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Let G be a connected graph with vertex set V(G). The resistance distance between any two
vertices u, v ∈ V(G) is the net effective resistance between them in the electric network
constructed fromG by replacing each edgewith a unit resistor. LetS⊂ V(G) be a set of vertices
such that all the vertices in S have the same neighborhood in G − S, and let G[S] be the
subgraph induced by S. In this note, by the {1}-inverse of the Laplacianmatrix ofG, formula for
resistance distances between vertices in S is obtained. It turns out that resistance distances
between vertices in S could be given in terms of elements in the inverse matrix of an auxiliary
matrix of the Laplacian matrix of G[S], which derives the reduction principle obtained in
[J. Phys. A: Math. Theor. 41 (2008) 445203] by algebraic method.
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1 INTRODUCTION

The novel concept of resistance distance was introduced by Klein and Randić [8] in 1993. For a
connected graph G with vertex set V(G) = {1, 2, . . ., n}, the resistance distance between u, v ∈ V(G),
denoted by ΩG (u, v), is defined to be the effective resistance between u and v in the corresponding
electric network obtained fromG by replacing each edge with a unit resistor. Since resistance distance
is an intrinsic graph metric and an important component of circuit theory, with potential
applications in chemistry, it has been extensively studied in mathematics, physics, and
chemistry. For more information, we refer the readers to recent papers [2, 4, 6, 7, 10, 11, 15]
and references therein.

LetG be a connected graph of order n. For any set of verticesU ⊂V(G), we useG [U] to denote the
subgraph induced by U, and G − U to denote the subgraph obtained from G by removing all the
vertices inU as well as all the edges incident to vertices ofU. The adjacency matrix AG ofG is an n × n
matrix such that the (i, j)-th element of AG is equal to 1 if vertices i and j are adjacent and 0 otherwise.
The Laplacian matrix of G is LG = DG − AG, where DG is the diagonal matrix of vertex degrees of G.
Clearly, LG is real symmetric and singular.

LetM be an n ×m real matrix. Anm × n real matrix X is called a {1}-inverse ofM and denoted by
M(1), if X satisfies the following equation:

MXM � M.

IfM is singular, then it has infinite {1}-inverses. It is well known that resistance distances in a
connected graph G can be obtained from any {1}-inverse of LG (see [1]). So far, there are many
well-established results on this inverse. For example, in 2014, Bu et al [4] obtained the {1}-
inverse of the Laplacian matrix for a class of connected graphs, and investigated resistance
distances in subdivision-vertex join and subdivision-edge join of graphs. Then in 2015, an exact
expression for the {1}-inverse of the Laplacian matrix of connected graphs was obtained by Sun
et al. [13]. After that, Liu et al. [9] obtained the {1}-inverses for the Laplacian matrix of
subdivision-vertex and subdivision-edge coronae networks. Recently, Cao et al. [5] also
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characterised the {1}-inverses for the Laplacian of corona and
neighborhood corona networks. Sardar et al. [12] determined
resistance distances of some classes of rooted product graphs
via the Laplacian {1}-inverses method.

In this paper, some results on the {1}-inverses for Laplacian
matrices of graphs with given special properties are established.
As an application, for any given vertex set S ⊂ V(G) such that all
the vertices in S have the same neighborhood N in G − S, explicit
formula for resistance distances between vertices in S is obtained.
It turns out that resistance distances between vertices in S could
be given in terms of elements in the inverse matrix of an auxiliary
matrix of the Laplacian matrix of G[S], which derives the
reduction principle obtained in [J. Phys. A: Math. Theor. 41
(2008) 445203] by algebraic method.

2 PRELIMINARY RESULTS

In this section, we present some preliminary results. We first
introduce the concept of group inverse and Moore-Penrose
inverse of a matrix.

Definition 2.1. For a square matrix X, the group inverse of X,
denoted by X#, is the unique matrix H that satisfies matrix
equations:

XHX � X, HXH � H, XH � HX.

Definition 2.2. Let M be an n × m matrix. An m × n matrix X is
called theMoore-Penrose inverse ofM, if X satisfies the following
conditions:

MXM � M, XMX � X, MX( )H � MX, XM( )H
� XM.

where XH represents the conjugate transpose of the matrix X.
IfM is real symmetric, then there exists a uniqueM# andM# is

the symmetric {1}-inverse of M. In particular, M# is equal to the
Moore-Penrose inverse of M because M is symmetric [3].

Let (M)ij denote the (i, j)-entry of M. It is well known that
resistance distances in a connected graph G can be obtained from
any {1}-inverse of LG according to the following lemma.

Lemma 2.3. [3] Let G be a connected graph. Then for vertices i
and j,

ΩG i, j( ) � L 1( )
G( )

ii
+ L 1( )

G( )
jj
− L 1( )

G( )
ij
− L 1( )

G( )
ji

� L#G( )
ii
+ L#G( )

jj
− 2 L#G( )

ij
.

Let 0 and e be all-zero and all-one column vectors,
respectively. Let Jn×m be the n × m all-one matrix. The
following result is due to Sun et al. [13] which characterizes
the {1}-inverse of the Laplacian matrix.

Lemma 2.4. [13] Let LG � L1 L2
LT2 L3

[ ] be the Laplacian matrix of a

connected graph. If L1 is nonsingular, then X �

L−11 + L−11 L2S
#LT2L

−1
1 −L−11 L2S

#

−S#LT2L−11 S#
[ ] is a symmetric {1}-inverse of

LG, where S � L3 − LT2L
−1
1 L2.

In particular, if each column vector of LT2 is − e or 0, then X can
be further simplified. For convenience, in the rest of this section

(see Lemmas 2.5, 2.6, 2.7), we always assume that LG � L1 L2
LT2 L3

[ ],
with the property that L1 is nonsingular, and each column vector

of LT2 is − e or 0.

Lemma 2.5. [4] Let LG be defined as above. Then X � L−11 0

0 S#
[ ]

is a symmetric {1}-inverse of LG, where S � L3 − LT2L
−1
1 L2.

According to Lemma 2.4, we could get the following results.

Lemma 2.6. Let LG be defined as above. If each row of L1 sums to k,
then each column vector of −L−11 L2S# is proportional to the all-one
vector, where S � L3 − LT2L

−1
1 L2.

Proof. Suppose that the number of columns of L2 is n2 and let
L2 � [ r1 r2 . . . rn2 ] with ri being its i-th column vector, i = 1, 2,
. . ., n2. First we show that for any ri, all the elements of L−11 ri are
the same. If ri = 0, then the assertion holds since L1ri = 0.
Otherwise, ri = −e. Since L1 is nonsingular with each row sum
being k, it follows that each row of L−11 sums to 1

k. Thus
L−11 ri � L−11 (−e) � −1

k (e), which also implies that all the
elements of L−11 ri are the same. Hence, each column of −L−11 L2
is proportional to the all-one vector, that is, all the row vectors of
−L−11 L2 are the same. It thus follows that each column of
−L−11 L2S# is proportional to the all-one vector, i.e. all the
elements in any given column of −L−11 L2S# are the same. □

According to Lemma 2.6, we have the following result.

Lemma 2.7. Let LG be defined as above. If each row of L1 sums to k,
then there exists a real number ξ such that
L−11 L2S#LT2L

−1
1 � ξJn1×n1, where S � L3 − LT2L

−1
1 L2.

Proof. Let M1 � L−11 L2S#. According to the argument in the
proof of Lemma 2.6, all the row vectors in M1 are the same. On
the other hand, since L1 is real symmetric, it follows that

LT
2L

−1
1 � LT

2 L−1
1( )T � L−1

1 L2( )T.
Let M2 � LT2L

−1
1 . Then all the column vectors in M2 are the

same since all the row vectors in −L−11 L2 are the same. Thus, we
conclude that there exists a real number ξ such that

L−1
1 L2S

#LT
2L

−1
1 � M1M2 � ξJn1×n1.

This completes the proof. □

3 MAIN RESULTS

In this section, we consider resistance distances between vertices
in a specific subset S of V(G). Let S ⊂ V(G) such that all the
vertices in S have the same neighborhood N in G − S. In the
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following, we give explicit formula for resistance distances
between vertices in S. For simplicity, we use LS to denote the
Laplacian matrix of the subgraph induced by S. Suppose that the
cardinalities of S and N are n1 and k, respectively. Then the
Laplacian matrix of G can be written as follows.

LG � LS + kIn1 L2

LT
2 L3

[ ],
where In1 is the identity matrix of order n1.

Now we are ready to give formula for resistance distances
between vertices in S.

Theorem 3.1. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S, we have

ΩG i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij.

where L1 � LS + kIn1.

Proof. Let L1 � LS + kIn1. Clearly, L1 is nonsingular, and each row
of L1 sums to k and each column vector of L2 is − e or 0. Then by
Lemma 2.7, there exists a real number ξ such that
L−11 L2S#LT2L

−1
1 � ξJn1×n1, where S � L3 − LT2L

−1
1 L2. Then by

Lemma 2.5, we can obtain the {1}-inverse of LG as follows.

X � L−1
1 + ξJn1×n1 −L−1

1 L2S
#

−S#LT
2L

−1
1 S#

[ ].
Thus, for vertices i, j ∈ S, by Lemma 2.3, we have

ΩG i, j( ) � X( )ii + X( )jj − X( )ij − X( )ji
� L−1

1 + ξJn1 × n1( )ii + L−1
1 + ξJn1 × n1( )jj − L−1

1 + ξJn1 × n1( )ij − L−1
1 + ξJn1 × n1( )ji

� L−1
1( )ii + ξ + L−1

1( )jj + ξ − L−1
1( )ij − ξ − L−1

1( )ji − ξ

� L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij .

The proof is complete. □
Theorem 3.1indicates that, if S ⊂ V(G) satisfies that all the
vertices in S have the same neighborhood N in G − S, then
resistance distances between vertices in S depends only on the
subgraph G[S] and the cardinality of N. In other words, if we
use G* to denote the subgraph obtained from G[S ∪ N] by
deleting all the edges between vertices in N (see Figure 1), then
resistance distances between vertices in S depends only on G*.
In fact, for i, j ∈ S, ΩG(i, j) � ΩG*(i, j), as shown in the
following.

Theorem 3.2. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Let G* the graph obtained from G
[S ∪N] by deleting all the edges between vertices in N. Then for i, j ∈
S, we have

ΩG* i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij.

where L1 � LS + kIn1.

Proof. According to the definition of G*, it is readily to see that
the Laplacian matrix of G* is

LG* � L1 −Jn1×k
−Jk×n1 kIk

[ ].
Since each column vector of −Jk×n1 is − e, by Lemma 2.5, we

can obtain the symmetric {1}-inverse of LG* as follows:

Y � L−1
1 0

0 S#
[ ],

where S � kIk − Jk×n1L
−1
1 Jn1×k. Hence by Lemma 2.3, we have

ΩG* i, j( ) � L−1
1( )ii + L−1

1( )jj − 2 L−1
1( )ij,

as required. □

Remark 1. Combining Theorems 3.1 and 3.2, we could conclude
that if S ⊂ V(G) satisfies that all the vertices in S have the same
neighborhood N in G − S, then resistance distances between
vertices in S can be computed as in the subgraph obtained from G
[S ∪N] by deleting all the edges between vertices inN. It should be
mentioned that this fact, known as the reduction principle, was
established in [14]. We confirm this result by algebraic method,
rather than electric networkmethod as used in [14]. Furthermore,
we also give an exact formula for resistance distances between
vertices in S. By Theorem 3.1, we are able to establish some
interesting properties.

Theorem 3.3. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S and u ∈ G − S, we
have

ΩG i, u( ) −ΩG j, u( ) � L−1
1( )ii − L−1

1( )jj.
where L1 � LS + kIn1.

Proof. As given in the proof of Theorem 3.1, we know that the
{1}-inverse of LG is

X � L−1
1 + ξJn1×n1 −L−1

1 L2S
#

−S#LT
2L

−1
1 S#

[ ].
where ξ be a real number and S � L3 − LT2L

−1
1 L2. By Lemma 2.3,

we have

ΩG i, u( ) −ΩG j, u( ) � X( )ii + X( )uu − X( )iu − X( )ui
− X( )jj + X( )uu − X( )ju − X( )uj[ ].

FIGURE 1 | Illustration of graphs G and its subgraph G*.
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Note that L1 is nonsingular and every row sums to k and
each column vector of L2 is − e or a zero vector. So by Lemma
2.6, we know that each column of −L−11 L2S# is proportional to
all-one vector, which implies that (X)iu = (X)ju. Since X is real
symmetric, we also have (X)ui = (X)uj. It follows that

ΩG i, u( ) −ΩG j, u( ) � X( )ii + X( )uu − X( )jj − X( )uu
� L−1

1( )ii + ξ + L−1
1( )uu + ξ − L−1

1( )jj − ξ − L−1
1( )uu − ξ

� L−1
1( )ii − L−1

1( )jj.
This completes the proof. □
It is interesting to note from Theorem 3.2 that the difference

between ΩG (i, u) and ΩG (j, u) depends only on the subgraph G
[S] and the cardinality of N, no matter the chosen of u. Then we
have the following result.

Corollary 3.4. Let S ⊂ V(G) such that all the vertices in S have the
same neighborhood N in G − S. Then for i, j ∈ S and u, v ∈G − S, we
have

ΩG i, u( ) −ΩG j, u( ) � ΩG i, v( ) −ΩG j, v( ).
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