H(r)< 0, |V(r)|/G(r) > 2) and closed shell
(weak H-bonds and van der Waals forces with
∇2ρ(r)> 0, H(r) > 0, |V(r)|/G(r) < 1) and intermediate
H-bonds (∇2ρ(r)> 0, H(r)< 0, 1< |V(r)|/G(r)< 2) [44, 45]. In
all considered PA-(H2O)n complexes, our topological analysis
shows that closed-shell interactions and conventional hydrogen
bonds exist where the hydrogen bond interactions can be
considered an intermediate to weak bonds.

CONCLUSION

The hydrogen-bonding network in the aqueous solutions of pyruvic
acid is studied theoretically by means, especially, of the atoms-in-
molecules approach. The geometry of a large number of molecular
complexes where a central PA molecule is linked to one, two, three,
and four water molecules is optimized at the DFT/B3LYP/6-
311 G++ (d, p) level of theory, and only the more stable ones are
presented in this study. O-H···O and C-H···O hydrogen bonds are
formed between pyruvic acid and water molecules, and cyclic
molecular arrangements are found in all PA-(H2O)n = 1–4. In the
PA-(H2O)4 complex, water molecules form a cage-like structure
around some parts of the central PA molecule, where the hydrogen
bond length is very close to that of the bulk water ones. In this
complex, topological AIM analysis confirms that the kinetic energy
density (GBCP) and the potential energy density (VBCP) at the bond
critical points and the electron density and the Laplacian of the
electron density are strongly correlated to the hydrogen bond length.

FIGURE 3 | (A) Variation of the electron density (ρBCP in a. u. rectangle
symbol) and its Laplacian, (∇2ρBCP in a. u., triangle symbol) of the hydrogen
bonds formed in the PA-(H2O)4 versus their H···O lengths, dH···O in Å. (B)
Hamiltonian kinetic energy (HBCPin a. u., circle symbol), the kinetic energy
density (GBCP in a. u., rectangular symbol), and the potential energy density
(VBCP in a. u., triangle symbol) at bond critical points in the PA-(H2O)4 as a
function of the hydrogen bond lengths, dH···O in Å.

TABLE 4 | Values of coefficients A, B, and C in the empirical formula of electron
density.ρBCP � A + B exp(−C × dH...O).

PA-(H2O)2 PA-(H2O)3 PA-(H2O)4

A 0.0077 0.0025 0.079
B 10.6870 2.6030 14.420
C 1.6800 2.4450 3.470
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The electron density (ρBCP) is analytically given by the following
empiric formula: ρBCP � A + B exp(−C × dH...O) , where A, B, and
C parameters are evaluated for the studied clusters. In all considered
PA-(H2O)n complexes, conventional hydrogen bonds exist and can
be classified as intermediate and weak bonds.
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