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This article applies several distinct methods including the systemic linkage method and
network analysis to address intranational systemic risk interdependencies. Specifically, we
initially quantify dynamic systemic linkages among US and Chinese systemically important
financial institutions through time-varying adjacency matrices related to an extreme value
theory (EVT) approach and then visualize them using network analysis. Numerical and
graphical results show that intranational systemic linkages are obviously enhancive under
extreme scenarios such as large negative shocks in the financial system. In addition, we
apply a tail event-driven network quantile regression (TENQR) model to address the
interdependence and dynamics of the entire network. The estimation results show that the
network factors respond more strongly when the market suffers extreme stress.
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1 INTRODUCTION

The global financial crisis of 2007–2008 accented the great extent to which the failure of an
interconnected and complex financial institution can jeopardize the stability of the entire financial
system. In view of this concern, new macroprudential financial regulations put greater emphasis on
systemic risk, that is, the interconnectedness of risk among institutions, especially those that are “too
big to fail”.

Forbes and Rigobon [1] and Casarin et al. [2] interpret contagion as a significant increase in cross-
market correlation during a period of financial turmoil, whereas any continued high market
correlation is defined as interdependence. According to the Financial Stability Board,
systemically important financial institutions (SIFIs) are financial institutions whose disorderly
failure, because of their size, complexity and systemic interconnectedness, would cause
significant disruption to the wider financial system and economic activity. In this context, the
analysis of risk interdependence among SIFIs plays an important role in quantifying and assessing
financial systemic risk.

Recent decades have seen considerable research into the mechanisms behind systemic risk (e.g.,
[3–6]). De Bandt and Hartmann [7] divide a systemic event into two key component types: shocks
and propagation mechanisms. In a strict sense, idiosyncratic shocks initially affect only the stability
of a single financial institution or only the price of a single asset, while systematic shocks propagate
from one financial institution or market to others and may even affect the entire economy. Likewise
[8]) demonstrate that systemic risk builds up in the background during the expansion phase of
imbalances or bubbles and materializes only when the crisis erupts.

Systemic risk measures have become particularly crucial since the implementation of the Basel II
bank regulations and proliferated following the global financial crisis. The purpose of risk measures is
to reduce vast volumes of data to a meaningful single statistic that summarizes risk. Bisias et al. [9]
provide a survey of over 30 quantitative systemic risk measures in the economics and finance
literature. One of the most common measures of risk, which is set as the official measure of market
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risk under Basel II, is value-at-risk (VaR). VaR is simply defined
as the worst expected loss of a position over a target horizon
within a given confidence interval. Although not a coherent risk
measure, VaR is immensely popular. Other widespread risk
measures, including conditional value-at-risk (CVaR) [10],
marginal expected shortfall (MES) [6, 11] and a systemic risk
measure called SRISK [12], have better formal properties than the
standard VaR. These approaches, which rely on market data to
produce global measures, can be calculated in a timely manner to
better detect sudden fluctuations in the financial system. Benoit
et al. [13] classify this kind of measure as representative of the
global approach, which aims to derive global measures of
systemic risk. Our proposed risk measure in this paper is also
categorized within the global approach [14].

Our study is related to the work of Van Oordt and Zhou [14].
Using extreme value theory (EVT), they decompose banks’
systemic risk into two dimensions: the risk of individual
institutions (bank tail risk) and the link of the bank to the
system in financial distress (systemic linkage). Their proposed
systemic risk measure and its decomposition help to establish a
connection between studies applying tail dependence as a proxy
of systemic risk [15–19] and those applying other global measures
such as CoVaR, MES and SRISK. To illustrate the
interconnectedness among SIFIs from a system-wide
perspective, we further add a topological network methodology
to our framework as a necessary supplement. Network analysis is
recognized as a powerful methodological tool for modeling
interactions between financial institutions and assessing the
resilience of financial systems to systemic risk [20–23]. Related
network techniques have been used, among other purposes, to
describe the global architecture of cross-border financial flows
[24], to analyze financial contagion [25, 26] or tail risk spillover
[27, 28], and to evaluate credit risk [29].

In this paper, we adopt a risk measure combining the
systemic linkage method and network analysis to address
intranational systemic risk interdependencies. SIFIs, by
definition, occupy crucial positions in the financial system
due to their large scale, complex structures, wide range of
businesses and strong correlations with other financial
institutions in the system. Using daily stock returns on
American and Chinese SIFIs, we describe the topology of the
network using different metrics of interconnectedness and
assess its dynamics. First, we adopt the systemic linkage
component of the systemic risk decomposition proposed by
Van Oordt and Zhou [14] to measure the strength of the link
between individual institutions and the system in financial
distress. The difference between our study and theirs lies in
the calculation of the component. We directly utilize the sliding
window algorithm to calculate time-varying systemic linkages,
whereas they adopt regression models to calculate the systemic
linkages. Since the systemic linkage component performs only
weakly in quantifying systemic risk from a system-wide
perspective, we next apply a network analysis technique
called the tail event-driven network quantile regression
(TENQR) model [30]. We use estimated systemic linkages to
construct time-varying adjacency matrices to portray the
dynamic networks of SIFIs.

Our major contribution has several aspects. First, this paper
applies the systemic linkages to network analysis and measure
how closely linked two financial institutions are in periods of
financial distress. The combination of systemic linkages and
conventional network topology enriched the current literature
on network analysis. Using this risk profile, we can construct a
more comprehensive and precise network, as displayed in the
empirical results. Second, we add the dynamics into the systemic
linkages by means of a sliding window, which captures the
interplay among SIFIs in different stages. In addition, we take
both the US and the Chinese stock markets into account and
divide them into three separate periods according to their own
features.

The remainder of this paper is structured as follows. In Section
2, we provide the details of our methodology, including the
systemic risk decomposition, the construction of the adjacency
matrix, and the TENQR network model, where we focus on the
dynamic interplay of the networks. Section 3 introduces the data.
Section 4 presents the empirical results. Conclusions are
presented in Section 5.

2 SYSTEMIC RISK MODELING ANALYSIS

In this section, we lay out the background and preliminaries of
our systemic risk analysis, which can be divided into three
primary parts: the decomposition of systemic risk, the
construction of the adjacency matrix, and the network
dynamics based on a TENQR model.

2.1 Systemic Risk Measure
The emergence of systemic risk is receiving increasing attention
among regulators, with a particular focus on financial
interconnectedness. One natural approach to measuring
interconnectedness is through the return sensitivity to key risk
factors, the coefficient of a linear relationship between one
financial institution and another [31]. Consider a linear tail
model between the equity returns of financial institution i and
financial institution j upon extremely adverse shocks in the
financial system:

Ri � βTijRj + ϵi, for Rj < − VaRj p( ), (1)
where Ri and Rj denote the stock returns of financial institution i
and financial institution j, βTij is the regression coefficient, and ϵi
is the error term, which includes all other shocks that are
assumed to be independent of the shocks in the financial
system represented by Rj. VaRj(p) represents the value-at-risk
of Rj with a very small probability p. Since in this part we
consider only the relationship between financial institution i
and j under extremely adverse market conditions, that is, only if
Rj < −VaRj(p), we use an index T to distinguish the coefficient
from that under a global linear model. The coefficient βTij is a
measure of the relative risk exposure of holding a particular
stock i in relation to another stock j. It can be regarded as a
systemic risk measure. A higher βTij means financial institution i
suffers more losses in the event of an extremely adverse shock in
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financial institution j. Consequently, estimating βTij helps
investors assess the potential for extreme loss and determine
whether they would be better off keeping their exposure in a
market crash.

There are various ways to estimate βTij, with the conditional
regression approach being a relatively straightforward one. It is
achieved by estimating the least squares regression coefficient
based on observations corresponding to extremely low values of
X only. See Post and Versijp [32] and Atanasov and Nitschka
[33] for application examples. While extremely adverse shocks
happen in the financial system, it is hard to estimate βTij
precisely from a small number of observations. The relation
in Eq. 1 brings about a dependence structure between Ri and Rj

in the case of extremely low values of Rj, that is, if Rj < −VaRj(p),
determining the dependence between the left tail of the
distributions of Ri and Rj. Therefore [34]) propose an
alternative approach to estimating βTij based on a
multivariate EVT method. Simulations show that this
estimation method yields a lower mean-squared error than a
conditional ordinary least squares regression based on a few tail
observations only. Assume financial returns to be heavy tailed,
and let Ri and Rj follow heavy-tailed distributions with tail
indices ξi and ξj. Under mild conditions, they derive for βTij ≥ 0
that

βTij � lim
p→0

τi p( )1/ξjVaRi p( )
VaRj p( ), (2)

where VaRi(p) and VaRj(p) are the VaRs of Ri and Rj with a
probability level p and τi(p) is defined as

τi p( ) ≔ Pr Ri < − VaRi p( )|Rj < − VaRj p( )( ), (3)
which can be regarded as the tail dependence measure between Ri
and Rj intuitively with 0 ≤ τi ≤ 1. As in conventional extreme value
analysis, with n independent and identically distributed (i.i.d.)
observations of (Ri, Rj), we consider only the lowest k
observations in the tail region, where k is a sequence
depending on n such that k≔k(n) → +∞ and k/n → 0 as n →
+∞. Hence, according to Eq. 2, we can obtain the estimator of
βTij as

β̂Tij � τ̂i k/n( )1/ξ̂j V̂aRi k/n( )
V̂aRj k/n( ), (4)

where ξ̂j is the Hill estimator [35]. For measuring τ̂i, multivariate
EVT provides a nonparametric estimate, which is defined as

τ̂i k/n( ) ≔ 1
k
∑n
t�1

1 Rj,t <Rj, k+1( ), Ri,t <Ri, k+1( )( ), (5)

where Ri,(k+1) and Rj,(k+1) are the (k+1)th lowest-order statistics of
Ri and Rj and V̂aRi(k/n) and V̂aRj(k/n) are estimated by the
(k+1)th lowest-order statistic at some small probability level k/n.
Since samples are finite in practice and based on their baseline
results, Van Oordt and Zhou [34] fix k = 40 using a 4-year
estimation window of daily returns, i.e., k/n ≈ 4%. The estimation
results that they present are not very sensitive to the choice of k,
especially for values of k in the range from 20 to 80.

2.2 Decomposition of Systemic Risk
We further address the problem of how individual financial
institutions influence each other. Drawing on the seminal
work of Van Oordt and Zhou [14], this part decomposes the
systemic risk of a financial institution into the tail risk and the
systemic linkage. Van Oordt and Zhou [14] consider the
logarithmic transformation of β̂Tij in Eq. 4 as

logβ̂Tij � logSLij + logIRij, (6)
which divides the systemic risk measure βTij into two components:
IRij � V̂aRi(k/n)/V̂aRj(k/n) and SLij � τ̂i(k/n)1/ξ̂j . The first
component IRij measures the ratio between the VaR of
financial institutions i and j. It represents the level of tail risk
only. The second component SLij measures the strength of the
link between two financial institutions, that is, how closely linked
financial institutions i and j are in periods of financial distress.
Regarded as a correlation coefficient, the tail independence
measure τi(p) is independent of the distribution of tail risk of
institution i. Thus, SLij would not be affected by the level of the
institution’s tail risk. It contains information only on the
dependence between large losses suffered by i and j. In short,
SLij measures the systemic linkage between i and j.

2.3 Adjacency Matrix
To explore the relationship or the interconnectedness among
SIFIs from a system-wide perspective, we further carry out a
tailored network analysis based on graph theory. Graph
theory is the study of graphs, specifically the relationship
among edges and vertices, which are basic graph elements.
This theory offers a practical tool to analyze and visualize the
complexities of interactions. In our study, each vertex
represents a specific SIFI, and each edge indicates the
dependence or channel between two financial institutions.
The relationship between vertices/nodes and edges is
described by an adjacency matrix A with elements aij,
which determine the weights of edges between i and j.
With n vertices, A is an (n × n) square matrix. Thus, a
basic undirected graph is defined as follows:

aij � 1 if there is an edge between node i and j,
0 otherwise.

{ (7)

The equation above is the simplest case of a network structure in
which all edges share the same weight with one (zero) used to
represent a link (isolation). However, the network between SIFIs
is time varying and directional since there is a risk contributor
and a risk receiver in a relationship. Hence, to capture the
dynamic interplay between financial institutions upon the
occurrence of tail events in time, we take the systemic linkage
mentioned in Section 2.2 as a risk profile. At each time point t, an
n-dimensional adjacency matrix At composed of elements aij,t =
SLij,t can be defined as:

At �
SL11,t SL12,t / SL1n,t
SL21,t SL22,t / SL2n,t
..
. ..

.
1 ..

.

SLn1,t SLn2,t / SLnn,t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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Each institution i is characterized by a vector Xi,t � {SLij,t}j�1...n.

2.4 Tail Event-Driven Network Quantile
Regression
To determine the dynamic adjacency relation among SIFIs, in
this section, we introduce a parsimonious model, the tail
event-driven network quantile regression model. Given the
aforementioned definition of SLij, we obtain pairwise systemic
linkages between two arbitrary financial institutions. In
practice, it is not advisable to take all systemic linkages into
consideration. Based on a breakpoint technique, we identify
large systemic linkages whose value must exceed an
approximate threshold.

2.4.1 Breakpoint Approach
Denote SL � (SL1, SL2, . . . , SLn)T as the vector of ordered
systemic linkages and SL1 < SL2 < / < SLn. We address the
number, homogeneity andmagnitude of systemic linkage pairs by
exploiting the uniform spacings related to Chen et al. [30]. We
apply the cumulative distribution function of the standard
normal distribution Φ to ordered systemic linkages for
approximate uniformity, and it follows that

ϕ � ϕ1, ϕ2, . . . , ϕn( )T
� Φ

�
n

√
SL1( ),Φ �

n
√

SL2( ), . . . ,Φ �
n

√
SLn( )( )T . (8)

Here, we have ϕk ∈ [0, 1] since SLk ∈ [ − 1, 1]. Following previous
work by Chen et al. [30], we denote the spacings as Δk = ϕk − ϕk−1.
To split the sequence of spacings into subsets using a cluster
approach, we denote θ as the fraction of spacings that separates
high systemic linkages, which is estimated by

θ̂ � arg min
θ

∑θn[ ]

k�1
Δk − μ( )2, (9)

where μ � 1
[θn]∑[θn]

k�1Δk, Δk are ordered spacings and [θn] is the

integer part of θn. We can obtain the optimal break fractions θ by

minimizing the total sum of variances to make the systemic
linkages as homogeneous as possible. After the estimation of the
break fractions θ̂ at each time point t, we define the adjacency
matrix A with the elements

aij � 1 if SL] i,j( ) > SLθ̂,
0 otherwise,

{ (10)

where ](i, j) is the mapping that assigns to each pair (i, j) of SIFIs
the index of the ordered systemic linkages. SLθ̂ are the systemic
linkages corresponding to the breaking points.

2.4.2 Tail Event-Driven Network Quantile Regression
Model
We further pay attention to the tail dynamics. Initially, it is of
great interest to quantify the reaction of an individual SIFI at a
specific time point to the connection at the previous time point. In
addition, the yield of an individual SIFI may show an
asymmetrical response to network factors. In other words, the

node may respond more strongly under extremely adverse
situations but more mildly under advanced conditions.

To avoid the curse of dimensionality, Chen et al. [30]
propose a parsimonious model called the tail event-driven
network quantile regression (TENQR) model to address tail
sensitivities, asymmetric impacts, intertemporal effects,
regional reactions and impulse responses to network shocks.
One advantage of this applied quantile regression, relative to
an ordinary least squares regression, is that TENQR estimates
are more robust against outliers in the response measurements.
In the context of our own TENQR model, we concentrate on
tail events such as high-level quantiles. Specifically, we use the
systemic linkage as a risk profile to calculate network factors
and omit regional reactions and add universally used
explanatory factors such as autoregressive components,
market-wide covariates and company-specific variables. The
time variations are reflected via returns Ri,t, and the TENQR
model of Ri,t is defined as follows:

QRi,t τ( ) � α0 τ( ) + α1 τ( )Ri,t−1 +∑L
l�1

α w( )
l τ( )Wl,t−1 + αf τ( )

∑n
j�1

mi Rj,t−1( ) + γi,t,

(11)

where t = 1, . . . , T and i = 1, . . . , n. γi,t represents the residuals.
Wl,t represents the market-wide covariates at a given time point t.
The CBOE Volatility Index (VIX), also referred to as the “fear
gauge,” is a popular measure of volatility expectations for the US
stock market. A higher VIX means that market participants
expect more intense market volatility. In addition, we consider
the TED rate, which refers to the difference between the Treasury
bill yield and the London Interbank Offered Rate. The rate is
fairly small in normal circumstances, but when market-wide
credit default risk is increasing, the TED spread becomes
higher. Thus, the TED rate is an ideal index to assess market-
wide credit risk. In our model, we choose the VIX as a proxy for
perceived market sentiment and the TED rate for perceived credit
risk. mi(Rj,t−1) is a function of neighboring nodes that have
connectedness with node i. The coefficient αf(τ)
correspondingly measures the impact of the network factors
and is merely dependent on τ. The construction of the mi-
function is based on adjacency matrices with elements
according to Eq. 10, and the network factors are defined as:

fi,t−1 � ∑n
j�1

mi Rj,t−1( ) � ∑n
j�1aij,t−1Rj,t−1∑n

j�1aij,t−1
, (12)

in which the network factors fi are regarded as weighted average
impacts from nodes that are connected with the ith node.

3 DATA

This paper uses equity returns to calculate the systemic risk
measure and its systemic linkage subcomponent. We take two
global stock markets, the US stock market and the Chinese stock
market, as empirical examples. The dataset used in this paper is
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selected with reference to Brownlees and Engle [36] and
Banulescu and Dumitrescu [37], with a few changes in
consideration of their market capitalization, liabilities, trading
volumes and reputations.

Since the US stock market is the maturest and largest
market, with rigorous and transparent management, we
select it as the setting from which we extract our first
dataset, which covers the period between January 2006 and
December 2019. The development of and changes in the US
stock market played out within a momentous global political
and economic historical context. Thus, it is appropriate to
take this market into account. To ensure the reliability of the
research, the data are processed as follows: 1) we delete the
stocks of financial institutions with data missing for more
than 90 days; and 2) we use the closing price of the previous
trading day to replace small amounts of missing data. Finally,
we obtain 23 listed financial institutions that can be divided
into four sectors: 1–10 are banks (e.g., Bank of America, JP
Morgan), 11–14 are insurance companies (e.g., American
International Group), 15–18 are broker-dealers (e.g.,
Morgan Stanley), and 19–23 are others (e.g., 3M). The
financial data come from the Wind Financial database, and
detailed information, including names, abbreviations and
sectors, is listed in Table 1. To better study the risk
correlations among SIFIs under different market
conditions around the 2007–08 global financial crisis, we
examine daily data covering three subperiods: 1) stage 1:
the prefinancial crisis period, ranging from January 2006
to July 2007; 2) stage 2: the period during the financial
crisis itself, from August 2007 to June 2009; and 3) stage 3:
the postfinancial crisis period, ranging from July 2009 to
December 2019.

For emerging markets, we select the Chinese stock market,
the second largest stock market worldwide, as our second
testing ground. Unlike mature markets, emerging markets are
characterized by relatively pooled enforcement of financial
regulations. We are interested in risk transfers among
Chinese SIFIs. Following Huang and Wang [38], our
selection mechanism is based on the guidelines for the
Industry Classification of Listed Companies issued by
China Securities Regulatory Commission, and we deal with
the raw data in the similar way as for the US SIFIs. In the
following analysis of the Chinese stock market, we focus
mainly on systemic risk during 2014–16, when the Chinese
stock market experienced evident fluctuations. As the focus of
this article is not to compare the systemic networks of the
Chinese market with those of the US market, we choose
different periods that have the most impact on each
market. Eventually, we choose 25 listed Chinese SIFIs,
including 13 banks (e.g., China Merchants Bank, Bank of
China), 3 insurance companies (e.g., PingAn Insurance),
5 broker-dealers (e.g., Changjiang Securities, CITIC
Securities) and 4 others (e.g., Haide Industry). We collect
their daily closing prices from January 2013 to December
2019. Likewise, we consider three separate periods: 1) stage 1:
the precrash period, ranging from January 2013 to June 2014;
2) stage 2: the period during the Chinese stock crash from July
2014 to January 2016; and 3) stage 3: the postcrash crisis
period, ranging from February 2016 to December 2019.
Table 2 presents the names, abbreviations and sectors of
the listed Chinese SIFIs.

Our analysis centralizes the daily log returns of each SIFI.
Table 3 presents the descriptive statistics for returns of 23
US SIFIs and 25 Chinese SIFIs during the full sample period.
First, we note that all the means of returns are positive,
except for BAC, C, AIG and SLB for Panel A and IB for Panel
B. Second, all return series exhibit non-zero skewness and
show high kurtosis (excess 3), which is reflected in the
rejection of the null hypothesis of normality (the last
column of Table 3 presents the statistic of a Shapiro-Wilk
test of normality).

4 EMPIRICAL APPLICATION

In this section, we apply the technique previously presented and
propose an empirical application of our risk methods to identify
and measure the systemic risk of listed SIFIs. Using daily
logarithmic returns and the sliding window algorithm, we
estimate the systemic linkages of each stock market. Similar
to the specification in Longin and Solnik [39] and Van Oordt
and Zhou [14], we set the window width = 20 representing an
estimation window of 2 years of daily returns and k/n ≈ 0.04 to
obtain the time-varying systemic linkages SLij,t as described in
Section 2.2. Then, we construct dynamic adjacency matrices At

and the networks of SIFIs and refine them by applying the
breakpoint approach mentioned in Section 2.4.1. Finally, the
TENQR model is applied to address the tail sensitivities and
dynamics.

TABLE 1 | Overview of the US SIFIs.

Name Abbreviation Industry

Bank of America BAC Banks
JP Morgan Chase & Co. JPM Banks
M&T Bank MTB Banks
Suntrust Banks Inc. STI Banks
PNC Financial Services Group PNC Banks
Comerica Inc. CMA Banks
Citigroup Inc. C Banks
State Street Corp. STT Banks
US Bancorp USB Banks
Wells Fargo & Co. (New) WFC Banks
American International Group AIG Insurance
AFLAC Inc. AFL Insurance
Allstate Corp. ALL Insurance
Berkley WR Corp. WRB Insurance
Goldman Sachs Group Inc. GS Broker-dealers
Morgan Stanley Dean Witter & Co MS Broker-dealers
Charles Schwab Corp. SCHW Broker-dealers
T Rowe Price Group Inc. TROW Broker-dealers
Schlumberger Ltd. SLB Others
Coca-Cola Co. KO Others
3M Co. MMM Others
International Business Machines Corp. IBM Others
American Express Co. AXP Others
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4.1 Dynamic Systemic Linkage Table
To better visualize the changes in data over time, we further use
heat maps to display the variations in systemic linkages in
different stages. First, we compute the mean value of systemic
linkages to generate a systemic linkage matrix table for each stage.
Second, we calculate the difference based on the three systemic
linkage tables to obtain the two target systemic linkage variation
tables—for stage 1 to stage 2 and for stage 2 to stage 3. Then, we
apply a heat map since the colors are easier to distinguish and
make sense of than raw numbers. The warmer the color, the
larger the value.

Figure 1 displays the systemic linkage variations of the US
SIFIs. Obviously, the influence of different SIFIs in different
periods varies greatly. We notice that in Figure 1A,
corresponding to the case of the systemic linkage variations
from stage 1 to stage 2, the values are significantly positive.
Specifically, approximately 52.36% of the values (or 68.62%)
are over 0.1 (or 0.05), and only 1.70% (or 5.86%) are below −0.1
(or −0.05). It is obvious that several pairs of systemic linkage
variation excess 0.3, e.g., JPM and USB. As a whole, there are
more systemic spillovers between banking sectors, emitting
more risk to the system than other sectors. This finding is in
line with that of Härdle et al. [40] who suggest that broker-
dealers and others fluctuate very much in the whole period, but
they send out less risk compared with banks. They also find
that JPM and USB are ranked in the top 10 largest systemic risk
emitters list. Besides, it is noted that in others sector, the
systemic linkage variation between AXP and MMM is up to
0.34, reflecting they are highly linked in global financial crisis.
Other studies including Diebold and Yılmaz [22] and Härdle

et al. [40] have indicated that AXP is a large systemic risk
contributor.

In contrast in Figure 1B, the values decrease since only 3.40%
(or 14.37%) are above 0.1 (or 0.05) and 19.10% (or 38.75%) are
below −0.1 (or −0.05). This phenomenon can also be observed
from the color change. The colors in 1) are warmer than those in
2) overall. This suggests that from stage 1 to stage 2, the systemic
risk correlation becomes obviously higher, and from stage 2 to
stage 3, the correlation becomes weaker on average. However,
some exceptions still exist. For instance in Figure 1B, the
systemic linkage variation between MTB and STI is 0.17,
perhaps due to the intra-industry information transfer. The
correlations among the SIFIs in stage 2, or during the financial
crisis, tend to increase, and the systemic risk contagion effect is
significant.

Similarly, the systemic linkage variations of the Chinese
SIFIs are shown in Figure 2. The difference in the color of the
two heat maps is apparent at first glance. Most of the values
in Figure 2B are in cool colors. Statistically, for Figure 2A,
25.60% (or 38.88%) of the values exceed 0.1 (or 0.05), and
8.16% (or 22.08%) are lower than -0.1 (or -0.05). We note
that the high values of systemic linkage variation is linked
with IB, ICBC and KCMT, which is a reflection of the high
capability to emit and receive systemic risk. Wang et al. [41]
points out that IB is considered as “interbank king” in
China’s financial system. At the end of 2016, the
interbank liabilities of IB reached over 1.72 trillion yuan,
accounting for one third of their total liabilities. As a result,
regulators should pay more attention to IB with significant
exposure to shadow banks.

TABLE 2 | Overview of the Chinese SIFIs.

Name Abbreviation Industry

PingAn Bank PAB Banks
Bank of Ningbo BONB Banks
Shanghai Pudong Development Bank SPDB Banks
HuaXia Bank HXB Banks
China Minsheng Banking Corp., Ltd. CMBC Banks
China Merchants Bank CMB Banks
Bank of Nanjing BONJ Banks
Industrial Bank IB Banks
Bank of Communications BCM Banks
Industrial and Commercial Bank of China, Ltd. ICBC Banks
China Construction Bank CCB Banks
Bank of China BOC Banks
China CITIC Bank CNCB Banks
PingAn Insurance (Group) Co. of China, Ltd. PAI Insurance
China Pacific Insurance (Group) Co., Ltd. CPIC Insurance
China Life Insurance (Group) Co., Ltd. CLIC Insurance
Changjiang Securities CJS Broker-dealers
CITIC Securities CITICS Broker-dealers
Sinolink Securities SLS Broker-dealers
Haitong Securities HTS Broker-dealers
SDIC Capital SDIC Broker-dealers
Hainan Haide Industry Co., Ltd. HNHIC Others
Easysight Supply Chain Management Co., Ltd. ESCMC Others
Sunny Loan Top Co., Ltd. SLTC Others
Kweichow Moutai KCMT Others
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Figure 2B, however, shows that only 3.84% (or 9.12%) of
the values exceed 0.1 (or 0.05) and more than half (57.12%)
are below −0.1, while up to 72.48% are less than −0.05.
These statistics are consistent with what the heat maps
show that from stages 2 to 3, the values of systemic
linkages visually become smaller, indicating that after the
financial crisis, the correlations among the Chinese SIFIs
become significantly weaker overall except an outlier

between SLS and HNHIC. In the work of Wang et al. [41],
they reveal that both CJS and SLS receive the most tail risk. In
addition, they mention that securities triggered the
recent bull market in 2016, which is not found in our
paper. These findings above confirm the similarity with the
results for the US SIFIs that in periods of financial
distress, SIFIs are more linked than they are before or after
the distress.

TABLE 3 | Descriptive statistics of 23 US SIFIs and 25 Chinese SIFIs.

N Min Max Mean Std.
Dev.

Skewness Kurtosis Normtest

Panel A: the US SIFIs
BAC 3521 −0.3421 0.3021 −0.0001 0.0321 −0.3385 24.8111 0.7449
JPM 3521 −0.2323 0.2239 0.0004 0.0242 0.3296 17.6549 0.8136
MTB 3521 −0.1697 0.1911 0.0001 0.0206 0.1096 11.2683 0.8681
STI 3521 −0.0870 0.0753 0.0001 0.0108 −0.2617 7.5805 0.9124
PNC 3521 −0.5344 0.3155 0.0003 0.0249 −1.6555 76.1991 0.7382
CMA 3521 −0.2072 0.1881 0.0001 0.0257 −0.1145 10.1941 0.8676
C 3521 −0.4947 0.4563 −0.0005 0.0336 −0.5379 39.9928 0.7130
STT 3521 −0.8925 0.2727 0.0001 0.0300 −7.1791 232.2782 0.6505
USB 3521 −0.2005 0.2057 0.0002 0.0212 −0.0473 19.3727 0.7856
WFC 3521 −0.2721 0.2834 0.0001 0.0261 0.8837 25.9208 0.7507
AIG 3521 −0.9363 0.5068 −0.0009 0.0429 −3.2336 99.3265 0.5675
AFL 3521 −0.4599 0.2645 0.0002 0.0241 −1.8824 55.1058 0.7074
ALL 3521 −0.2380 0.1963 0.0002 0.0196 −0.9179 31.1549 0.7481
WRB 3521 −0.1161 0.1505 0.0003 0.0151 0.5706 12.8130 0.8768
GS 3521 −0.2102 0.2348 0.0002 0.0228 0.2686 16.4260 0.8561
MS 3521 −0.2997 0.6259 0.0000 0.0317 1.6012 59.0092 0.7465
SCHW 3521 −0.1645 0.1794 0.0003 0.0232 0.0586 6.5036 0.9297
TROW 3521 −0.1977 0.1669 0.0003 0.0225 −0.2382 10.2374 0.8770
SLB 3521 −0.2034 0.1390 −0.0001 0.0221 −0.4742 7.7263 0.9372
KO 3521 −0.0907 0.1300 0.0003 0.0110 0.2535 13.3350 0.9046
MMM 3521 −0.1386 0.0942 0.0002 0.0139 −0.6224 8.3987 0.9116
IBM 3521 −0.0864 0.1090 0.0001 0.0137 −0.2098 6.0933 0.9282
AXP 3521 −0.1935 0.1877 0.0002 0.0220 0.0054 13.6499 0.8350

Panel B: Chinese SIFIs
PAB 1698 −0.1056 0.0955 0.0006 0.0222 0.1992 4.0967 0.9293
BONB 1698 −0.1054 0.0956 0.0008 0.0219 0.0098 4.3373 0.9347
SPDB 1698 −0.1056 0.0956 0.0003 0.0182 0.1220 6.2743 0.8956
HXB 1698 −0.1057 0.0958 0.0002 0.0183 −0.1248 6.2534 0.9005
CMBC 1698 −0.1053 0.0954 0.0001 0.0180 0.3042 7.7334 0.8660
CMB 1698 −0.1044 0.0955 0.0006 0.0188 0.3107 4.2673 0.9381
BONJ 1698 −0.1055 0.0955 0.0005 0.0203 −0.2415 5.8572 0.9068
IB 1698 −0.1056 0.0958 0.0003 0.0191 0.2361 6.4857 0.8938
BCM 1698 −0.1060 0.0962 0.0001 0.0175 −0.0422 10.9049 0.8254
ICBC 1698 −0.1043 0.0953 0.0002 0.0148 −0.2071 9.1813 0.8747
CCB 1698 −0.1058 0.0957 0.0003 0.0174 −0.2386 8.3363 0.8654
BOC 1698 −0.1163 0.0966 0.0001 0.0160 −0.0241 11.4297 0.8266
CNCB 1698 −0.1056 0.0961 0.0002 0.0215 0.3507 5.7206 0.8937
CJS 1698 −0.1063 0.0960 0.0003 0.0270 0.0095 3.7450 0.9169
CITICS 1698 −0.1288 0.0957 0.0004 0.0255 0.0688 4.5402 0.9070
SLS 1698 −0.1597 0.1178 0.0000 0.0289 −0.2613 3.5422 0.9271
HTS 1698 −0.1282 0.0957 0.0002 0.0253 0.1114 4.4336 0.9052
SDIC 1698 −0.1062 0.1463 0.0007 0.0308 0.0642 3.4190 0.9021
PAI 1698 −0.1054 0.0954 0.0008 0.0201 0.0796 3.9812 0.9446
CPIC 1698 −0.1055 0.0954 0.0003 0.0221 0.0422 3.0872 0.9581
CLIC 1698 −0.1054 0.0956 0.0003 0.0225 0.4297 4.2139 0.9291
HNHIC 1698 −0.1463 0.0959 0.0003 0.0315 −0.0755 3.3304 0.9505
ESCMC 1698 −0.1602 0.2861 0.0006 0.0336 0.2173 5.7429 0.9132
SLTC 1698 −0.2084 0.1004 −0.0001 0.0317 −0.5116 3.5701 0.9357
KCMT 1698 −0.1521 0.0953 0.0011 0.0202 −0.0329 4.0622 0.9583
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4.2 Network Visualization
In this section, we apply the aforementioned breakpoint approach to
simplify the original systemic linkage tables and obtain refined
systemic linkage tables. Figures 3, 4 visually portray the systemic
risk dependence networks of theUS SIFIs andChinese SIFIs over the

three separate stages. We select one time point for each stage in our
examples. Arrows denote the direction of the impact between paired
SIFIs.

According to the network figures, we observe that intuitively,
the grave crises such as the 2007–08 global financial crisis and the

FIGURE 1 | Systemic linkage variation table for the US SIFIs. (A) Systemic linkage variation table from stage 1 to stage 2. (B) Systemic linkage variation table from
stage 2 to stage 3.
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2014–16 stock crash saw an increase in the systemic linkages
among the SIFIs, which reflects higher risk levels of spillover
effects. The network is relatively sparse during the tranquil
period, but becomes dense when the financial system
encounters extreme conditions, especially when severe shocks
occur. In contrast, under mild conditions (stage 1 and stage 3), the

network of the systemic linkages is weaker, which shows a weak
system-wide connectedness. This result is consistent with Härdle
et al. [40] and Fang et al. [42], supporting that losses can spread
quickly among financial institutions and threaten the entire
financial system during a crisis. Strong linkages tend to occur
among SIFIs that belong to the same or a similar industry. The

FIGURE 2 | Systemic linkage variation table for the Chinese SIFIs. (A) Systemic linkage variation table from stage 1 to stage 2. (B) Systemic linkage variation table
from stage 2 to stage 3.
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graphical visualization of pairwise risk spillovers is consistent
with the results in later tables (Tables 4, 5). This helps to explain
the “too-connected-to-fail” situation and to identify potential
economic crises.

4.3 Network Centrality
Centrality is one of the most studied concepts in social network
analysis [43]. It is a vital index since it indicates which node
occupies a critical position. Existing measures include degree
centrality, closeness, betweenness, eigenvector centrality,
information centrality, flow betweenness, the rush index,
etc. In the following network analysis, we apply degree
centrality as proposed by Freeman et al. [44], which is
measured by the total number of direct links with other
nodes. In other words, the measure is the sum of each row
in the adjacency matrix representing the network. The degree
is the number of directly connected edges, and hence, we
evaluate direct connections. For directed graphs, we have to
distinguish the in-degree and out-degree [45, 46], which
measure the total number of risk transmitters (incoming)
and risk recipients (outgoing), respectively. We let the
element aij = 1 if there is an edge from institution j to i.

Denote the in-degree and out-degree values as degreei,in and
degreei,out, respectively, and we have

degreei,in � ∑n
j�1

aij, (13)

degreei,out � ∑n
j�1

aji, (14)

degreei,total � degreei,in + degreei,out. (15)
Tables 4, 5 summarize the in-degree, out-degree and total

degree of the US and Chinese SIFIs over the three stages in
accordance with the definitions in Eqs 13–15.

In conducting the degree analysis for the US network in stage 1
(Table 4), we note that most values of the total degree are between
10 and 14, and STT in the banking industry displays the highest
level for all degrees. STT is chosen as the central SIFI and
identified as a cluster. This means that STT affects the largest
number of other SIFIs and is more sensitive to shock spillovers.
Founded in 1792, STT is one of the world’s largest servicers and
managers of institutional assets. The corporation, through its
subsidiary State Street Bank, provides a range of financial
products and services to institutional investors worldwide. It

FIGURE 3 | Systemic risk dependence networks of the US SIFIs across the three stages. (A) Stage 1 (17 October 2006) (B) Stage 2 (20 December 2007) (C) Stage
3 (28 January 2013).

FIGURE 4 | Systemic risk dependence networks of the Chinese SIFIs across the three stages. (A) Stage 1 (7 November 2013) (B) Stage 2 (24 April 2015) (C) Stage
3 (9 December 2016).
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TABLE 4 | Degree of the US SIFIs.

SIFI
name

Stage one (17 October 2006) Stage two (20 December 2007) Stage three (28 January 2013)

In-degree Out-degree Total
degree

In-degree Out-degree Total
degree

In-degree Out-degree Total
degree

BAC 6 6 12 21 21 42 11 11 22
JPM 6 6 12 21 21 42 16 17 33
MTB 7 7 14 22 22 44 16 17 33
STI 6 6 12 15 15 30 9 9 18
PNC 1 1 2 21 21 42 12 13 25
CMA 6 6 12 21 21 42 10 10 20
C 6 6 12 21 21 42 11 12 23
STT 10 10 20 21 21 42 15 16 31
USB 7 7 14 22 22 44 15 16 31
WFC 6 6 12 21 21 42 10 11 21
AIG 3 3 6 20 20 40 17 18 35
AFL 1 1 2 21 21 42 13 14 27
ALL 6 6 12 20 20 40 10 10 20
WRB 6 6 12 21 21 42 15 16 31
GS 5 5 10 21 21 42 17 18 35
MS 7 7 14 21 21 42 10 10 20
SCHW 6 6 12 21 21 42 14 14 28
TROW 7 7 14 22 22 44 15 16 31
SLB 5 5 10 22 22 44 15 16 31
KO 7 7 14 20 20 40 14 15 29
MMM 5 5 10 21 21 42 15 0 15
IBM 6 6 12 21 21 42 15 16 31
AXP 5 5 10 21 21 42 4 4 8

The values in bold are the highest or lowest in a given period, indicating that the corresponding company is noteworthy. For example, we bold the highest values for the stage 1 and 3 and
the lowest values for the stage 2 (corresponding to the crisis period).

TABLE 5 | Degree of the Chinese SIFIs.

SIFI
name

Stage one (7 November 2013) Stage two (24 April 2015) Stage three (9 December 2016)

In-degree Out-degree Total
degree

In-degree Out-degree Total
degree

In-degree Out-degree Total
degree

PAB 12 12 24 21 21 42 19 19 38
BONB 12 12 24 21 21 42 21 21 42
SPDB 10 10 20 21 21 42 15 15 30
HXB 12 12 24 21 21 42 14 14 28
CMBC 10 10 20 21 21 42 3 3 6
CMB 10 10 20 20 20 40 17 17 34
BONJ 12 12 24 21 21 42 14 14 28
IB 12 12 24 21 21 42 14 14 28
BCM 12 12 24 21 21 42 11 11 22
ICBC 5 5 10 21 21 42 14 14 28
CCB 7 7 14 21 21 42 15 15 30
BOC 10 10 20 21 21 42 15 15 30
CNCB 12 12 24 21 21 42 14 14 28
PAI 9 9 18 21 21 42 17 17 34
CPIC 9 9 18 21 21 42 17 17 34
CLIC 9 9 18 21 21 42 14 14 28
CJS 15 15 30 8 8 16 11 11 22
CITICS 15 15 30 21 21 42 11 11 22
SLS 9 9 18 23 23 46 7 7 14
HTS 7 7 14 21 21 42 11 11 22
SDIC 9 9 18 19 19 38 11 11 22
HNHIC 1 1 2 7 7 14 11 11 22
ESCMC 1 1 2 21 21 42 7 7 14
SLTC 9 9 18 23 23 46 7 7 14
KCMT 3 3 6 1 1 2 14 14 28

The values in bold are the highest or lowest in a given period, indicating that the corresponding company is noteworthy. For example, we bold the highest values for the stage 1 and 3 and
the lowest values for the stage 2 (corresponding to the crisis period).
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occupies a certain position and wields some influence in the
industry, even in the entire market. On the other hand, we
observe that the least significantly affected are PNC and AFL,

whose total degree value is only 2. However, in stage 2, when
the severe financial crisis occurs, the numerical values
become larger, and more SIFIs are connected regardless of

FIGURE 5 | QQ plots of the returns of BAC, JPM, AIG, AFL, GS, MS, KO, and IBM.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 89772112

Tan et al. Network Analysis of SIFIs

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


industry. Almost all values of the total degree are no less than 40.
This finding is consistent with the common conclusion
that systemic risk rises during a market shock. No SIFIs or

industry were immune from the global financial crisis. In
stage 3, where the economy returns to a mild situation, the
risk association among SIFIs weakens. Large-scale

FIGURE 6 | TENQR results of BAC, JPM, AIG, AFL, GS, MS, KO, and IBM.
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insurers, such as AIG, and broker-dealers, such as GS, are central
SIFIs.

Similar results are observed in Table 5. It is clear that in
stage 1, CJS and CITICS are the most influential SIFIs in the
system, as they affect the highest number of SIFIs (both the in-
degree and out-degree are the highest). The finding is
consistent with Hautsch et al. [47] and Fang et al. [42] who
suggest that these firms like CJS, BONB and CITIC amplify tail
risk spillovers. For stage 2, the values of the average total
degree are much larger than those in other stages. We obtain
the same finding in the case of the US that more SIFIs are
closely connected, during the Chinese stock crash. This makes
sense since in market turmoil, the linkages between SIFIs
would be exacerbated. In comparison to the results reported
in the literature, we note that Wang et al. [41] have
mentioned that ICBC, CCB and BOC are the top three
systemic risk receivers and emitters, especially during the
period from mid-2014 to mid-2016 (covering the bullish
period and the market turbulence). Additionally, we observe
KCMT in the other industries category is an exception. Due to
its high liquidity and stable performance, KCMT has become
the preferred option pursued by institutional investors. When
the system encounters a crash, KCMT is relatively less
exposed to the risk of collapse in the entire system.
After the crash, we observe that BONB in the banking
industry is the most central SIFI since it has the highest
degree value. This result is also consistent with that of Fang
et al. [42].

4.4 Results From the Tail Event-Driven
Network Quantile Regression Model
In this section, we apply the TENQR model defined in Section
2.4.2 to the daily return data for the 23 US SIFIs to address tail
sensitivity. Due to space limitations, we choose two SIFIs for
each industry listed in Table 1. Figure 5 presents the normal
QQ plots of the returns of BAC, JPM, AIG, AFL, GS, MS, KO
and IBM. It is no surprise that all the returns exhibit heavy
tails. We evaluate the impacts of network factors fi using
systemic linkages. Specifically, we estimate the TENQR
model of Ri,t in the case of τ = 0.95 and τ = 0.99. For
comparison, we also take the conventional historical
simulation method into consideration when τ = 0.99. We
pay more attention to the tails. Figure 6 shows the
conditional quantile regressions of BAC, JPM, AIG, AFL,
GS, MS, KO and IBM in stage 2, when the severe financial
crisis occurs.

From Figure 6, we note that the TENQR model performs
better than the historical simulationmethod in the case of τ = 0.99
and τ = 0.95. It is known that when the financial system is shaky,
the VaR calculated by the historical simulation method tends to
underestimate systemic risk, whereas our TENQR model takes
the tail effect into greater account. Consequently, the TENQR
model based on systemic linkages may better reflect the
magnitude of systemic risk than the conventional VaR model.

To assess the impacts of network factors under bull and bear
markets, we calculate the dynamic fi at each time point t.
Empirically, we set a fixed 20-day backward horizon. Table 6
displays the network influences of the 23 US SIFIs in case of τ =
0.99. On the whole, network factors have a greater impact on
SIFIs when the market is in decline.

5 CONCLUSION

In this paper, we provide a framework that centers on the systemic
linkage method developed by Van Oordt and Zhou [14] for
constructing dynamic systemic risk spillover networks among
intranational SIFIs. We first decompose the systemic risk and
extract the systemic linkages as our risk profile and then elaborate
the adjacency matrix to quantify the network risk dynamics.
Furthermore, we implement a TENQR model as proposed by
Chen et al. [30] to capture the interdependence and dynamics of
the networks.

Taking US and Chinese SIFIs as empirical examples, we find
that when the financial market encounters severe negative shocks,
the systemic linkages tend to be significantly stronger. Combining
an EVT approach and network topology analysis, we also find
that the mean-squared error of estimation and visualization of
systemic risks is diminished, which provides a better
understanding of interactions among SIFIs from a system-wide
perspective. In addition, the network quantile regression curves
vary between bear and bull markets. Network factors respond
more strongly when the financial system is in a stressful
condition, which can help market regulators discern warning
signs before crises and take appropriate precautions.

TABLE 6 | Network influences of the 23 US SIFIs based on TENQR model (τ
= 0.99).

SIFI name Bear market Bull market

BAC −0.15976 −0.08160
JPM −0.30185** −0.23041
MTB −0.31600 −0.28187
STI 0.34478*** 0.34478***
PNC 0.27654** 0.36304***
CMA 0.19798 0.20068
C 0.40256 0.39513
STT 0.19794 0.11002
USB −0.07815 −0.18891
WFC 0.43876 0.41112
AIG 0.43374 0.48334
AFL −0.10374 −0.11049
ALL −0.08796* −0.25031***
WRB −0.19124** −0.22403**
GS 0.05105 0.20371
MS −0.08840 0.00561
SCHW −0.25061 −0.19815
TROW −0.03197 −0.02680
SLB 0.02171 −0.02585
KO 0.07968 0.06129
MMM −0.11358** −0.07757
IBM −0.34334** −0.37472***
AXP −0.03234 −0.04024

* indicates significance at the 5% level.
** indicates significance at the 1% level.
*** indicates significance at the 0.1% level.
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