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In this article, issues of both stability and dissipativity for a type of bidirectional associative
memory (BAM) neural systems with time delays are investigated. By using generalized
Halanay inequalities and constructing appropriate Lyapunov functionals, some novelty
criteria are obtained for the asymptotic stability for BAM neural systems with time delays.
Also, without assuming boundedness and differentiability for activation functions, some
new sufficient conditions for proving the dissipativity are established by making use of
matrix theory and inner product properties. The received conclusions extend and improve
some previously known works on these problems for general BAM neural systems. In the
end, numerical simulation examples are made to show the availability of the theoretical
conclusions.
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1 INTRODUCTION

The BAM neural network model, proposed by Kosko in [1], consists of neurons in two layers, the x-
layer and the y-layer. The neurons of the same layer are sufficiently interconnected to the neurons
arranged in the other layer, but neurons do not interconnect among the same layer. A useful feature
of BAM is its ability to invoke stored pattern pairs in the case of noise. For detailed memory structure
and examples of the BAM neural network, please refer to [2]. In recent years, BAM neural systems
have received significant attention due to their wide applications in a lot of fields such as pattern
recognition, image processing, signal processing, associative memories, optimization problems, and
other engineering areas [3–6].

In general, due to the limited switching speed and signal propagation speed of neuron amplifiers,
the implementation of a neural network will inevitably have a time delay. We also know that using a
delayed version of the neural network is very important to solve some motion-related optimization
problems. However, research shows that time delay may lead to divergence, oscillation, and
instability, which may be bad for BAM neural systems [7, 8]. Therefore, these applications of
the BAMneural systems with delays greatly rely on the dynamical behavior of the neural systems. For
these reasons, it is necessary to study the dynamical behavior of the neural systems with delays, and it
has been widely studied by a great number of researchers [9, 10].

In the design and analysis of neural networks, stability analysis is a very important and essential
link. As small as a specific control system or as large as a social system, financial system, and
ecosystem, it is always carried out under various accidental or continuous disturbances. After bearing
this kind of interference, it is very important whether the system can keep running or working
without losing control or swinging. For neural networks, because the output of the network is a
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function of time, for a given input, the response of the network
may converge to a stable output, oscillate, increase infinitely, or
follow a chaotic mode. Therefore, if a neural network system
wants to play a role in engineering, it must be stable.

The notion of global dissipativity proposed in the 1970s is a
common notion in dynamical systems, and it is applied in the
fields of chaos and synchronization theory, stability theory, and
robust control and system norm estimation [11–14]. Hence, it is a
special and interesting problem to study the dissipativity of
dynamical networks. Up to now, the dissipativity for several
classes of simple neural networks with delays has begun to
attract initial interest in investigation, and some sufficient
conditions have been received [15–17]. Yet, to our knowledge,
only a few articles have not been used for Lyapunov–Krasovskii
functionals or Lyapunov functionals [18–22]. In this study, a few
dissipativity conclusions have been received for BAM neural
networks with varying delays via inner product properties and
matrix theory, which are different from the neural systems’model
investigated in [23, 24].

Inspired by the previous discussion, the global asymptotic
stability and dissipativity of BAM neural systems with time
delays are investigated. Some new criteria to ensure the
dissipation and stability of the BAM neural system are received.
Compared with the previous results, our main results are more
general and less conservative. The innovations of the study are at
least the following aspects.

1) The BAM neural network model studied in this article has a
time-varying delay.

2) In our article, the nonlinear activation functions we assumed
are not differentiable and bound.

3) In this article, the sufficient conditions for the dissipativity of
BAM neural networks with time-varying delay are obtained
by using only the inner product property and matrix theory.

4) Moreover, the global attraction sets, namely, positive invariant
sets, are obtained.

The structure of the article is organized in the following. The
model description and some preliminary knowledge with some
necessary definitions and lemmas are given in Section 2. In
Section 3, by constructing Lyapunov functionals, we discussed
the global asymptotic stability for the equilibrium point of
delayed BAM neural systems. Some sufficient criteria are
obtained and discussed to guarantee the global dissipativity by
using inner product properties in Section 4. Two examples and
their simulation conclusions are provided in Section 5. In the
end, some results are reached in Section 6.

2 PRELIMINARIES

Notations: In this article, let Rn be a Euclidean space with the
inner product <x, y> � yTx and the norm ‖x‖2 � �������<x, x>√

,
where x � (x1, x2, . . . , xn)Tand y � (y1, y2, . . . , yn)T ∈ Rn. The
matrix norm is ‖A‖2 �

���������
λmax(ATA)√

for A ∈ Rn×n, where
λmax(A

TA) denotes the maximum eigenvalue of ATA. λmin(A)

denotes the minimum eigenvalue of A. A > 0 denotes that matrix
A is symmetric positive definite. E is a unit matrix.

In this article, the model of delayed BAM neural networks is
investigated.

_x t( ) � −Ax t( ) + Cf y t( )( ) + ~Cf y t − τ( )( ) + I,
_y t( ) � −By t( ) +Dg x t( )( ) + ~Dg x t − σ( )( ) + J,

{ (1)

for t > 0, x(t) � (x1(t), x2(t), . . . , xn(t))T represents neuron in
the first layer at time t, and y(t) � (y1(t), y2(t), . . . , yn(t))T
represents neuron in the second layer at time t; A = diag (a1, a2,
. . ., an) and B = diag (b1, b2, . . ., bn), in which ai > 0 and
bj > 0(i, j ∈ I � {1, 2, . . . , n}) denote passive decay rates,
respectively; C � (cij)n×n, D � (dij)n×n, ~C � (~cij)n×n, and ~D �
(~dji)n×n are synaptic connection strengths; f(y(t)) �
(f1(y1(t)), f2(y2(t)), . . . , fn(yn(t)))T and g(x(t)) �
(g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))T denote nonlinear
activation functions; I � (I1, I2, . . . , In)T, J � (J1, J2, . . . , Jn)T
represents the external inputs to the neurons; τ �
(τ1, τ2, . . . , τn)T, σ � (σ1, σ2, . . . , σn)T which are required for
axonal transmission and neural processing of signals are time
delays.

In this study, we considered the following continuous
activation functions:

(H1): ∀x, y ∈ R, x ≠ y, i, j ∈ I , activation functions fj(·) and
gi(·) satisfy fj(0) = gi(0) = 0, and there exist constants lj,mi > 0 such
that

0≤
fj x( ) − fj y( )

x − y
≤ lj, 0≤

gi x( ) − gi y( )
x − y

≤mi.

Remark 1: The hypothesis of activation function H1 in this study
has been widely used in some references. In particular, when
discussing the stability, synchronization, and dissipation of neural
networks, H1 is a common assumption. In the study, the activation
function is Lipschitz continuous, so it is monotonously increasing.
But it may not be differentiable or bounded. However, in [8, 13], the
activation function should not only satisfy the hypothesis H1 of this
study but also satisfy the boundedness. In [15], the derivative of the
activation function also satisfies boundedness. In this study, the
activation function only needs to satisfy the hypothesis H1.
Compared with [8, 13, 15], the assumption of excitation function
in this study is more general.

The initial condition of the system (1) is considered as

x s( ) � φ s( ), s ∈ −α + t0, t0[ ],
y s( ) � ψ s( ), s ∈ −α + t0, t0[ ],{

where �τ � max
j∈I

{τj}, �σ � max
i∈I

{σ i}, α � max {�τ, �σ}, and φ(s), ψ(s)
∈ C[(− α + t0, t0), R

n].

Definition 1: [25]. The neural system (1) is globally dissipative if
there exists a compact set S ⊆ R2n, such that ∀z0 ∈ S, ∃ T(z0) > 0,
when t ≥ t0 + T(z0), z(t, t0, z0) ⊆ S, in which z(t, t0, z0) represents
the solution for (1) from initial time t0 and initial state z0. A set S
is said to be forward invariant if ∀z0 ∈ S indicates z(t, t0, z0) ⊆ S
for t ≥ t0.
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Definition 2: [26]. The point (x*T, y*T)T with x* �
(x1*, x2*, . . . , xn*)Tand y* � (y1* , y2*, . . . , yn*)T is the
equilibrium of system (1) if

−Ax* + Cf y*( ) + ~Cf y*( ) + I � 0,
−By* +Dg x*( ) + ~Dg x*( ) + J � 0.

{
Lemma 1: [27]. For every positive k > 0 and every a, b ∈ Rn,

2aTb≤ kaTXa + k−1bTX−1b

holds, in which X > 0.

Lemma 2: (Generalized Halanay inequalities) [28]. If V(t) ≥ 0, t ∈
(−∞, + ∞) and

D+V t( )≤ γ t( ) + ξ t( )V t( ) + η t( ) sup
t−τ t( )≤s≤t

V s( ), t≥ t0,

for t ∈ [t0, + ∞), in which γ(t) ≥ 0, η(t) ≥ 0, and ξ(t) ≤ 0 are
continuous functions and τ(t) ≥ 0, and there exists α > 0 such that

ξ t( ) + η t( )≤ − α, for t≥ t0.

Then,

V t( )≤ γ*
α
+ sup

−∞≤s≤t0
V s( ) − γ*

α
( ) · e−μ* t−t0( ),

where
γ* � sup

t0 ≤ t≤∞
γ(t), μ* � inf

t≥t0
{μ(t): μ(t) + ξ(t) + η(t)eμ(t)τ(t) � 0},

and the upper-right Dini derivative D+y(t) � lim
h→0+

y(t+h)−y(t)
h .

3 GLOBAL ASYMPTOTIC STABILITY FOR
BAM NEURAL NETWORKS

First of all, under condition (H1), neural system (1) always at least
has an equilibrium point. In the following, the asymptotic stability of
the equilibrium point will be proved. For simplicity, we transformed
the equilibrium point of system (1) to the origin. We assumed that
z* � (x1* , x2*, . . . , xn* , y1*, y2*, . . . , yn*)T is an equilibrium of neural
system (1). By the transformation
ui(·) � xi(·) − xp

i , wj(·) � yj(·) − yj*, one can transform system
(1) into the system as follows:

_u t( ) � −Au t( ) + C~f w t( )( ) + ~C~f w t − τ( )( ),
_w t( ) � −Bw t( ) +D~g u t( )( ) + ~D~g u t − σ( )( ),{ (2)

where ~f(w(t)) � (~f 1(w1(t)), ~f2(w2 (t)), . . . , ~fn(wn(t))
)T, ~g(u(t)) � (~g1(u1(t)), ~g2(u2(t)), . . . , ~gn(un(t)))T, in which
~fj(wj(t)) � f j(wj(t) + yj*) − fj(
yj*), and ~gi(ui(t)) � gi(ui(t) + xp

i ) − gi(xp
i ). Functions fj(·),

gi(·) satisfy the condition (H1); hence, ~fj(·), ~gi(·) satisfy

~f
2

j wj ·( )( )≤ ljwj ·( )~fj wj ·( )( ),
~f
2

j wj ·( )( )≤ l2jw2
j ·( ), ~fj 0( ) � 0,

⎧⎪⎨⎪⎩ (3)

~g2
i ui ·( )( )≤miui ·( )~gi ui ·( )( ),
~g2
i ui ·( )( )≤m2

i u
2
i ·( ), ~gi 0( ) � 0.

{ (4)

Remark 2: It is easy to verify that systems (1) and (2) have the
same stability. Therefore, to prove the stability of the equilibrium
point z* of the system (1), it is sufficient to prove the stability of
the trivial solution of the system (2).

Theorem 1: Under condition (H1), if there exist positive definite
diagonal matrices P = {pi} ∈ Rn×n,N = {ni} ∈ Rn×n and constants ς1,
ς2, β1, β2 > 0 such that

−2PA + ς−11 P~CN−1 ~C
T
P + β−11 PCCTP + β2M

2 + ς2PM
2 < 0,

−2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2 + ς1NL2 < 0,

where M = diag{m1, . . ., mn}, L = diag{l1, . . ., ln}; then the zero
solution of neural system (2) is a unique equilibrium point and is
globally asymptotically stable. Proof. Now, we chose Lyapunov
functional.

V u t( ), w t( )( ) � ∑n
i�1

piu
2
i t( ) + ς1 ∑n

j�1
∫t

t−τj
nj ~f

2

j wj s( )( )ds
+∑n

j�1
njw

2
j t( ) + ς2 ∑n

i�1
∫t

t−σi
pi~g

2
i ui s( )( )ds.

Then,

_V u t( ), w t( )( ) � 2∑n
i�1

piui t( ) _ui t( ) + ς1 ∑n
j�1

nj ~f
2

j wj t( )( ) − ~f
2

j wj t − τj( )( )[ ]
+2∑n

j�1
njwj t( ) _wj t( ) + ς2 ∑n

i�1
pi ~g2

i ui t( )( ) − ~g2
i ui t − σ i( )( )[ ]

� 2uT t( )P _u t( ) + ς1 ~f
T
w t( )( )N~f w t( )( ) − ς1 ~f

T
w t − τ( )( )N

× ~f w t − τ( )( ) + 2wT t( )N _w t( ) + ς2 ~g
T u t( )( )P~g u t( )( )

−ς2 ~gT u t − σ( )( )P~g u t − σ( )( )
� 2uT t( )P −Au t( ) + C~f w t( )( ) + ~C~f w t − τ( )( )( ) + ς1 ~f

T
w t( )( )N

× ~f w t( )( ) − ς1 ~f
T
w t − τ( )( )N~f w t − τ( )( ) + 2wT t( )N −Bw t( )(

+D~g u t( )( ) + ~D~g u t − σ( )( )) + ς2 ~g
T u t( )( )P~g u t( )( )

−ς2 ~gT u t − σ( )( )P~g u t − σ( )( ).
(5)

By Lemma 1, we obtained

−ς1 ~fT
w t − τ( )( )N~f w t − τ( )( )

+ 2uT t( )P~C~f w t − τ( )( )≤ ς−11 uT t( )P~CN−1 ~C
T
Pu t( ), (6)

−ς2~gT u t − σ( )( )P~g u t − σ( )( )
+ 2wT t( )N ~D~g u t − σ( )( )≤ ς−12 wT t( )N ~DP−1 ~D

T
Nw t( ). (7)

From Eqs 6, 7, then

_V u t( ), w t( )( ) ≤ − 2uT t( )PAu t( ) + 2uT t( )PC~f w t( )( ) + ς−11 uT t( )P ~CN−1 ~C
T
Pu t( )

+ς1 ~fT
w t( )( )N~f w t( )( ) − 2wT t( )NBw t( ) + 2wT t( )ND~g u t( )( )

+ς−12 wT t( )N ~DP−1 ~D
T
Nw t( ) + ς2 ~g

T u t( )( )P~g u t( )( )
≤ − 2uT t( )PAu t( ) + β−11 uT t( )PCCTPTu t( ) + β1

~f
T
w t( )( )~f w t( )( )

+ς−11 uT t( )P~CN−1 ~C
T
Pu t( ) + ς1w

T t( )NL2w t( ) − 2wT t( )NBw t( )
+β−12 wT t( )NDDTNTw t( ) + β2 ~g

T u t( )( )~g u t( )( )
+ς−12 wT t( )N ~DP−1 ~D

T
Nw t( ) + ς2u

T t( )PM2u t( )
� uT t( ) −2PA + ς−11 P~CN−1 ~C

T
P + β−11 PCCTP + β2M

2 + ς2PM
2( )u t( )

+wT t( ) −2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2(
+ς1NL2)w t( )

< 0, ∀u t( ) ≠ 0, w t( ) ≠ 0.

(8)
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This implies that the origin solution of system (2) is
asymptotically stable. So the equilibrium point of system (1) is
asymptotically stable.

Corollary 1: Under condition (H1), suppose L =M = E, ς1 = ς2 =
β1 = β2 = 1, if there exist positive definite diagonal matrices P =
{pi} ∈ Rn×n, N = {ni} ∈ Rn×n such that

−2PA + P~CN−1 ~C
T
P + PCCTP + E + P< 0,

−2NB +N ~DP−1 ~D
T
N +NDDTN + E +N< 0,

then, the origin solution of network (2) is a unique equilibrium
point, and it is globally asymptotically stable.

4 GLOBAL DISSIPATIVITY FOR BAM
NEURAL NETWORKS

In this part, the global dissipativity for the BAM neural system (1)
is considered.

Theorem 2: Under assumption (H1), suppose z(t) �
(x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is a solution of system
(1) and

ξ t( ) + η t( )≤ − α< 0,

then for any given ε > 0, there exists T such that for all t ≥ T

‖z t( )‖2 ≤
�����
γ2

α
+ ε

√
.

So, network (1) is dissipative, and the closed ball E �
E(0,

�����
γ2

α + ε
√

) is an absorbing set, where γ� δ3‖I‖22 +ρ3‖J‖22,
ξ(t) �max{−2λmin(A)+δ−11 +δ−12 +ρ1m2‖D‖22 +δ−13 , −2λmin(B)+
ρ−11 +ρ−12 +δ1l2‖C‖22 +ρ−13 }, η(t) �max{δ2l2‖~C‖22, ρ2m2‖ ~D‖22}, δ1,
δ2, δ3, ρ1, ρ2, ρ3>0, l�max

j∈I
{lj},and m�max

i∈I
{mi}. Proof. The

Lyapunov functional should be considered:

V t( ) � ‖x t( )‖22 + ‖y t( )‖22. (9)
Then,

_V t( ) � 2<x t( ), _x t( )> + 2<y t( ), _y t( )>
� 2<x t( ),−Ax t( )> + 2<x t( ), Cf y t( )( )> + 2< x t( ), ~Cf y t − τ( )( )>
+2<x t( ), I> + 2<y t( ),−By t( )> + 2<y t( ), Dg x t( )( )>
+2<y t( ), ~Dg x t − σ( )( )> + 2<y t( ), J>

≤ − 2λmin A( )‖x t( )‖22 + 2fT y t( )( )CTx t( ) + 2fT y t − τ( )( )~CT
x t( ) + 2ITx t( )

−2λmin B( )‖y t( )‖22 + 2gT x t( )( )DTy t( ) + 2gT x t − σ( )( ) ~DT
y t( ) + 2JTy t( ).

(10)

By <x, y> � yTx, (H1), and Lemma 1, there exists σ1, σ2, σ3, ρ1,
ρ2, ρ3 > 0 such that

2fT y t( )( )CTx t( ) ≤ δ1fT y t( )( )CTCf y t( )( ) + δ−11 xT t( )x t( )
≤ δ1λmax CTC( )‖f y t( )( )‖22 + δ−11 ‖x t( )‖22
≤ δ1λmax CTC( )l2‖y t( )‖22 + δ−11 ‖x t( )‖22
≤ δ1l2‖C‖22‖y t( )‖22 + δ−11 ‖x t( )‖22,

(11)

2fT y t − τ( )( )~CT
x t( ) ≤ δ2fT y t − τ( )( )~CT ~Cf y t − τ( )( ) + δ−12 xT t( )x t( )

≤ δ2λmax
~C
T ~C( )‖f y t − τ( )( )‖22 + δ−12 ‖x t( )‖22

≤ δ2λmax
~C
T ~C( )l2‖y t − τ( )‖22 + δ−12 ‖x t( )‖22

≤ δ2l2‖~C‖22‖y t − τ( )‖22 + δ−12 ‖x t( )‖22,
(12)

ITx t( ) ≤ δ3ITI + δ−13 xT t( )x t( )
≤ δ3‖I‖22 + δ−13 ‖x t( )‖22. (13)

Similar to Eqs 11–13, then

2gT x t( )( )DTy t( )≤ ρ1m2‖D‖22‖x t( )‖22 + ρ−11 ‖y t( )‖22, (14)
2gT x t − σ( )( ) ~DT

y t( )≤ ρ2m2‖ ~D‖22‖x t − σ( )‖22 + ρ−12 ‖y t( )‖22,
(15)

JTy t( )≤ ρ3‖J‖22 + ρ−13 ‖y t( )‖22. (16)
By using Eqs 11–16 in Eq. 10, it is easy to obtain

_V t( ) ≤ −2λmin A( ) + δ−11 + δ−12 + ρ1m
2‖D‖22 + δ−13( )‖x t( )‖22

+ −2λmin B( ) + ρ−11 + ρ−12 + δ1l
2‖C‖22 + ρ−13( )‖y t( )‖22

+δ2l2‖~C‖22‖y t − τ( )‖22 + ρ2m
2‖ ~D‖22‖x t − σ( )‖22

+δ3‖I‖22 + ρ3‖J‖22
≤ γ + ξ t( ) ‖x‖22 + ‖y‖22( ) + η t( ) ‖x t − σ( )‖22 + ‖y t − τ( )‖22( )
≤ γ + ξ t( )V t( ) + η t( ) sup

t−max �τ,�σ{ }≤s≤t
V s( ).

(17)
Then, by Lemma 2, we obtain

‖z t( )‖22 ≤ ‖x t( )‖22 + ‖y t( )‖22 � V t( )≤ γ*
α

+ sup
−∞≤s≤0

V s( ) − γ*
α

( )e−μ*t,
where μ* � inf

t≥0
{μ(t): μ(t) + ξ(t) + η(t)eμ(t)max {�τ,�σ} � 0}.

So, for the given sufficient small ε > 0, there exists T ≥ 0 such
that

‖z t( )‖2 ≤
�����
γ*
α
+ ε

√
, ∀t≥T,

where ε > 0 is sufficiently small. □

Corollary 2: If taking δ1, δ2, δ3, ρ1, ρ2, ρ3 = 1, under assumptions
(H1), suppose that z(t) � (x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is
a solution of network (1) and

ξ t( ) + η t( )≤ − α< 0,

then network (1) is dissipative, and the closed ball E �
E(0,

�����
γ2

α + ε
√

) is an absorbing set for any ε > 0, where γ � ‖I‖22 +
‖J‖22, ξ(t) � max{−2λmin(A) +m2‖D‖22+ 3,−2λmin(B) + l2‖C‖22 +
3}, η(t) � max {l2‖~C‖22, m2‖ ~D‖22}.

Corollary 3: Under assumptions (H1), suppose that z(t) �
(x1(t), . . . , xn(t), y1(t), . . . , yn(t))T is a solution of network
(1), if

ξ t( ) + η t( )≤ − α< 0
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FIGURE 1 | Trajectories of system (18) for [x(0), y(0)]T = (−0.4, 0.5, 0.2, −0.5)T.

FIGURE 2 | Time response of the state variable x1(t) with different initial values.

FIGURE 3 | Time response of the state variable x2(t) with different initial values.
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FIGURE 4 | Time response of the state variable y1(t) with different initial values.

FIGURE 5 | Time response of the state variable y2(t) with different initial values.

FIGURE 6 | Time response of the state variable x1(t) and x2(t) with different initial values.
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and

lim
t≥0

δ3‖I‖22 + ρ3‖J‖22{ } � 0,

then system (1) is globally stable, where γ� δ3‖I‖22 +ρ3‖J‖22,
ξ(t) �max{−2λmin(A)+δ−11 +δ−12 +ρ1m2‖D‖22+ δ−13 ,−2λmin(B)+
ρ−11 +ρ−12 +δ1l2‖C‖22 +ρ−13 }, η(t) �max{δ2l2‖~C‖22,ρ2m2 ‖ ~D‖22}, δ1,
δ2, δ3, ρ1, ρ2, ρ3>0 .

Remark 3: In the existing articles, a lot of researchers studied the
qualitative behaviors of neural systems via the Lyapunov function
with linear matrix inequality techniques [26, 29, 30]. However, in
this article, some new sufficient criteria of dissipativity of BAM
neural networks with time delays are given by only using the
property of matrix theory and inner product.

5 NUMERICAL SIMULATIONS

In the part, two examples are presented to show the effectiveness.
Example 1. Investigation of the delayed BAM neural network

model.

_x t( ) � −Ax t( ) + Cf y t( )( ) + ~Cf y t − τ( )( ) + I,
_y t( ) � −By t( ) +Dg x t( )( ) + ~Dg x t − σ( )( ) + J,

{ (18)

in which x(t) � (x1(t), x2(t))T and y(t) � (y1(t), y2(t))T. Let
τ1 = 1, τ1 = 0.9, σ1 = 0.8, σ2 = 0.7, A = B = E, I = J = 0 and

C � 0 0.2
−0.2 0.1

( ), ~C � 0.1 0.2
0 −0.1( ), D � 0.2 1

1 0.4
( ),

~D � 0.2 0.5
0 −0.1( ).

Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2,
j = 1, 2, l1 = l2 = m1 = m2 = L = M = β1 = β2 = ς1 = ς2 = 1.

By computing, we can get

−2PA + ς−11 P~CN−1 ~C
T
P + β−11 PCCTP + β2M

2 + ς2PM
2 < 0,

−2NB + ς−12 N ~DP−1 ~D
T
N + β−12 NDDTN + β1L

2 + ς1NL2 < 0.

So, from Theorem 1, network (18) has a unique equilibrium, and
it is globally asymptotically stable. By MATLAB, a unique
equilibrium of network (18) (0,0,0,0)T is given, and the
simulation results are given in Figure 1.

Example 2. The BAM neural model with delays is considered
as (Eq. 18), where x(t) � (x1(t), x2(t))T, y(t) � (y1(t), y2(t))T
and x(0) = (−1, 1.5)T, y(0) = (0.8, −1.5)T. Let τ1 = 0.9, τ2 = 0.9, σ1 =
0.8, σ2 = 0.8, A = B = E, I = (1, 0.5)T, J = (2.5, 0.5)T and

C � 1 0.2
−0.2 0.1

( ), ~C � 0.1 0.2
1 −0.1( ), D � 0.2 1

1 0.4
( ),

~D � 0.2 0.5
1 −0.1( ).

Choose fj(yj) = (|yj + 1| + |yj − 1|)/2, gj(xj) = (|xj + 1| + |xj − 1|)/2,
j = 1, 2 and l1 = l2 = m1 = m2 = l = m = δ1 = δ2 = δ3 = ρ1 = ρ2 =
ρ3 = 1.

By computing, we can get γ = 7.75, ξ(t) = 2.703, η(t) = 1.04.
Let α = 4, ε = 0.98, it follows from Theorem 2 and is observed
that system (18) is global dissipativity. Figures 2, 3 reflect the
behaviors for the states x1(t) and x2(t) with different initial
conditions. Figures 4, 5 show the phase plane behaviors of
y1(t) and y2(t) with different initial conditions. Figures 6, 7
demonstrate the behaviors of the time domain for the states
x1(t), x2(t) and y1(t), y2(t) with different initial conditions.
System (18) is globally dissipative from the numerical
simulations.

Remark 4 : In the numerical simulation part of [13], the author
only gives the simulation diagram of the BAM neural network
model with one node. This article presents the simulation
diagram of the BAM neural network model with two nodes.
Moreover, in [13], the values of σ(t) and τ(t) are all 1, while the
values of σ1(t), σ2(t), τ1(t), and τ2(t) in this study are different.
Therefore, in numerical simulation, this study is more general
in the value of the model and time delay. In addition, the

FIGURE 7 | Time response of the state variable y1(t) and y2(t) with different initial values.
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unique equilibrium point (0,0,0,0)T of the system (18) is
obtained by MATLAB. Figure 1 shows an image which is
globally asymptotically stable of the system (18) under initial
conditions (x1(t), x2(t), y1(t), y2(t))T � (−0.4, 0.5, 0.2,−0.5)T.
Figures 2–5 show the state diagram of x1(t), x2(t), y1(t), and
y2(t) under different initial conditions with respect to time t.
Figures 6, 7 show the state diagrams of x1(t), x2(t) and y1(t),
y2(t) under different initial conditions with respect to time t.
The previous figures given in this study can more intuitively
reflect the stability and dissipation of the BAM neural
network model.

6 CONCLUSION

In this study, by using matrix theory, inner product properties,
generalized Halanay inequalities, and constructing
appropriate Lyapunov functionals, novel sufficient criteria
of the global asymptotic stability of the system and the
global dissipativity of the equilibrium point have been
derived for a type of BAM neural systems with delays. The
given results might have an impact on investigating the
instability, the existence of periodic solutions, and the
stability of BAM neural networks. A comparison between
the results and the correspondingly previous works implies
that the derived criteria are less conservative and more general
through numerical simulations.
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