
Beamforming in the Generation of
Range-Time-Dependent Orbital
Angular Momentum Based on the
Circular Frequency Diverse Array
Jiaang Ge* and Junwei Xie

Air and Missile Defense College, Air Force Engineering University, Xi’an, China

In this article, we combine the frequency diverse array (FDA) with the vortex
electromagnetic wave theory and propose a beamforming method in the generation of
range-time-dependent orbital angular momentum (OAM) based on the circular FDA
(CFDA). First, we establish a CFDA-based OAM-generating structure, based on which
the feasibility of CFDA to generate OAM is verified. Then, we analyze the range-time-
dependent characteristics of the generated OAM. Furthermore, concerning the field of
radar imaging and target detection, we investigate beamforming with the CFDA-based
OAM. Two main issues are addressed: beam collimation and sidelobe suppression.
Therefore, according to the derived angular offset between the mainlobe direction and
the beam axis, we steer the beam at the target through the phase shifter. Moreover, the
sidelobe is suppressed by selecting an appropriate antenna pattern. Finally, based on the
analysis of beam collimation and sidelobe suppression, we establish the CFDA
configuration for beamforming. Numerical examples and simulations show the
superiority of the proposed beamforming method.

Keywords: vortex electromagnetic (EM) wave, orbital angular momentum (OAM), frequency diverse array (FDA),
circular FDA (CFDA), beamforming

1 INTRODUCTION

Radar, an electronic device for detecting targets using electromagnetic waves, is widely used in military
and civil fields [1]. After a long period of development, phased array radar (PAR), owing to its high-
flexible and high-gain beam, has become the central radar system at present [2]; [3]. However, although
PAR has been widely used in multitarget detection, imaging, target tracking, and interference
suppression, it is still restricted by its limited controllable degrees of freedom (DoFs). Therefore, for
further development, it is urgent to seek innovations in radar technology to expand the DoFs of radar.

The frequency diverse array (FDA) seems to be a feasible array that means to expand the DoF of
the radar beam owing to its range-time-dependent beampattern [4]. Antonik first proposed FDA in
2006 [5], and since then, it has attracted considerable attention on the radar [6]. Unlike a phased
array (PA), an FDA introduces frequency offsets far smaller than the carrier frequency between each
array element and thus produces an S-shaped beam [7]. The range-dependent beampattern of FDA
expands the DoF of radar beam in the range domain. However, the S-shaped beam demonstrates the
range and angle-coupling problem for the beampattern [8]. Therefore, in recent years, the dot-
shaped beamforming was investigated to decouple the beampattern. Furthermore, the current
methods for dot-shaped beamforming include nonlinear frequency offset design and subaperture

Edited by:
Nanrun Zhou,

Nanchang University, China

Reviewed by:
Sushank Chaudhary,

Quanzhou Institute of Equipment
manufacturing (CAS), China

Hasan Mir,
American University of Sharjah, United

Arab Emirates

*Correspondence:
Jiaang Ge

gejiaang0313@163.com

Specialty section:
This article was submitted to

Radiation Detectors and Imaging,
a section of the journal

Frontiers in Physics

Received: 21 March 2022
Accepted: 12 May 2022
Published: 05 July 2022

Citation:
Ge J and Xie J (2022) Beamforming in

the Generation of Range-Time-
Dependent Orbital Angular Momentum

Based on the Circular Frequency
Diverse Array.

Front. Phys. 10:900665.
doi: 10.3389/fphy.2022.900665

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9006651

ORIGINAL RESEARCH
published: 05 July 2022

doi: 10.3389/fphy.2022.900665

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.900665&domain=pdf&date_stamp=2022-07-05
https://www.frontiersin.org/articles/10.3389/fphy.2022.900665/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.900665/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.900665/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.900665/full
http://creativecommons.org/licenses/by/4.0/
mailto:gejiaang0313@163.com
https://doi.org/10.3389/fphy.2022.900665
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.900665


structure application. First, several functions were applied to
design the nonlinear frequency offsets, such as logarithmic
function [9], sine function [10], square function [11], cubic
function [11], hyperbolic tangent function [12], Hamming
window function [13], Tayler window function [14], and
Costas coding [15]. In addition, [16]and [17] used a genetic
algorithm (GA) and a particle swarm optimization (PSO)
algorithm to design the frequency offsets, respectively.
Moreover, the subaperture structure was applied to decouple
the beampattern [18]; [19]; [20]. However, the beampattern is
also time-varying due to the introduced frequency offsets.
Therefore, to solve the time-varying problem with the
beampattern of the FDA, the time-modulation frequency
offsets were proposed [21]; [22]; [23]. Moreover, the filter for
time modulation at the transmitter was proposed to suppress the
time-varying beampattern in [17]. However, up to now, the time-
independent beampattern is not achieved in practice [24]. Once
solving the range-angle-coupling and time-varying beampattern,
FDA demonstrates a high application prospect in joint range-
angle estimation [4], imaging [25]; [26], mainlobe jamming
suppression [27]; [28], and deceive jamming signal
generation [29].

The vortex electromagnetic (EM) wave is also feasible to
expand the DoF of the radar beam owing to the carrying
orbital angular momentum (OAM) [30]. The study of vortex
waves began early in the field of optics. In 1992, Allen et al.
discovered that a laser with Laguerre–Gaussian (LG) amplitude
distribution carries OAM and its phase distribution is spatial
helical [31]. The OAM with adjustable modes enables the optical
vortex to modulate and transmit information [32]. After that,
many mature results have been obtained in vortex optical
communication. From a physical point of view, light can also
be considered an EM wave, and thus the study of vortex EM in
microwave bands has also been concerned. The vortex EM wave
was studied in communication [33] and radar [34] in recent
years. The vortex EM demonstrates its application perspectives
for imaging and detection in radar. [35] found that when the
radiation field of the vortex EM wave irradiates the target, the
echo signal received by the radar contains the azimuth
information of the target. Therefore, when using vortex EM
waves for radar imaging, the azimuth information of the target
can be obtained from the echo signal through signal processing.
In recent years, various radar imaging models using OAM have
been proposed [36–38], and the corresponding radar imaging
algorithms [39,40]; [41] have been proposed to achieve one-
dimensional and two-dimensional imaging models. In theory, the
rotating Doppler effect can be produced when the vortex EM
wave is irradiated on a rotating object. Therefore, the vortex EM
wave radar can detect both the target’s radial and angular motion.
Furthermore, several studies have investigated target detection
based on vortex EM waves [42]; [43].

The uniform circular array (UCA) can be applied to the
generation of OAM owing to its high controllable and good
beamforming ability [34]. The UCA generates OAM with
multiple modes by shifting the proper phases of the array
elements. Moreover, the FDA can also achieve phase shifts by
changing the frequency offsets. Thus, the circular FDA (CFDA)

has the potential to produce OAM. In addition, due to the
introduction of frequency offset, the generated OAM may be
range-time-dependent. Therefore, in the background of radar
imaging and target detection, combining the FDA structure with
the vortex EM wave concept, we propose a beamforming method
to generate range-dependent OAM based on CFDA. Our main
contributions are summarized as follows:

1) We establish an OAM-generating structure based on CFDA.
Then, based on the proposed structure, we verify the feasibility
of CFDA to generate OAM. Furthermore, the characteristics
of the generated OAM are investigated by analyzing the
periodicity and OAM spectrum.

2) The beamforming method for the CFDA-based OAM is
proposed. The proposed beamforming method concerns the
following two issues: beam collimation and sidelobe
suppression. To achieve beam collimation, we derive the
rotation angle of the beam axis and thus steer the signal at
the target through the phase shifter. Furthermore, an
appropriate antenna pattern is selected to suppress the sidelobe.

3) The CFDA configuration for beamforming is established.
Based on the analysis of time modulation, beam
collimation, and sidelobe suppression, the configuration of
CFDA for beamforming is proposed.

The remainder of the article is organized as follows: Section 2
formulates the OAM-generating structure based on CFDA and
analyzes the characteristics of the generated OAM. Section 3
proposes the beamforming for the CFDA-based OAM
considering time modulation, beam collimation, and sidelobe
suppression. Furthermore, the numerical simulation results are
presented in Section 4. Finally, Section 5 draws conclusions.

FIGURE 1 | N-antenna CFDA structure.
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2 ORBITAL ANGULAR
MOMENTUM-GENERATING STRUCTURE
BASED ON CIRCULAR FDA
2.1 Signal Model
Figure 1 illustrates the N-antenna CFDA with radius a in the
XOY plane. Generally, the directional array antennas are considered
with uniform distribution. Hence, setting antenna 0 on the x-axis,
antenna n is at azimuth ϕn � 2πn/N. In addition, the frequency and
wavenumber of antenna n can be given, respectively, by

fn � f0 + nΔf n � 0, 1, . . . , N − 1, (1)
kn � 2πfn

c
� 2πf0 + 2πnΔf

c
� k0 + nΔk, (2)

where f0 is the reference basic frequency, Δf denotes the tiny
frequency offset satisfying Δf ≪ f0, and c is the speed of light.

For an arbitrary point P(r, θ, ϕ) in the far-field, the equivalent
electric field in the time domain is

where r � r · r̂ and rn denote the position vector of point P and
antenna n, with r̂ being the unit direction vector of r. an and ϕn
denote the excitation amplitude and phase of antenna n,
respectively. fx2 is the directional pattern of antenna n.

Under the equal-amplitude and equal-phase excitation assumption,
we have an = a0 and φn = φ0. Moreover, the directional pattern is
assumed to be stable, that is, fx3. Then, Eq. 3 can be rewritten as

In the far-field, we approximate the amplitude with |r − rn| ≈ r,
and the phase with |r − rn|≈ r − r̂ · rn, where

r̂ � x̂ sin θ cos ϕ + ŷ sin θ sinϕ + ẑ cos θ, (5)
rn � a x̂ cosϕn + ŷ sin ϕn( ), (6)

with x̂, ŷ, and ẑ being the unit direction vector of x-axis, y-axis,
and z-axis, respectively. Thus, we have

r̂ · rn � a sin θ cosϕ cos ϕn + sin θ sin ϕ sinϕn( )
� a sin θ cos ϕ − ϕn( ) . (7)

Then, the equivalent electric field in the far-field can be
approximately given by

where

ΔψFDA r, t( ) � Δk ct − r( ) + Δka sin θ cos ϕ − ϕn( ). (9)
Actually, Δkasinθcos(ϕ − ϕn) is proved to be small and

negligible, we have ΔψFDA(r, t) ≈ Δk(ct − r). Then, let

α r, t( ) � ΔψFDA r, t( )
2π/N

� nΔψFDA r, t( )
ϕn

. (10)

Thus, Eq. 8 can be further rewritten as

where the array factor AFFDA can be given by

AFFDA � ∑
N−1

n�0
ej k0a sin θ cos ϕ−ϕn( )+α r,t( )ϕn[ ]. (12)

When there are enough array antennas, the summation in the
array factor AFFDA can be replaced by an integral, then Eq. 12 can
be rewritten as

AFFDA ≈
N

2π
∫2π

0
ej k0a sin θ cos ϕ−ψ( )+α r,t( )ψ[ ]dψ. (13)

Let ψ′ = ϕ − ψ, while α(r, t) ∈ Z, we have

FIGURE 2 | Configuration of CFDA for beamforming.
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AFFDA � N

2π
∫2π

0
ej k0a sin θ cosψ′+α r,t( )· ϕ−ψ′( )[ ]dψ′

� Nejα r,t( )ϕ

2π
∫
2π

0

ej k0a sin θ cosψ′−α r,t( )ψ′[ ]dψ′

� Nj−α r,t( )ejα r,t( )ϕJα r,t( ) k0a sin θ( )

, (14)

where Jα(·) is α-order Bessel function of the first kind, whose
integral expression can be given by

Jα x( ) � jα

2π
∫2π

0
ejx cosψ′−jαψ′dψ′. (15)

In summary, the equivalent electric field produced by CFDA at
P(r, θ, ϕ) is

Equations 12 and 16 indicate that the CFDA can generate
vortex EM waves owing to its vortex phase factor
exp[jα(r, t)ϕn]. However, unlike the OAM of UCA, that of
CFDA is with range-time-dependent modes. Therefore,
range-time-dependent characteristics of the generated
OAM are analyzed.

2.2 Characteristics of the Generated Orbital
Angular Momentum
From Eq. 10, the generated OAM modes can be further
rewritten as

α r, t( ) � Δk ct − r( )
2π/N

� NΔf t − r/c( ). (17)

FIGURE 4 | CFDA-based OAM spectrum with time while r = 2.5m.

FIGURE 3 | Beam distribution and phase distribution of the CFDA-based OAM at different times while z = 2.5m. (A) Beam distribution while t = 12.5ns; (B) phase
distribution while t = 12.5ns; (C) beam distribution while t = 14.583ns; (D) phase distribution while t = 14.583ns; (E) beam distribution while t = 16.667ns; and (F) phase
distribution while t = 16.667ns.
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Furthermore, we have the following two remarks for the mode
of the generated OAM:

1) The OAM mode generated by CFDA are range-time-
dependent, and OAM mode is continuous with range and

time. Then, we can learn that there are non-integer modes
during the transmission of the generated vortex EM waves.

2) The vortex EM wave generated by the array is a discrete phase
sampling. Thus, according to the Nyquist sampling theorem,
we learn that the OAM mode does not increase indefinitely
and is limited by the number of elements:
−N/2< α(r, t)<N/2. Thus, the generated OAM mode
changes periodically with range and time.

Therefore, considering the OAM mode period relative to
range, we have

α r + Tr, t( ) − α r, t( )| |
� NΔf t − r + Tr( )/c( ) −NΔf t − r/c( )∣∣∣∣ ∣∣∣∣
� NΔfTr/c � N

. (18)

Thus,

Tr � c

Δf. (19)

Similarly, considering the OAM mode period relative to time,
we have

α r, t + Tt( ) − α r, t( )| |
� NΔf t + Tt − r/c( ) −NΔf t − r/c( )∣∣∣∣ ∣∣∣∣
� NΔfTt � N

. (20)

Thus,

FIGURE 5 | Beam distribution and phase distribution of the CFDA-based OAM at observation distances while t = 0.3 μs. (A) Beam distribution while z = 1.25m; (B)
phase distribution while z = 1.25m; (C) beam distribution while z = 1.875m; (D) phase distribution while z = 1.875m; (E) beam distribution while z = 2.5m; (F) phase
distribution while z = 2.5m.

FIGURE 6 | CFDA-based OAM spectrum with range while t = 0.3 μs.
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Tt � 1
Δf. (21)

In addition, the OAM spectrum can be derived according to
the Fourier transform relationship between the OAMdistribution
Al and azimuth phase Ψ(ϕ′) as follows:

Al � 1
2π

∫2π

0
Ψ ϕ′( )e−ilϕ′dϕ′, (22)

Ψ ϕ′( ) � ∑
+∞

l�−∞
Ale

ilϕ′. (23)

3 BEAMFORMING FOR THE CIRCULAR
FDA-BASED ORBITAL ANGULAR
MOMENTUM
For CFDA radar, the quality of imaging and detection is closely
related to the energy distribution, phase distribution, and OAM
purity of the vortex EM wave. However, there are several
problems with the CFDA-based OAM to address, such as the
hollow beampattern, the mainlobe pointing changing with the

OAM mode, and the high sidelobe energy. These problems bring
some challenges to the application of OAM in radar. Therefore,
concerning beam collimation and sidelobe suppression, we
proposed a beamforming method for the CFDA-based OAM.

3.1 Beam Collimation
Unlike the traditional plane wave, the vortex EM wave has a
hollow energy distribution and OAM mode-varying mainlobe
direction. Therefore, turning to the application of OAM in radar
detection and imaging, the beam collimation for the vortex EM
wave should be considered.

For the CFDA, beamforming is a feasible method for beam
collimation. In addition, considering the energy attenuation of
the OAM with non-integer mode, we generally set the CFDA-
generated OAM as the integer mode at the target point.
Therefore, for the OAM with integer mode, the mainlobe
direction θ0 can be derived based on the Bessel function by

θ0 α r, t( )[ ] � argmax
θ

Jα r,t( ) k0a sin θ( )∣∣∣∣ ∣∣∣∣{ }. (24)

Thus, at time t, we apply the phase shifter to steer the signal at the
target with position (rt, θt, ϕt). We can see that when the rotation of

FIGURE 8 | Beampattern before and after beam collimation in the pitch dimension. (A) Beampattern before beam collimation for
(r,ϕ) � (1.25m, 0°), (rt , θt , ϕt) � (1.25m, 0°, 0°); (B) beampattern after beam collimation for (r,ϕ) � (1.25m, 0°), (rt, θt , ϕt) � (1.25m, 0°, 0°); (C) beampattern before
beam collimation for (r, ϕ) � (2.5m, 0°), (rt , θt , ϕt) � (2.5m, 0°, 0°); and (D) beampattern after beam collimation for (r, ϕ) � (2.5m, 0°), (rt , θt , ϕt) � (2.5m, 0°, 0°).

FIGURE 7 | Phase distribution of the observation plane perpendicular to the Z-axis and the beam axis after beam collimation. (A) Observation plane perpendicular
to the Z-axis for (r, ϕ) � (1.25m, 0°), (rt , θt , ϕt) � (1.25m, 0°, 0°); (B) observation plane perpendicular to the beam axis for
(r,ϕ) � (1.25m, 0°), (rt , θt , ϕt) � (1.25m, 0°, 0°); (C) observation plane perpendicular to the Z-axis for (r, ϕ) � (2.5m,0°), (rt , θt ,ϕt) � (2.5m, 0°, 0°); and (D) observation
plane perpendicular to the beam axis for (r, ϕ) � (2.5m, 0°), (rt , θt , ϕt) � (2.5m,0°,0°).
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the pitch angle is θt′ � θt + θ0[α(rt, t)], the mainlobe of
mode α(rt, t) ∈ Z can point to the target. Thus, the given phase
weight is

φn � −ka sin θt′( )cos ϕt − ϕn( ). (25)
Then, the array factor after beam collimation (at time t) can be
given by

AFFDA ≈ ∑
N−1

n�0
ej ε cos ϕ−ϕn( )+φn+α r,t( )ϕn[ ]. (26)

For the simple expression, we set ε = k0a sin θ and
εt � ka sin(θt′), then,

AFFDA ≈ ∑
N−1

n�0
ej ε cos ϕ−ϕn( )−εt cos ϕt−ϕn( )+α r,t( )ϕn[ ]

� N

2π
∫2π

0
ej ε cos ϕ−ψ( )+α r,t( )ψ−εt cos ϕt−ψ( )[ ]dψ

� Nejα r,t( )ϕ

2π
∫2π

0
ej ε cosψ′−α r,t( )ψ′[ ]e−jεt cos ϕt−ϕ+ψ′( )dψ′

. (27)

Comparing Eqs. 14 and 27, we can see that the integral term in
Eq. 30 cannot be rewritten as the Bessel function due to the introduction
of the steering vector. To further analyze the array factor after beam
collimation, we introduce the Jacohi–Anger expansion given by

ejx cos ϕ � ∑
∞

l�−∞
jlJl x( )ejlϕl ∈ Z. (28)

Then, Eq. 27 can be rewritten as

AFFDA � Nejα r,t( )ϕ

2π

× ∑
∞

l�−∞
jlJl −εt( )ejl ϕt−ϕ( ) ∫2π

0
ejε cosψ′e−j α r,t( )−l[ ]ψ′dψ′

� Nejα r,t( )ϕ ∑
∞

l�−∞
jlJl −εt( )ejl ϕt−ϕ( )j− α r,t( )−l[ ]Jα r,t( )−l ε( )

� N ∑
∞

l�−∞
j−α r,t( )+2lJl −εt( )Jα r,t( )−l ε( )ejlϕt ej α r,t( )−l[ ]ϕ

. (29)

From Eq. 29, we can see that the generated OAM modes after
beam collimation are a mixture of several integer modes.

FIGURE 10 | Beampattern of the CFDAs with different antenna patterns. (A) Beampattern for (rt , θt ,ϕt) � (1.25m, 0°, 0°); (B) beampattern for (rt , θt , ϕt) �
(2.5m, 0°, 0°).

FIGURE 9 | OAM spectrum after beam collimation. (A) OAM spectrum for (rt , θt ,ϕt) � (1.25m, 0°, 0°); (B) OAM spectrum for (rt , θt , ϕt) � (2.5m, 0°, 0°).

Frontiers in Physics | www.frontiersin.org July 2022 | Volume 10 | Article 9006657

Ge and Xie CFDA-based OAM Beamforming

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Moreover, the mode weights can be approximated by the term
|Jl(−εt)Jα(rt,t)+l(ε)|.

3.2 Sidelobe Suppression
As we know, the beam of the vortex EM wave is annular
around the direction axis with a higher sidelobe. The higher
sidelobes cause a severe waste of emission energy. Therefore,
sidelobe suppression must be considered in practical
applications.

According to the radar radiation theory, an appropriate
antenna pattern can effectively suppress the sidelobes.
Therefore, in the article, we consider three typical antenna
patterns as follows:

3.3 Circular FDA Configuration for
Beamforming
After time modulation, beam collimation, and sidelobe suppression,
the equivalent electric field generated by CFDA can be given by

Therefore, based on the analysis of time modulation, beam
collimation, and sidelobe suppression, the configuration of CFDA
for beamforming is shown in Figure 2.

4 SIMULATION RESULTS

In this section, several simulations are conducted to verify
effectiveness of the proposed OAM beamforming based on the
CFDA. Unless stated otherwise, the simulation parameters are set
at: f0 = 20GHz, Δf = 10MHz, c � 3 × 108m/s, λ � c/f0 � 0.015m,
a = 3λ = 0.045m, and N = 24.

4.1 Model Verification
In the first example, the radiation characteristics of the
generated OAM based on CFDA are demonstrated. The
observation plane is set perpendicular to the beam axis (z-
axis). Setting the observation distance at z = 60/N = 2.5m,
Figure 3 shows the beam distribution and phase distribution
of the CFDA-based OAM at different times. It can be seen
that the mode of the CFDA-based OAM transfers with time
varies. At certain times, the generated OAM shows integer

modes. However, non-integer modes occur during the
transmission. To further analyze the time-dependent
characteristic and according to Eqs. 22 and 23, Figure 4
gives the CFDA-based OAM spectrum with time while r =
2.5m. We can see that at the fixed range, the mode of the
CFDA-based OAM increases periodically with time, and the
period is 0.1 µs (1/Δf). Figure 5 shows the beam distribution
and phase distribution of the CFDA-based OAM at different
observation distances while t = 0.3 μs. Meanwhile, Figure 6
gives the CFDA-based OAM spectrum with the range while
t = 0.3 μs. Similarly, we have that at the fixed time, the mode of
the CFDA-based OAM decreases periodically with range, and
the period is 30 m (c/Δf).

4.2 Analysis of Beam Collimation
In this example, we analyze the effect of the beam collimation
proposed in Section 3.1. It is remarked that the simulations are at
fixed time t = 0.3 μs. Figure 7 compares the beampattern before
and after beam collimation in the pitch dimension for the targets
at (θt, ϕt) � (0°, 0°) with different ranges. We can see that the
target is under different modes due to different ranges. Moreover,
according to the signal model of CFDA, the OAM mode of the
target can be guaranteed to be an integer by adjusting the
frequency offset. Therefore, for the targets with different
modes, the phase shifters can steer the beam to the targets
according to Eq. 25.

In addition, to investigate the OAM after beam collimation,
Figure 8 compares the phase distribution of the observation plane
perpendicular to the Z-axis and the beam axis after beam
collimation. On the observation plane perpendicular to the
original beam axis, the phase loses the spiral distribution
characteristics. There is no prominent branch, and the phase
distribution is close to the plane wave phase. However, the phase
distribution still shows spiral characteristics on the observation
plane perpendicular to the new beam axis, but the mode is
impure. Therefore, Figure 9 compares the OAM spectrum of
different targets after beam collimation. The theoretical value is
approximated by the term |Jl(−εt)Jα(rt)+l(ε)|. We can see that the
generated OAM modes after beam collimation are a mixture of
several integer modes.

4.3 Analysis of Sidelobe Suppression
In this example, we analyze the effect of the sidelobe
suppression proposed in Section 3.2. It is remarked that the
simulations are based on time modulation and beam
collimation. Figure 10 compares the beampattern of the
CFDAs with different antenna patterns. We can see that the
sidelobe suppression can be effectively realized by designing the
antenna pattern. In particular, fx11 can significantly suppress
the sidelobe.

5 CONCLUSION

In this article, combining the FDA structure with the vortex EM
wave concept, we propose a beamforming method for the
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CFDA-based OAM. First, we establish a CFDA-based OAM-
generating structure, based on which the feasibility of the CFDA
to generate OAM is verified. Moreover, the generated OAM
shows a range-time dependence owing to the introduced
frequency offsets across the array antennas. Then, the
characteristics of the generated OAM are investigated.
Considering the application in radar imaging and target
detection, the importance of beamforming is demonstrated.
Therefore, for solving the mainlobe pointing changing with the
OAM mode and the high sidelobe energy, we investigate the
beamforming with the CFDA-based OAM. We calculate the
angular offset of the mainlobe direction relative to the beam axis
and thus achieve beam collimation by applying the steering
vector to the array antennas. Furthermore, we select an
appropriate antenna pattern for sidelobe suppression. The
numerical results show the superior performance of the
proposed beamforming method in the generation of range-
time-dependent OAM based on CFDA. In future research, we
will concentrate on applying the CFDA-based OAM in radar
imaging and target detection.
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