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Large-scale engineering systems, such as propulsive engines, ship structures, and wind
farms, feature complex, multi-scale interactions between multiple physical phenomena.
Characterizing the operation and performance of such systems requires detailed
computational models. Even with advances in modern computational capabilities,
however, high-fidelity (e.g., large eddy) simulations of such a system remain out of
reach. In this work, we develop a reduced-order modeling framework to enable
accurate predictions of large-scale systems. We target engineering systems which are
difficult to simulate at a high-enough level of fidelity, but are decomposable into different
components. These components can be modeled using a combination of strategies, such
as reduced-order models (ROM) or reduced-fidelity full-order models (RF-FOM).
Component-based training strategies are developed to construct ROMs for each
individual component. These ROMs are then integrated to represent the full system.
Notably, this approach only requires high-fidelity simulations of a much smaller
computational domain. System-level responses are mimicked via external boundary
forcing during training. Model reduction is accomplished using model-form preserving
least-squares projections with variable transformation (MP-LSVT) (Huang et al., Journal of
Computational Physics, 2022, 448: 110742). Predictive capabilities are greatly enhanced
by developing adaptive bases which are locally linear in time. The trained ROMs are then
coupled and integrated into the framework to model the full large-scale system. We apply
the methodology to extremely complex flow physics involving combustion dynamics. With
the use of the adaptive basis, the framework is demonstrated to accurately predict local
pressure oscillations, time-averaged and RMS fields of target state variables, even with
geometric changes.

Keywords: reduced order modeling, domain decomposition, model reduction, turbulent reacting flows, adaptive
basis

1 INTRODUCTION

Rapid advancements in computing technologies are enabling high-fidelity simulations of complex,
multi-scale physics (e.g., turbulence [1] and combustion [2,3]) observed in real engineering systems.
These simulations provide insight into the underlying physics, which cannot be quantitatively
accessed through experiments. This insight is useful in improving the performance of engineering
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systems and reducing failures. However, the high computational
costs of high-fidelity simulations prohibit their integration into
design and analysis of full-scale systems, which require repeated
simulations to explore parameter spaces. One popular approach
to address such challenges is through model order reduction
(MOR), a common approach being projection-based reduced-
order models (ROM) [4–6], which have demonstrated success in
many applications such as flow control [7–9], aeroelasticity
[10,11], hypersonics [12], and combustion [13,14]. Typically,
the construction of ROMs involves three stages: 1) an offline
training stage that performs high-fidelity simulations of the target
systems for multiple parameters; 2) offline construction of reduced
basis and projections on low-dimensional manifolds; and 3) online
execution of ROMs by projecting the governing equations on the
low-dimensional manifold. Despite the many successful examples of
MOR, their direct applications in many practical large-scale
engineering systems remain infeasible because the systems are so
complex that high-fidelity simulations are completely inaccessible.
Using an example from rocket combustion, a coarse-mesh (“low”-
fidelity) large eddy simulation (LES) of a small-scale rocket engine
[15] requires O(107) CPU-hours, which even makes a single fine-
mesh (high-fidelity) LES of this type of problems inaccessible,
(estimated to require >O(109) CPU-hours), let alone the high-
fidelity LES of a large-scale rocket engine [16], a computation that
would require > 10 times the resources of the small-scale problem.

To address this specific challenge of the lack of full-order model
(FOM) data for large-scale systems, researchers have formulated
domain-decomposition methods [17,18], or component-based
methods [19] to develop a network of ROMs to model the target
system. In addition to ROM applications, such ideas have been
commonly used for computational fluid dynamics [20,21], port-
hamiltonian system [22–24] etc. For consistency, we refer to this
family of approaches as component-based reduced-order modeling
(CBROM)methods in the current paper. CBROMmethods leverage
the fact that many large-scale engineering systems can be
decomposed into components of identical features and the offline
training of the ROMs can be performed based on each individual
component for multiple parameters, which significantly reduces the
cost of the offline training. The trained component-based ROMs can
then be used for the identical components and coupled together to
model different configurations of the large-scale systems.

To date, the majority of the success of CBROMmethods has been
in problems governed by linear PDEs. Willcox et al. [25]
demonstrated the feasibility of constructing low-order models of
blade row unsteady aerodynamics in a compressor. Maday and
Ronquist [26] formulated a reduced basis element method and
applied it to a thermal fin problem. Iapichino et al. [27] proposed
a reduced basis hybrid method to solve the steady Stokes problem
with applications to cardiovascular networks. Adopting the static-
condensation reduced-basis-element method [19,28,29], Kapteyn
et al. [30] demonstrated the development of a digital twin for a
12-ft wingspan unmanned aerial vehicle via a library of component-
based ROMs. More recently, McBane and Choi [31] leveraged the
static-condensation reduced-basis-element method and
demonstrated a 1000× speedup with relative error < 1% for
lattice-type structure design using component-wise reduced-order
modeling.

In addition, some applications of component-based ROMs on
nonlinear PDEs can also be found in the literature. One group of
studies incorporate the FOM tomodel a subset of components in the
target system while applying ROMs to the other components. Lucia
et al. [32] demonstrated a combination of ROMs and FOM by
domain-decomposition for modeling two-dimensional high-speed
flows with moving shock waves, by applying the FOM for the shock-
containing domain and ROMs for the other domains. Buffoni et al.
[33] demonstrated similar ideas by partitioning the computational
domain into two subdomains (one modeled using FOM while the
other by ROM), and presented different approaches to couple ROM
with FOM. Baiges et al. [34] demonstrated the improvement in
predicting flow configurations that are not present in the training
snapshots by integrating the FOM into the component-based
modeling framework. Ahmed et al. [35] presented a hybrid
analysis and modeling approach combining a physics-based FOM
and a data-driven non-intrusive ROM towards predictive digital twin
technologies. Another group of investigations aim at incorporating
only ROMs rather than hybrid FOMs/ROMs in the component-
based modeling framework. Hoang et al. [36] proposed the domain-
decomposition least-squares Petrov-Galerkin (DD-LSPG) model-
reduction method for parameterized systems of nonlinear
algebraic equations. Xiao et al. [37–39] developed a domain-
decomposition non-intrusive reduced-order model (DDNIROM)
for turbulent flows. The current authors demonstrated the
integration of component-based ROMs with a FOM in a quasi-
1D Euler problem [40,41].

In the present work, we develop a component-based modeling
framework that can flexibly adopt either reduced-order models
(ROM) or full-order models (FOM) for different components of
the target system based on the corresponding requirements of
modeling accuracy and efficiency with the goal of enabling:

(1) Accurate simulations of large-scale systems, which cannot be
directly accessed using high-fidelity simulations;

(2) Parametric studies of the large-scale system targeting many-
query applications.

It is notable that in the current work, we choose rocket engine as
the target system. This application involves compressible, reacting,
chaotic flows and thus introduces complex challenges for reduced
order modeling. We establish a component-based training strategy
for ROM development, which only requires the high-fidelity
simulations of the individual components, rather than the entire
system. The trained ROMs are then coupled together (either with
each other or with FOM) via a direct flux matching method for
information transfer between components. The ROM formulation
leverages model reduction techniques using model-form preserving
least-squares projections with variable transformation (MP-LSVT)
with physical realizability enforced on both temperature and species
mass fractions [14] to achieve both global and local stabilization.
Furthermore, the MP-LSVT ROM is incorporated with basis
adaptation to achieve significant enhancement in modeling
accuracy. Since our interests are focused on engineering systems
involving combustion, we use extremely challenging turbulent
reacting flow examples, relevant to rocket applications, to motivate
and evaluate our framework. But it should be highlighted that our
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component-based modeling framework is applicable to many other,
unrelated disciplines, featuring systems that can be decomposed into
different components.

The remainder of the paper is organized as follows. Section 2
presents the full-order model (FOM) and time discretization.
Section 3 reviews the procedure for model reduction via MP-
LSVT formulation. Section 4 discusses basis-adaptation
algorithms for ROM enhancement. Section 5 presents the
domain-decomposition framework, including both the
component-based ROM training strategy and integration
method in full system. Section 6 presents numerical results
based on single- and multi-injector model rocket combustor
configurations with detailed assessment on the accuracy of the
framework. In Section 7, we provide concluding remarks and
perspectives.

2 FULL-ORDER MODEL

We define the physical domain Ω with boundary zΩ, and then
represent the governing equations of the full-order model (FOM)
for Ω as a generic dynamical system

dq qp( )
dt

� f qp, t( ) in Ω,
with u qp( ) � uBC on zΩ,

and qp t � 0( ) � qp
0,

(1)

where t ∈ [0, T] is the solution time, which spans the time interval
from 0 to T, qp: [0, T] → RN is the vector of solution (or state)
variables, uBC: [0, T] → RNb is the vector of states to be enforced
at the boundary zΩ (i.e., boundary conditions), qp

0 ∈ RN is the
vector of states to be specified as the initial conditions at t = 0,
q: RN → RN, f : RN × [0, T] → RN, and u: RN → RNb are
(typically highly non-linear) functions of qp. N is the total
number of degrees of freedom in the system (e.g., for finite
volume/element method, N = Nelem × Nvar, where Nelem is the
total number of elements andNvar is the number of state variables
in each element). Nb is the total number of degrees of freedom
associated with the boundary zΩ and Nb = Nelem,BC × Nvar, where
Nelem,BC is the number of elements adjacent to the boundary zΩ.
For a FOM based on conservation laws, the function, q,
represents the conservative state. The function, f, represents
surface fluxes, source terms, and body forces arising from the
spatial discretization of the governing equations. u represents the
boundary condition state, and uBC denotes the values of the state
to be satisfied at the boundary.

Different time-discretization methods can be introduced to
solve Eq. 1 (e.g., linear multi-step, or Runge–Kutta methods
[42]). For all the numerical examples presented in the current
paper, we use linear multi-step methods for both FOM and ROM
calculations and refer the reader to [14] for details. An l-step
version of linear multi-step methods can be expressed as

r qp
n( ) ≜ q qp

n( ) +∑l
j�1

αjq qp
n−j( ) − Δtβ0f qp

n, tn( ) −Δt∑l
j�1

βjf qp
n−j, tn−j( ) � 0 n≥ l( ),

with u qp
n( ) � uBC

n on zΩ.
(2)

where Δt ∈ R+ is the physical time step for the numerical
solution, and the coefficients αj, βj ∈ R are determined based
on l. If β0 = 0, the method is explicit; otherwise, the method is
implicit. r: RN → RN is defined as the FOM equation residual.
The state variables, qp

n, are solved for at each time step so that
r(qpn) � 0.

3 MODEL-FORM PRESERVING MODEL
REDUCTION FOR TRANSFORMED
SOLUTION VARIABLES
For problems involving multiscale phenomena with strong
convection and non-linear effects, it is well-recognized that
ROM robustness can be a major issue. To address this
challenge, we pursue the model-form preserving least-
squares with variable transformation (MP-LSVT)
formulation to construct the reduced-order model (ROM).
This methodology is described below—we refer the reader to
ref [14] for further details.

3.1 Construction of Proper Orthogonal
Decomposition Bases for Solution Variables
The state qp in Eq. 1 can be expressed in a trial space
Vp ≜ Range(Vp), where Vp ∈ RN×np is the trial basis matrix.
Define qp′(t) ≜ qp(t) − qp,ref , where qp,ref is a reference state.
Possible reference states include the initial FOM solution,
qp,ref = qp(t = t0), or the time-averaged FOM solution,
qp,ref � 1

t1−t0 ∫t1
t0
qp(t) dt. We then seek a representation

~qp: [0, T] → Vp such that

H ~qp − qp,ref( ) � Vpqr (3)
where qr: [0, T] → Rnp is the reduced state with np
representing the number of trial basis modes. In this work,
Vp is computed via the proper orthogonal decomposition
(POD) [4] from the singular value decomposition (SVD),
which is a solution to

min
Vp∈RN×np

‖Q − VpVp
TQ‖F s.t. Vp( )TVp � I, (4)

where Q is a data matrix in which each column is a snapshot of
the solution qp′ at different time instances. A scaling matrix
H ∈ RN×N must be applied to qp′ such that the variables
corresponding to different physical quantities in the data
matrix Q have similar orders of magnitude. Otherwise, Q may
be biased by physical quantities of higher magnitudes (e.g., total
energy). In this work, we normalize all quantities by their L2-
norm, as proposed by Lumley and Poje [4].

H � diag H1, . . . ,Hi, . . . ,HNelem( ), (5)
whereHi � diag(ϕ−11,norm, . . . , ϕ−1Nvar,norm

). Here, ϕv, norm represents
the vth state variable and

ϕv,norm � 1
t1 − t0

∫t1

t0

1
Ω∫Ω

ϕ′2v x, t( ) dx dt. (6)
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3.2 Least-Squares With Variable
Transformation
Leveraging the least-squares Petrov-Galerkin (LSPG) projection
formulation proposed by Carlberg et al. [43], we develop a model-
form preserving least-squares formulation for the FOM in Eq. 1.
Our objective is to minimize the fully-discrete FOM equation
residual r, defined in Eq. 2, on the physical domainΩwith respect
to the reduced state, qr

qn
r ≜ arg min

qr∈R
np

Pr ~qp( )					 					22,
with u ~qp

n( ) � uBC
n on zΩ

and ~qp
0 � qp,ref +H−1Vp Vp( )Tqp0

(7)

where the approximate solution variables, ~qp � qp,ref +H−1Vpqr.
The equation residual, r, is scaled by P using the L2-norm, similar
to the scaling matrix H in Eq. 5

P � diag P1, . . . ,Pi, . . . ,PNelem( ), (8)
where Pi � diag(φ−1

1,norm, . . . ,φ
−1
Nvar,norm

). Here, φv, norm represents
the vth evaluated quantity of q(qp)

φv,norm � 1
t1 − t0

∫t1

t0

1
Ω∫Ω

φ′2
v x, t( ) dx dt, (9)

such that each equation in r has similar contributions to the
minimization problem in Eq. 7. It is worth pointing out that the
treatment of boundary conditions in the MP-LSVT ROM is fully
consistent with the FOM in Eq. 2, which guarantees that the
boundary conditions are satisfied in the ROM and serves as an
important building block in FOM/ROM coupling in the
component-based domain-decomposition framework in
Section 5.

Following Eq. 7, a reduced non-linear system of dimension np
can then be obtained and viewed as the result of a Petrov-
Galerkin projection

Wp
n( )T Pr ~qp

n( ) � 0,

with u ~qp
n( ) � uBC

n on zΩ
and ~qp

0 � qp,ref +H−1Vp Vp( )Tqp
0

(10)

where Wp is the test basis

Wp
n � zPr ~qp

n( )
zqn

r

� P ~Γ
n − Δtβ0~J

n~Γ
n( )H−1Vp, (11)

with ~J
n � [zf/zq]nqp�~qp and ~Γ

n � [zq/zqp]nqp�~qp .

4 REDUCED-ORDER MODELS
ENHANCEMENT VIA BASIS ADAPTATION

While the MP-LSVT method improves the robustness and
accuracy of the ROM, predictive capabilities (e.g., future-state
prediction) are still restricted by the use of linear static basis,
which has been shown to be inadequate for predictions in
problems with slow Kolmogorov N-width decay [14,44].
Several remedies have been proposed to address this challenge

through, for example, localized linear bases [45,46], nonlinear
bases [47,48], and online basis adaptation [49–51] etc. In the
current work, we focus on online basis-adaption methods, which
aim to update the trial basis Vp during the online ROM
calculation (Eq. 10) such that

Vn
p ≜ arg min

Vn
p∈R

N×np

Pr ~qp
n( )					 					22, (12)

where r is the fully-discrete FOM equation residual defined in
Eqs. 2, ~qp

n � qp,ref +H−1Vn
pq

n
r , and ~qp

n−j � qp,ref +H−1Vn−j
p qn−jr

while qnr and qn−jr are solutions to Eq. 10. This minimization
problem can be solved exactly via the update

Vn
p � Vn−1

p + δVp, (13)
where the basis at time-step n − 1 is adapted to n, through an
increment, δVp ∈ RN×np , given by

δVp � q̂p
n − ~qp

n( ) qnr( )T
‖qn

r‖22
, (14)

where q̂p
n ∈ RN represents the full-state information, which can

be evaluated based on the FOM equation residual as follows

q q̂p
n( ) +∑l

j�1
αjq ~qp

n−j( )− Δtβ0f ~qp
n, tn( ) − Δt∑l

j�1
βjf ~qp

n−j, tn−j( ) � 0,

or q q̂p
n( ) +∑l

j�1
αjq ~qp

n−j( )− Δtβ0f q̂p
n, tn( ) − Δt∑l

j�1
βjf ~qp

n−j.tn−j( ) � 0.

(15)
here, we adopt an alternate formulation compared to [50] by
updating the basis based on the full-state information evaluated at
the current time step, n, q̂p

n, instead of collecting at multiple time
steps, which is similar to the work done by Zimmermann et al.
[51]. We refer to this formulation as the one-step adaptive-basis
approach. The rate of basis adaptation is empirically determined
for the target applications and in the current work, we choose to
adapt the basis at each time step.

To achieve gains in computational efficiency for the
projection-based ROMs introduced in Section 3, hyper-
reduction is required to obtain an approximation of the
non-linear function (e.g., f in Eq. 1) based on a small
number of sampled elements—for example, it can be
achieved by the discrete empirical interpolation method
(DEIM) [52], or its least-squares regression analogue, gappy
POD Everson and Sirovich [53]. In addition, the full-state
information evaluation (Eq. 15) in basis adaptation can be
computationally expensive and also requires hyper-reduction
for efficiency gain so that the evaluation is only needed at a
small number of sampled elements. This can be achieved by
incorporating the recently developed adaptive sampling
techniques [50], which update the selection of sampled
elements based on the basis adaptation. However, the
current work mainly focuses on the development and
demonstration of the component-based ROM framework.
Therefore for conciseness, we are not including ROM
hyper-reduction in the current paper since in principle, its
presence or absence will not impact the validity of the
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framework. We will incorporate the hyper-reduced ROMs in
the framework in future work.

5 COMPONENT-BASED DOMAIN-
DECOMPOSITION FRAMEWORK

In this section, we introduce the component-based domain-
decomposition framework for modeling large-scale engineering
systems. Because our research has been primarily motivated by
applications to propulsion systems for aerospace applications, we
use a multi-injector model rocket combustor to assist in the
description of the framework formulation. Figure 1 presents a
representative geometry composed of seven injector elements
through each of which fuel and oxidizer in separate channel feed a
downstream combustion chamber. The physical domain has been
separated into eight components with seven for the injector
elements (Ωk, etc.) and one for the downstream combustor
and nozzle (Ω8). A set of similar configurations are also
included in our numerical examples in Section 6.2. Even
though the configuration in Figure 1 represents a complicated
engineering system, most of the components share identical
geometric features, an attribute that is common in many
engineering systems (e.g., compressors, gas turbine engines,
and wind farms, etc.). The interior components Ωk, where

k = 2, . . . , 6, are identical to each other geometrically, the
two outer components Ω1 and Ω7 mirror each other in
geometrical configuration (i.e., symmetric about the center
axis), while Ω8 does not resemble any other components.
Therefore, the representation of the multi-injector rocket
combustor in Figure 1 can be simplified as the combination
of three representative components: I (�ΩI)—an interior injector
element (e.g., Ω3); II (�ΩII)—an outer injector element (e.g., Ω7);
and III—the downstream combustor and nozzle (Ω8), which
enables the applications of the component-based domain-
decomposition framework without accessing the expensive
high-fidelity FOM of the full system. Furthermore, we denote
the representative components that can be repetitively used in the
full system (e.g., �ΩI and �ΩII) as reference components. Based on a
priori knowledge of the dynamics in the system [54,55], different
modeling strategies can be adopted for different components (or
subdomains) Ωk, each of which is bounded by the physical
boundaries, zΩk (e.g., inlets, outlets, walls surrounding Ωk,
represented by the solid lines in Figure 1), and interface
boundaries (dashed lines in Figure 1) shared between
components (e.g., k and m), zΩkm ≜Ωk ∪ Ωm.

First, we introduce a general description of the domain-
decomposition formulation

Bkr �qp,k
n( ) � 0,

with uk �qp,k
n( ) � uBC,k

n on zΩk,

and vkm �qp,k
n( ) � vkm �qp,m

n( ) on zΩkm,

(16)

where k denotes the numbering of the sub-components in the
formulation, Bk ∈ RnB,k×Nk denotes a matrix that enables the
component to adopt either FOM or ROM for the
corresponding kth subdomain (Ωk), and Nk is the total
number of degrees of freedom in Ωk and Nk = Nelem,k × Nvar,
where Nelem,k is the total number of elements in Ωk. For FOM,
nB,k =Nk, and Bk = I, similar to Eq. 2, and for ROM, nB,k = np, and
Bk � (Wp,k

n)TPk, consistent with Eq. 10. uk: R
Nk → RNb,k

represents the physical boundary condition state to be satisfied
as uBC,k on zΩk, where Nb,k is the total number of degrees of
freedom associated with the boundary zΩk, andNb,k =Nelem,BC,k ×
Nvar, with Nelem,BC,k as the number of elements adjacent to the
boundary zΩk. In addition, a (non-linear) function,
vkm: RNk → RNInterf,k , is introduced to match the interface
condition between subdomains Ωk and Ωm, where NInterf,k is
the total number of degrees of freedom associated with the
boundary zΩk, and NInterf,k = Nelem,Interf,k × Nvar, with
Nelem,Interf,k as the number of elements adjacent to the interface
boundary zΩkm. Additional details are provided in Section 5.2.

Given the complexity and scale of the physics, small-scale local
components with identical features (e.g., the interior and outer
injector elements,Ω3 andΩ7, in Figure 1, the nozzle element in a
gas turbine, the rotor blade in a compressor, or the wind turbine
in a wind farm) often require high-fidelity modeling to achieve
satisfying accuracy in many-query engineering applications.
Therefore, ROMs can be an ideal candidate from the
viewpoint of satisfying efficiency and accuracy requirements.
On the other hand, large-scale system-level components (e.g.,
the downstream combustor and nozzle, Ω8, in Figure 1) are

FIGURE 1 | An example of a multi-injector model rocket combustor with
seven identical injector elements and the downstream combustor and
nozzle [54].
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usually governed by physics that is less demanding in numerical
resolution. This makes the reduced-fidelity full-order model (RF-
FOM) a good candidate for modeling of the large-scale system-
level components—for example, coarse-mesh LES, nonlinear
Euler model, unsteady Reynolds Averaged Navier Stokes models.

5.1 Component-Based Reduced-Order
Model Training
To enable modeling of the full system (e.g., Figure 1), the FOM of
which is not directly accessible, we develop a component-based
ROM training method in the current section, that requires high-
fidelity FOM simulations for only the reference components
identified in the system. The method aims to generate a rich
training dataset that contains representative dynamics of the
components when integrated in the full system of various
configurations (e.g., different numbers of injector elements),
thus enabling the generation of predictive component-based
ROMs, which is analogous to the localized ROM strategy
developed for finite element method with representative work
by Henning and Peterseim [56]; Eftang and Patera [28]; and
Smetana and Patera [29]. To achieve this, we introduce unsteady
perturbations at interface boundaries in the FOM simulations of
the reference components, following Eq. 1, to fabricate the effects
of system-level responses, as demonstrated in Figure 2. Most
importantly, by enriching the functions used for the boundary
perturbations, the dynamics of different full-system
configurations can be embedded within the ROMs of the
individual components. For example, the effects of system-
level acoustics can be accounted for by imposing different
pressure perturbations at the boundary

p t( ) � pref 1 +∑nf
i�1

Ai sin 2πfit( )⎡⎣ ⎤⎦. (17)

where fi is the frequency included in the boundary perturbations
with Ai denoting the associated amplitude, reflecting the
anticipated full-system responses, and nf is the total number of
frequencies, an indicator of the richness of the excited dynamics.

Alternatively, velocity oscillations can be enforced at the
boundaries following similar function in Eq. 17 to mimic the
effects of large-scale flow dynamics in the full system.

It is important to ensure that the imposed boundary
conditions (dashed lines in Figure 2) do not imprint the
dimensions of the individual component upon the combustion
dynamics. All internal domains are subject to acoustic resonance
at scales determined by their geometry, but the dimensions in the
individual component are not representative of those of the full
system and so must not appear in the training dataset.
Accordingly, it is critical that the boundary conditions on the
reference component be chosen such that its geometry does not
impact the FOM solutions of the dynamics upon which the ROM
is based. An effective way to accomplish this is by applying non-
reflective boundary conditions through pertinent Riemann
invariants. We adopt the formulation that proved to be
effective for multi-dimensional reacting flow simulations [57].
It should be mentioned that the ROM training method in
Figure 2 requires a level of prior knowledge of the essential
physics in the full-system (e.g., acoustics) to ensure that pertinent
physics are included in the ROM training. For example, in rocket
combustor design such as Figure 1, system-level acoustic
frequencies can be estimated a priori based on the full-system
configuration. Correspondingly, a multi-frequency perturbation
can be imposed at the boundary conditions for ROM training, the
frequency band of which covers the target full-system acoustic
frequencies and therefore excites the essential dynamics
anticipated within the component when integrated in the full-
system. A similar idea has been demonstrated in simple 1D
problems by the current authors Huang et al. [40]; Xu et al.
[41]. To account for complex dynamics at the component
interfaces, instead of directly imposing the perturbations at the
interfaces, auxiliary domains can be introduced for the ROM
training, which is discussed and demonstrated in Section 6.

5.2 Integration in Full System Simulations
Once the component-based models are constructed following the
strategies in Section 5.1, the effective integration of these models
in the domain-decomposition framework is another determining
factor for the success of the framework. In this section, we use the
example in Figure 1 to illustrate the integration of the
component-based models. Following the method in Section
5.1, ROMs are trained on the reference components, the
trained ROMs can be used repetitively to model identical
components in the full system to enable geometric variations
(Figure 3A with (̂·) indicating that the left element mirrors the
right one) based on the premise that the injector elements in the
full system share identical geometries as the reference
components used for ROM training. As discussed above, the
RF-FOM can be adopted to efficiently model the geometrically
flexible components (e.g., the downstream combustor and
nozzle) that vary with the full system configurations, given the
less demanding requirements on modeling accuracy.
Alternatively, ROMs could also be developed for the
geometrically flexible components although ROM
developments for geometric variations remains an open area
of research.

FIGURE 2 | Schematic of the component-based ROM training method
based on (A) reference components I and (B) II.
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To achieve accurate predictions of the system-level response
governed by the component interactions, it is important to ensure
that the essential information is transferred between components.We
adopt a direct flux matching method via ghost cell assignment to
couple the components at the interface with no overlap

vkm �qp,k
n , �qp,m

n( ) � vkm �qp,m
n , �qp,k

n( ) on zΩkm, (18)

a schematic of which is shown in Figure 3B, describing the
coupling between domainΩk andΩm through the interface zΩkm.
The two adjacent mesh cells of zΩkm are indicated by the shaded
areas. When performing calculations based on Eq. 16 at time step
n at a cell with solution variables �qp,k near zΩkm in Ωk, solution
variables at the adjacent (or ghost) cell, denoted as �qp,m, are
assigned by the corresponding neighboring domain Ωm. The
combination of �qp,k and �qp,m is then used to calculate the
interface condition state, denoted as vkm(�qp,kn, �qp,mn), and vice
versa, thus guaranteeing the interface condition state is matched
as posed in Eq. 16—i.e., vkm(�qp,kn) � vkm(�qp,mn). Specifically, we
set the interface condition state function vkm to be the numerical
fluxes (both inviscid and viscous) to better suit the finite volume
scheme of the numerical solver used for the current work [58].
We remark that the interface method remains the same regardless
of whether the domain is represented by FOM or ROM.

The major benefit of the direct-flux-matching interfacing
method is that it inherently accounts for changes in flow

characteristics at the interface and therefore important
phenomena such as reverse flows are naturally supported.
More importantly it makes the training of the component-
based ROMs relatively independent of their coupling with
other components in the framework, which allows more
flexibility in the ROM training strategy. For example, auxiliary
domains (e.g., adjacent injector elements) can be introduced in
the component-based ROM training stage in Figure 2 to better
emulate interactions between injector elements in the training
dataset. These aspects are demonstrated in the numerical results
in Section 6.

6 NUMERICAL RESULTS

To assess the capabilities of component-based domain-
decomposition modeling framework in predicting multi-scale
multi-physics problems (e.g., reacting flows), two model rocket
combustors are considered. The first configuration is a two-
dimensional representation of a generic laboratory-scale single
injector configuration [59]. This case is used to a) assess the
component-based ROM training strategy and the interfacing
method between components in the framework, and b) to
explore the feasibility of using the framework to predict
dynamics on different full-system geometries. The second
configuration is a two-dimensional representation of a

FIGURE 3 | Illustration of the component-based domain-decomposition framework. (A) Schematic of the component-based domain-decomposition framework.
(B) Interfacing method for coupling different components.
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multi-injector model rocket combustor [60], and is used to
evaluate the capabilities of the framework to model different
geometric configurations of the full system as demonstrated in
Figure 3.

The computational infrastructure used for the full- and
reduced-order models solves conservation equations for mass,
momentum, energy and species transport [58,61] in a fully
coupled manner, which has been used to model a variety of

FIGURE 4 | Overview of 2D-planar single-injector model rocket combustor including (A) computational configuration and FOM-FOM results with (B) pressure
signals measured at x = 0 in (A,C) representative snapshots of the temperature fields, and (D) representative snapshots of the axial velocity fields.
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complex, practical reacting flow problems. More details of the
FOM equations can be found in Appendix B of [14]. The FOM
employs a cell-centered second-order accurate finite volume
method for spatial discretization and uses the direct flux
matching method as described in Section 5.2 for parallel
computation. The Roe scheme [62] is used to evaluate the
inviscid fluxes and a Green-Gauss gradient reconstruction
procedure [63] is used to compute the face gradients and
viscous fluxes. A gradient limiter by Barth and Jespersen [64]
is used to preserve monotonicity for flow fields with strong
gradients. A ghost cell formulation is used for treatment of
boundary conditions. Time integration for all FOM
simulations uses the implicit second-order accurate backwards
differentiation formula with dual time-stepping.

6.1 Single-Injector Model Rocket
Combustor
First, we explore and demonstrate the component-based domain-
decomposition framework on a 2D-planar representation of a
generic laboratory-scale rocket combustor designed to study
combustion dynamics [59]. The configuration is shown in
Figure 4A and consists of a shear coaxial injector with an outer
passage, T1, that introduces fuel near the downstream end of the
coaxial inner passage, T2, which in turn feeds oxidizer to the
combustion chamber with a choked nozzle downstream, resulting
in combustion-driven acoustics to be sustained. Operating
conditions in this single-injector combustor are maintained with
an adiabatic flame temperature of approximately 2,700 K and a
mean chamber pressure of 0.95MPa. The T1 stream contains
gaseous methane (100% CH4) at 300 K. The T2 stream is 42%

gaseous O2 by mass and 58% gaseous H2O by mass at 660 K. The T1
and T2 streams are maintained at constant mass flow rates, 0.46 kg/s
and 5.40 kg/s, respectively. Combustion is represented by the
flamelet progress variable (FPV) model [65] with GRI-1.2 [66]
chemical kinetics, which consists of 32 species and 177 chemical
reactions. The chemical species are treated as thermally perfect gases.
Note that although 32 chemical species are modeled, the FPVmodel
only solves transport equations for three scalar quantities: the mean
mixture fraction (Zmean), themixture fraction variance (Z″2), and the
reaction progress variable (Cmean) [65]. Individual chemical species
mass fractions are looked up from pre-computed flamelet
manifolds [67].

As shown in Figure 4A, the single-injector configuration
consists of two components, the upstream injector element
(ΩA) and the downstream combustor and nozzle (ΩB). Three
different lengths of the combustor (Lc) are investigated for this
configuration by maintaining the upstream component (ΩA)
while varying the length of the downstream component (ΩB),
i.e., LB. This change in length leads to different dynamic behaviors
as shown in Figures 4B–D when both ΩA and ΩB adopt FOM as
their modeling strategy, denoted as FOM-FOM, the solutions
from which are taken as the truth to evaluate the component-
based ROM framework. It can be readily seen from Figure 4B
that by just varying the combustor length (Lc), different pressure
oscillations can be sustained. The longer combustor lengths tend
to drive higher pressure oscillation amplitudes (> 30% peak-to-
peak) while the shorter lengthmaintains lower amplitude, < 15%,
(Figure 4B left). This features different frequencies as shown in
the power spectral densities (PSD) in Figure 4B right. In
addition, the combustion dynamics changes with Lc as seen
in Figures 4C,D, which allows reverse flow at the component
interface zΩAB under high-amplitude pressure oscillations.
Thus, this single-injector combustor is an appropriate
testbed for the component-based domain-decomposition
framework proposed in Section 5, which adopts a ROM for
the upstream component (ΩA), and a RF-FOM for the
downstream component (ΩB).

6.1.1 Injector Element Reduced-Order Models
Training
As mentioned in Section 5.1, the ROM training strategy is crucial
to the success of the component-based framework. For the
investigations on the single-injector configuration (Figure 4),
two types of strategies are considered to train ROM for the
upstream component (ΩA): 1) system-based (only for
framework verification), and 2) component-based methods as
shown in Figure 5.

• The system-based approach (Figure 5A) simulates the
complete geometry of interest (e.g., Lc = 0.42 m in
Figure 4), trains the ROM based on the extracted
snapshot solutions corresponding to the upstream
injector-element component (�ΩA), and only serves to
verify the feasibility of the component-based ROM
framework.

• The component-based approach (Figure 5B), as the
primary focus of the current work, simulates only the

FIGURE 5 | ROM training strategies for the single-injector combustor,
including (A) system-based and (B) component-basedmethods and (C) POD
residual energy distribution comparisons the two training methods.
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injector-element for ROM training and produces essential
dynamics by forcing the downstream boundary conditions.
Further, component-based training is necessary for systems
whose full-scale characteristics are beyond the current
available computing capabilities. Instead of imposing the
forcing directly at the downstream end of the injector
element (i.e., the dashed line in Figure 5B), an auxiliary
domain with exponentially stretched mesh in the axial
direction is added downstream for the component-based
ROM training approach. The addition of the auxiliary
domain is necessary to represent large-scale motions

(e.g., vortex shedding) that are undamped in the
downstream domain whereas small scale motions (e.g.,
chemical reaction) that would interfere with long-
wavelength forcing are damped before the downstream
boundary is reached. It inherently incorporates complex
dynamics (e.g., reverse flow) at the component interface
zΩAB (e.g., similar to what has been observed in Figures
4B,C in the training snapshots for ROM, which cannot be
accounted if boundary conditions are directly applied. In
addition, it reduces the influence of the training geometry
(i.e., injector element + auxiliary domain) on the dynamics

FIGURE 6 | Comparisons of (A) pressure signals measured at x = 0 in (B) pressure, (C) temperature, and (D) axial velocity time-averaged (left) and root-mean-
square (right) fields with different models (component-based ROM vs. system-based ROM vs. FOM) used for the upstream injector element (ΩA) for the single-injector
combustor.
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in the training dataset for ROM, especially on the
longitudinal acoustics.

In either of the above approaches, the trained ROM is coupled
with different downstream components to model the full system.
The component-based approach provides flexibility in generating
dynamics and substantial savings in computational cost for ROM
training since it eliminates the need for computation of a
complete configuration in Figure 4.

We consider Lc = 0.42m in Figure 4 as the target full system,
which exhibits a self-excited high-amplitude pressure oscillations at
1150Hz as shown in Figure 4A. Both system-based and component-
based methods are used to generate training snapshots for ROM
development. To generate the essential dynamics during component-
based training (Figure 5B), the Riemann invariant corresponding to
backward characteristics (qu−c) is perturbed at the downstream
boundary using the following forcing function:

qu−c � qu−c,ref 1 + A sin 2πft( )[ ], (19)
whereA = 0.1, f = 1150Hz to generate similar pressure oscillations
observed in the full system, and qu−c,ref represents the reference
value of the Riemann variable of backward characteristics that
maintains the nominal pressure. The training snapshots
containing two acoustic cycles of information (i.e., Tp = 2/f)
are used to generate the POD trial basis as described in Section
3.1, the characteristics of which are investigated to understand
how well the POD trial basis represents the training dataset. The
representation is evaluated using the POD residual energy:

PODResidual Energy np( ), % � 1 − ∑np
i�1~σ

2
i∑np,total

i�1 ~σ2i
( ) × 100, (20)

where ~σ i is the ith singular value of the SVD used to compute the
trial basis Vp. Again, np is the number of vectors retained in the
POD trial basis, and np,total (= 1740) is the total number of
snapshots in the dataset. The residual energy as a function of np,
as shown in Figure 5C for both system-based and component-
based training methods, reveals the information excluded by the
POD representation for a given number of modes. Overall, the two
ROM training methods show very similar POD residual energy
decay. The results show that, to recover approximately 99% of the
total energy, 70 and 68 modes are needed for system-based and
component-based methods, respectively, while approximately
150 modes are required to reach 99.9% for both methods. This
slow energy decay is indicative of the significant complexity of the
system dynamics. Many fundamental projection-based ROM
methodologies are tested on relatively simple problems requiring
only ~ 10 trial basis modes to achieve 99.9% POD energy [68–70].
ROMs for more practical engineering systems, however, generally
require ~ 100 trial basis modes [43,71,72].

6.1.2 Performance
Next, we couple the trained injector-element ROMs from Section
6.1.1 with the downstream combustor and nozzle (ΩB in
Figure 4) via the interfacing method described in Section 5.2
to model the full configuration of Lc = 0.42 m. Two acoustic cycles
(1.74 ms) of snapshots (1,740 in total) are used to train the ROMs,

which are constructed with the number of POD modes capturing
99% of the total energy. To consistently evaluate the modeling
capabilities of the resulting framework based on the FOM-FOM
results (i.e., the true solutions) in Figure 4, we adopt a FOM,
instead of RF-FOM, for the downstream component (ΩB). The
coupled ROM-FOM framework is then used to predict 20 ms of
dynamics and compared against the FOM-FOM results.

First, we evaluate the performance based on the local pressure
signals measured at x = 0 in Figure 4, which has been often used
as an important quantity of interest (QoI) to assess the accuracy
of modeling tools in predicting combustion instability [58]. The
predicted pressure signals, both time traces (left and middle) and
PSDs (right), are compared in Figure 6A with different models
used for the used for the upstream injector element (ΩA) for the
single-injector combustor. Furthermore, the peak-to-peak
pressure oscillation amplitude (pptp′ based on the root-mean-
square (RMS) in Eq. 21) and the dominant acoustic frequency (fa)
are calculated based on the pressure time trace and PSD,
respectively and compared against the FOM-FOM results for
quantitative assessment, as summarized in Table 1. Overall, the
ROM-FOM framework (either with system-based or component-
based ROM) is able to predict the pressure amplitude and
frequency with reasonable accuracy (< 10%). As shown in
Figure 4, within the training period, the system-based ROM-
FOM replicates the FOM-FOM results closely, as expected. On
the other hand, the component-based ROM-FOM also represents
the pressure oscillations reasonably well even though the essential
downstream component is excluded in ROM training. Moreover,
the comparisons in Figure 6A confirm that the component-based
ROM training strategy is feasible by emulating feedback
responses from the downstream component with boundary
forcing to train ROM, as illustrated in Figure 5. More
importantly, both approaches enable long-time predictions
(e.g., 1.74 ms training vs. 20 ms prediction), which is not
commonly reported in the literature for ROM applications
relevant to compressible fluid flow problems.

Second, we assess the predictive capabilities of the ROM-FOM
framework based on two other QoIs, time-averaged and root-
mean-square (RMS) fields of the state variables, which serve as
crucial determining factors in many engineering applications

Φaverage � 1
nt

∑nt
n�1

Φn, ΦRMS �
������������������
1
nt

∑nt
n�1

Φn −Φaverage( )2√
, (21)

where nt is the total number of snapshots included to calculate the
QoI, andΦn represents the state variable of interest, e.g., pressure
(P), temperature (T), and axial (or streamwise) velocity (U), at
time step n. In addition, the errors of the ROM-FOM framework
in predicting Φaverage and ΦRMS are further quantified as follows

ϵΦ � Φ −Φref‖ ‖2
Φref‖ ‖2 , (22)

where Φ represents the QoIs (i.e., either the time-averaged or
RMS field) for the error measurement, and Φref represents the
QoIs calculated from the FOM-FOM framework. The errors,
calculated based on Eq. 22, are summarized in Table 2. Though
the ROM-FOM framework is able to provide reasonably accurate
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predictions of the time-averaged fields (< 3% errors for P, and
< 8% for T and U) with both system-based, and component-
based ROM used for ΩA, significant errors (> 9% for P, > 20%
forU, and > 40% for T) are observed in predicting the RMS fields,
which are directly related to the unsteady dynamics. Specifically,
while the predictions of pressure RMS fields are acceptably
accurate, the ROM-FOM framework exhibits difficulties in
representing the RMS fields of state variables featuring strong
advection (i.e., T and U), which can be largely attributed to the
chaotic nature of the dynamics as seen in Figures 4B,C. The
pressure field exhibits organized dynamics due to strong self-
excited oscillations in the full system, which allows the ROM-
FOM to provide reasonable predictions as the trial basis
generated during the training stage is able to efficiently
represent such organized dynamics. However, in turbulent
reacting flows (characterized by transport of strong
temperature gradients), chaotic and non-stationary features
present a major challenge. The basis is unable to represent the
unsteady features of T and U in the upstream component ΩA,
therefore producing significant errors when coupled with the
FOM for the downstream component ΩB in the resulting
framework. This is not a flaw in the ROM formulation or the
domain-decomposition framework, but rather a limitation of
using a linear and static basis set to construct the ROM for
the upstream component in the framework, which has also been
discussed by the current authors in [14].

Such challenges and the limitation of using a linear and static
basis set are further revealed by comparing the time-averaged and
RMS fields between the FOM-FOM and ROM-FOM framework
in Figures 6B–D, which shows significanly under-predicted
magnitudes of the RMS fields by the ROM-FOM framework.
More importantly, distinguishable mismatches between solutions
in ΩA and ΩB are observed at the component interface zΩAB in
ROM-FOM results, featuring abrupt changes in numerical values
in the regions adjacent to the interface (e.g., Paverage, Uaverage,
URMS of system-based ROM-FOM and PRMS of component-based
ROM-FOM), which is absent in FOM-FOM results. The
mismatches can be mainly attributed to the inconsistent

orders of modeling accuracy between ROM in ΩA, restricted
by the POD basis, and FOM in ΩB, restricted by the mesh
resolution. The use of a static linear basis for ROM in ΩA

limits its predictive capabilities. It is pointed out that the
interface mismatches are not unique to ROM/FOM coupling,
but more general issues for finite-element [73] and finite-volume
[74] methods, especially with non-matching grids
(i.e., inconsistent orders of modeling accuracy)—for example,
the coupling of low- and high-order CFD solvers (FOMs) may
require—for example—an overset-mesh approach [21,75].
Though such methods can be effective in coupling of low- and
high-order FOMs, it is not clear whether such methods can be
applied directly to ROM and FOM coupling since ROM evolves
on a reduced dimensional trajectory determined by the basis,
while the FOM (either with low- or high-order numerical
methods) solves the dynamical system on the full state space
trajectory.

6.1.3 Performance Enhancement via Adaptive-Basis
Reduced-Order Models
To address the above challenges, we seek to improve the ROM
modeling accuracy via the one-step adaptive-basis approach
introduced in Section 4. During the offline stage, 10 snapshots
from the component-based ROM training demonstrated in
Figure 5B are used to generate the initial POD basis V0

p
5 POD modes, containing > 99.9% of the total energy, are
chosen to develop the ROM for the upstream injector element
(ΩA). Then the POD basis is adapted at each time step based on
the algorithm in Eq. 13, which is then used to construct an
updated ROM. It is noted that even though significant reduction
in the offline training cost is enabled by the adaptive-basis
approach, the additional costs required to evaluate the full-
state information in Eq. 15, can lead to an increase of the
online-stage computational cost. On-line cost savings can be
accomplished using hyper-reduction [52,53,76,77], which is
not considered for the current work and will be included for
future investigations. In the current work, we denote the ROM
enhanced with basis adaptation as adaptive-basis ROM while in

TABLE 1 | Comparisons of the dominant acoustic frequency (fa) and the peak-to-peak pressure amplitudes (pptp′ ) with different models (component-based ROM vs.
system-based ROM vs. FOM) used for the upstream injector element for the single-injector combustor, corresponding to the results in Figure 6A.

Model for ΩA fa, Hz Error in fa, % pptp9, kPa Error in pptp9, %

FOM 1,150 — 125.08 —

System-based ROM 1,050 8.70 116.25 7.06
Component-based ROM 1,100 4.35 112.93 9.71

TABLE 2 | Comparisons of the errors in predicting time-averaged and RMS fields of pressure (P), temperature(T), and axial velocity (U) corresponding to Figures 6B-Dwith
different models (component-based ROM vs. system-based ROM) used for the upstream injector element for the single-injector combustor.

QoI Model for ΩA P T U

Time-averaged Fields System-based ROM 1.28 × 10−2 5.93 × 10−2 6.06 × 10−2

Component-based ROM 2.63 × 10−2 5.58 × 10−2 7.72 × 10−2

RMS Fields System-based ROM 1.6 × 10−1 4.03 × 10−1 2.32 × 10−1

Component-based ROM 9.80 × 10−2 4.63 × 10−1 2.50 × 10−1
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FIGURE 7 |Comparisons of (A–C) pressure signals measured at x = 0 in Figure 4, time-averaged (left) and root-mean-square (right) (D) pressure, (E) temperature,
and (F) axial velocity fields for Lc = 0.42 m, and time-averaged (left) and root-mean-square (right) temperature fields for Lc = (G) 0.35 and (H) 0.28 m with component-
based adaptive-basis ROM and FOM used for the upstream injector element (ΩA) for the single-injector combustor.
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contrast, we denote the ROM of Section 6.1.1 as the static-basis
ROM. The adaptive-basis ROM is coupled with different
downstream components (ΩB) to model the full configuration
with three different combustion lengths (Lc = 0.42, 0.35, and
0.28 m as shown in Figure 4), denoted as adaptive-basis
framework.

Following similar evaluation procedures as in Section 6.1.2,
local pressure signals measured at x = 0 are first compared with
the FOM-FOM results in Figures 7A–C for different combustor
lengths. The peak-to-peak pressure oscillation amplitude (pptp′ )
and the dominant acoustic frequency (fa and fb) are calculated
based on the pressure time trace and PSD, respectively and
compared against the FOM-FOM results for quantitative
assessment, as summarized in Table 3. It can be readily seen
that, compared to the static-basis results in Figure 6, the
predictions of the pressure signals for Lc = 0.42 m are
improved with adaptive-basis, especially in predicting pptp′
(< 2% with adaptive-basis ROM versus > 7% with static-basis
ROM). In addition, incorporating basis adaptation in the ROM
enables more accurate predictions of the high-frequency pressure
responses comparing the pressure PSD in Figure 7A (right) to
Figure 6A (right). More importantly, the framework can also be
extended to model other full-system configurations by coupling
the upstream adaptive-basis ROM with different downstream
components as illustrated in Figure 4. As exhibited in Figures
7B,C, the adaptive-basis framework is able to predict the pressure
characteristics changes due to variations in full-system geometric
configurations reasonably well, which shows < 7% errors in f <
12% errors in pptp′ , as summarized in Table 3. Though the
characteristics of the pressure field appear to be similar
between the single-injector combustors with Lc = 0.42 and

0.35 m, the pressure signals with Lc = 0.28 m exhibit
significantly different behaviors, featuring approximately 50%
reduction in pptp′ and an additional low-frequency acoustic
mode (fb in Figure 7C) appearing in the PSD analysis, in
addition to the dominant acoustic mode (fa). Such
distinguishable changes in QoIs (e.g., pressure characteristics)
are well-captured using the adaptive-basis framework, which can
provide important guidelines for engineering system design (e.g.
to design a rocket combustor with reduced pressure oscillations).

Next, we extend the evaluations of adaptive-basis framework
to the predictions of time-averaged and RMS fields defined in
Eq. 21, the errors of which are calculated using Eq. 22 and
summarized in Table 4. Significant improvement (e.g.,
approximately O(10) error reduction) in predicting the time-
averaged and RMS fields of P, U, and T can be readily seen
comparing Table 4 (rows corresponding to Lc = 0.42 m) and
Table 2. The time-averaged and RMS fields predicted using
adaptive-basis framework are investigated further in Figures
7D–F, which shows excellent agreement with the FOM-FOM
results with the magnitudes of the RMS fields predicted correctly
and no distinguishable interface mismatches observed in
Figures 6B–D.

Moreover, the adaptive-basis framework is demonstrated to be
capable of predicting the time-averaged and RMS fields for
different combustor lengths reasonably accurately as reflected
in Table 4. Specifically, the time-averaged and RMS fields of
temperature (T) are selected to further demonstrate the modeling
capabilities of the adaptive-basis framework as shown in Figures
7G,H because the temperature dynamics is characterized by
chaotic non-stationary and advection-dominated features as
shown in Figure 4, which prove to be most challenging to
represent with static-basis framework as shown in Figure 6.
Overall, the adaptive-basis framework is able to represent the
changes in the time-averaged and RMS temperature fields with
variations in the combustor lengths.

6.2 Multi-Injector Model Rocket Combustor
Next, we proceed to demonstrate the component-based domain-
decomposition framework on the multi-injector model rocket
combustor configuration shown in Figure 8A, based on a
laboratory rocket model engine [60], originally designed to
study combustion instability of transverse acoustics. In
Figure 8A, we take the five-injector configuration as an
example for illustration and also consider the configurations

TABLE 3 | Comparisons of the dominant acoustic frequency (f) and the peak-to-peak pressure amplitudes (pptp′ )with different models (Adaptive-basis ROM vs. FOM) used
for the upstream injector element for the single-injector combustor with different combustor lengths (Lc), corresponding to the results in Figures 7A-C.

Lc, m Model for
ΩA

f, Hz Error in
f, %

pptp9, kPa Error in
pptp9, %

0.42 FOM fa: 1,150 — 125.08 —

Adaptive-basis ROM fa: 1,200 4.35 123 1.67

0.35 FOM fa: 1,350 — 128.28 —

Adaptive-basis ROM fa: 1,300 3.70 114.95 10.39

0.35 FOM fb: 500, fa: 1,500 — 67.87 —

Adaptive-basis ROM fb: 450, fa: 1,400 fb: 4.35, fa: 6.70 59.49 12.34

TABLE 4 | Comparisons of the errors in predicting time-averaged and RMS fields
of pressure (P), temperature(T), and axial velocity (U) using the framework
corresponding to Figures 7D-H with adaptive-basis ROMs for the single-injector
combustor with different combustor lengths (Lc).

QoI Lc, m P T U

Time-averaged Fields 0.42 4.23 × 10−3 1.95 × 10−2 2.10 × 10−2

0.35 6.70 × 10−3 1.94 × 10−2 2.17 × 10−2

0.28 2.20 × 10−3 2.50 × 10−2 1.68 × 10−2

RMS Fields 0.42 7.87 × 10−2 9.70 × 10−2 6.44 × 10−2

0.35 6.50 × 10−2 1.084.38 × 10−2 8.49 × 10−2

0.28 1.08 × 10−1 1.07 × 10−1 8.30 × 10−2
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with three and seven injectors to demonstrate the capabilities of
the framework in the following sections. As seen in Figure 8A,
this configuration consists of five shear coaxial injectors, each of
which is similar to the single-injector geometry in Figure 4, and is
featured with an outer passage, T1, that introduces fuel near the
downstream end of the coaxial inner passage, T2, that feeds
oxidizer to the combustion chamber. The operating conditions
in all the multi-injector combustor configurations are maintained
with an adiabatic flame temperature of approximately 2,700 K
and amean chamber pressure of 1.3 MPa. The T1 stream contains
gaseous methane (100% CH4) at 300 K. The T2 stream is 42%
gaseous O2 by mass and 58% gaseous H2O by mass at 660 K. Both
the T1 and T2 streams are fed with constant mass flow rates,
0.67 kg/s and 19.75 kg/s, respectively. A non-reflective boundary
condition is imposed at the downstream end of the computational
domain with the goal of suppressing longitudinal acoustics in the
streamwise direction, which promotes the generation of
transverse acoustic waves in the spanwise direction. Similar to
the single-injector configuration in Section 6.1, combustion is
represented by the flamelet progress variable (FPV) model with
GRI-1.2 chemical kinetics.

As shown in Figure 8A, the five-injector model rocket
combustor can be represented by two reference components,
the interior injector element (e.g., Ω3) and the wall injector
element (e.g., Ω5). Therefore, the multi-injector configuration
can be modeled using two ROMs trained based on the reference
components, denoted as an all-ROM framework, as illustrated in
Section 5. With the ROM/FOM coupled framework
demonstrated using the single-injector configuration, we use
the multi-injector configuration to evaluate and demonstrate
the ROM/ROM coupled framework.

When the FOM is adopted to model all five components,
denoted as all-FOM framework, the resulting representative
snapshots of the flow fields are shown in Figure 8B, which
exhibits two major features that have not been observed in the
single-injector case in Section 6.1: 1) stronger interactions
between components, featured with large-scale vortex shedding

approaching the downstream end of the domain; and 2) more
complex dynamics at the component interfaces (i.e., zΩ12, zΩ23,
zΩ34, and zΩ45), featured with both positive and negative
spanwise velocity.

6.2.1 Injector-Element Reduced-Order Models
Training and Framework Integration
In this section, we discuss the ROM training strategies based on the
two different components (the interior and wall injector elements)
identified above and how to integrate the two trained ROMs into
the framework to model the multi-injector model rocket
combustor. We focus on the component-based methods for
ROM training as illustrated in Figures 9A,B corresponding to
the interior and wall injector element respectively. To incorporate
the strong interactions between injector elements observed in
Figure 8B, two adjacent injector elements are included for
interior injector-element ROM training (Figure 9A) while one
additional adjacent injector element is added for wall injector-
element ROM training (Figure 9B), which cannot be easily
accounted by imposing boundary conditions directly as
conceptualized in Figure 2 considering the complexity of the
dynamics at the component interfaces. In addition, similar to
the single-injector configuration, auxiliary domains with
exponentially stretched mesh elements in the spanwise direction
are added next to the additional injector elements in ROM training
(two for interior injector-element and one for wall injector-
element). This incorporates the complex dynamics at the
component interfaces, especially for the abrupt changes in
the directions of the flow characteristics (e.g., existence of both
positive and negative spanwise velocity) observed in
Figure 8B. Non-reflective boundary conditions are
imposed at the downstream end for both the interior and
wall injector element ROM training to be consistent with the
target multi-injector configuration (Figure 8A). Forcing is
imposed via non-reflective boundary conditions at the side
boundaries with backward characteristics qu−c perturbed
using the same function in Eq. 19 to generate the essential

FIGURE 8 | (A) Computational configuration and (B) representative temperature and spanwise-velocity field of 2D-planar multi-injector model rocket combustor.

Frontiers in Physics | www.frontiersin.org August 2022 | Volume 10 | Article 90006415

Huang et al. Component-based ROM of Large-Scale Systems

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


dynamics anticipated in the full system. Here, we choose to
impose the forcing with A = 0 to mimic a broad-and response,
which presumably contains rich responses in the frequency
domain. The solution snapshots are extracted corresponding
to the regions bounded by dashed lines in Figures 8A,B,
which are then used to construct the interior injector-element
ROM and the wall injector-element ROM, respectively. The
resulting ROMs are coupled through the direct flux matching
method at the component interfaces adopted to model all the
interior injector elements (Ω2, Ω3, and Ω4 in Figure 8A) and
�ΩII for all the wall injector elements (Ω1 and Ω5 in
Figure 8A), resulting in the all-ROM framework as shown
in Figure 9C.

Since the two wall injector elements are geometrically identical
(i.e., reflective symmetry) to each other, �ΩII is mirrored about the
center axis to generate a reflective counterpart when adopted to
model Ω1, reflected as �̂ΩII. Comparisons of the training domains
in Figures 9A,B with the full five-element configuration in
Figure 9C, suggest that the training costs in Figures 9A,B are
similar to that of the full five-element configuration. The
advantage of this approach is that the training costs is fixed
for any number of elements (e.g., three, seven, nine or more) and

for larger systems, substantial cost savings can be realized. The
current work serves as a first step toward modeling practical
rocket engines which typically consist of hundreds of injector
elements.

6.2.2 Performance
Based on the investigations using the single-injector
configuration in Section 6.1, we apply the adaptive-basis
method, introduced in Section 4, to develop the two
component-based ROMs, �ΩI and �ΩII. Similar to the single-
injector case, 10 snapshots are collected from the offline ROM
training stage for each component in Figures 9A,B to generate
the initial two sets of trial basis V0

p. 5 POD modes covering
> 99.9% of the total energy are selected to construct adaptive-
basis ROMs via MP-LSVT formulation, respectively. The trial
basis Vk

p is adapted at each time step k based on the formulation
in Eq. 13 and following the schematics in Figure 9C, the
adaptive-basis ROMs are then coupled to model 3 multi-
injector configurations with three, five, and seven injector
elements.

Next, we proceed to evaluate the performance of the all-
adaptive-basis-ROM framework based on the results from the

FIGURE 9 | Component-based ROM training strategies for (A) the interior injector element and (B) the wall injector element and (C) the integration of the injector-
element ROMs for the 2D-planar multi-injector model rocket combustor.
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FIGURE 10 | Comparisons of pressure PSDs (A–C)measured at (x, y) = (0, 0) in Figure 8with different models (all-adaptive-basis-ROM (Red) framework vs. FOM
(Black), (D) time-averaged, (E) RMS, and (F) unsteady temperature fields with different models (all-adaptive-basis-ROM framework vs. FOM) used in the framework for
the three-injector (top), five-injector (middle), and seven-injector (bottom) configurations for the 2D-planar multi-injector model rocket combustor.
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FOM, which is taken as the ground truth solution. Figures
10A–C compares the local PSD predicted using the FOM and
with the all-adaptive-basis-ROM framework, which are measured
at the corner of the left wall, i.e., (x, y) = (0, 0) in Figure 8A for all
3 multi-injector configurations. Different from the single-injector
cases in Section 6.1, the true pressure signals from the all-FOM
results in the multi-injector configurations do not exhibit
distinguishable coherent oscillating patterns as in Figure 4.
This aspect can be expected to be more challenging to be
predicted by the ROM.

The predictions using the all-adaptive-basis-ROM framework
show good agreement with the all-FOM framework results,
especially in capturing the changes in PSD distributions due
to the configuration variations with the number of injector
elements increased from three to seven. For example, the wide-
band frequency peak between 2,500 and 3,000 Hz in the three-
injector combustor and the peak near 2,500 Hz for the seven-
injector configuration are both well predicted by the all-
adaptive-basis-ROM framework. More importantly, the
broad-band PSD distributions (i.e., no identifiable frequency
peaks) in the five-injector configuration are also accurately
captured.

Having successfully demonstrated the ability of the adaptive
ROM to capture changes in pressure oscillations arising from
configuration variations, we next look at their ability to
predict time-averaged and RMS fields of target state variables
(P, U, and T) is assessed. The accuracy of the framework is
evaluated based on the errors defined in Eq. 22, summarized in
Table 5. It can be readily seen that the all-adaptive-basis-ROM
framework is able to accurately predict the time-averaged fields
of selected state variables with errors below 4% while even for
the generally more challenging RMS fields, the prediction errors
are shown to be below 18%, given the complexity and chaotic
features of the dynamics present in the multi-injector problems,
indicated by the broad-band frequency distributions in Figures
10A–C. Specifically, the time-averaged, RMS, and
representative unsteady fields of temperature (T) are selected
to demonstrate the predictive capabilities of the all-adaptive-
basis-ROM framework as shown in Figures 10D,E for the three
different multi-injector configurations, which exhibits good
agreement between all-adaptive-basis-ROM and all-FOM
framework results. But it still need to be pointed out that the
all-adaptive-basis-ROM framework predicts elongated high-
temperature zones between injector elements compared to
the all-FOM framework results, indicating that the current
methodology may require further improvement.

7 CONCLUSION

A component-based domain-decomposition framework is
established for the modeling of large-scale systems that cannot
be directly accessed using the high-fidelity simulations (e.g., a
rocket engine, a wind farm, and a compressor). This approach
decomposes the full system into different components, each of
which can flexibly adopt different modeling strategies (e.g., ROM
or FOM), balancing physical complexity with accuracy
requirements. Under the premise that most of the components
share identical features and can be represented by a few reference
components, a component-based reduced-order model (ROM)
training strategy is proposed and demonstrated, which requires
only the high-fidelity simulations of the individual components.
System-level feedback and responses in the training dataset is
emulated by imposing boundary forcing. This leads to a
significant saving in computational cost during ROM training.
The model-form preserving least-squares with variable
transformation (MP-LSVT) ROM formulation is pursued with
enhancement through basis adaptation to construct the
component-based ROMs. The trained ROMs can be adopted
to model components with identical geometric features and
coupled with either a reduced-fidelity full-order model (RF-
FOM) or ROMs via a direct flux matching method to enable
both accurate and efficient simulations of large-scale systems with
different geometric configurations.

Detailed evaluations of the framework were first performed
based on a planar single-injector model rocket configuration with
varying combustor lengths, each of which exhibit different
dynamic behaviors. The framework separates the single-
injector configuration into two components, the upstream
injector element and the downstream combustor + nozzle, the
former of which adopts MP-LSVT ROM for modeling, while the
latter adopts a FOM. Two methods, (system-based and
component-based) are used to train the injector-element
ROM. It was demonstrated that the upstream-component
ROMs from both training methods, when coupled with the
downstream-component FOM, can produce reasonably
accurate predictions of the pressure oscillations while the
component-based method requires much less computational
cost. However, the ROM/FOM framework encounters
difficulties in representing the time-averaged and root-mean-
square (RMS) fields of the target state variables while
distinguishable solution mismatches are observed at the
component interface. To address this limitation, basis
adaptation is incorporated in the MP-LSVT formulation to

TABLE 5 | Comparisons of the errors in predicting time-averaged and RMS fields of pressure (P), temperature(T), and axial velocity (U) corresponding to Figures 10D-E
using the all-adaptive-basis-ROM framework for the multi-injector combustor.

QoI Number of Injectors P T U

Time-averaged Fields 3 4.02 × 10−3 3.57 × 10−2 3.50 × 10−2

5 4.07 × 10−3 3.66 × 10−2 3.69 × 10−2

7 5.37 × 10−3 3.25 × 10−2 3.89 × 10−2

RMS Fields 3 1.42 × 10−1 5.36 × 10−2 8.16 × 10−2

5 1.81 × 10−1 6.13 × 10−2 9.48 × 10−2

7 1.45 × 10−1 5.63 × 10−2 9.32 × 10−2
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enhance ROM capabilities, which significantly improves the
predictive accuracy of the framework and more importantly, is
capable of representing changes in dynamic behaviors due to the
variations in combustor length.

The framework was then extended to a 2D-planar multi-
injector model rocket configuration with different number of
injector elements, which can be represented by two reference
injector-element components. High-fidelity training simulations
are then conducted on the two reference components to develop
the component-based ROMs via MP-LSVT formulation with
basis adaptation. The framework is demonstrated to be
capable of predicting all the quantities-of-interest (QoIs)
accurately, including local pressure oscillations, time-averaged
and RMS fields of target state variables for the multi-injector
configuration with different number of injector elements.

Though preliminary and demonstrated for only 2D problems,
the component-based domain-decomposition framework with
adaptive-basis ROMs is directly applicable to 3D problems and
mostly importantly serves as a stepping stone towards modeling
practical large-scale engineering systems (e.g., a RD-170 rocket
engine [16]). Before this framework can be adopted by engineers
in many-query applications (such as design and uncertainty
quantification) of the full system, two major aspects need to
be considered: 1) efficiency—hyper-reduction has to be
considered to enable more efficient ROM calculations as
mentioned in Section 4; and 2), scalability—the ROMs must
be amenable for execution on memory-restricted computers such
as desktop workstations or embedded systems—i.e., they need to
be load-balanced and scalable in terms of computational
resources available.

Discussions are provided by the current authors [14] on
constructing scalable, load-balanced, and hyper-reduced static-
basis ROMs while all these aspects remain to be further
investigated for adaptive-basis ROM development. To address
the remaining gaps, good avenue for future work can be on
incorporating adaptive sparse samplingmethods (e.g., [50]) in the
adaptive-basis ROM to achieve computational efficiency

enhancement, while exploring dynamic methods to achieve
scalability when the sampling elements are getting adapted. In
addition, the component-based framework is designed to be
generally compatible with different types of ROM methods
and hence instead of the intrusive ROM used in the current
work, non-intrusive ROM methods [44,78] may also be
considered for the future work.
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