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Recent progress has revealed that quantum systems with multiple position-dependent
couplings, e.g., giant atoms, can exhibit some unconventional phenomena, such as non-
exponential decay. However, their potential applications are still open questions. In this
paper, we propose a giant-cavity-based quantum sensor for the first time, whose
performance can be greatly enhanced compared to traditional cavity-based sensors. In
our proposal, two cavities are coupled to a dissipative reservoir at multiple points while they
couple to a gain reservoir in a single-point way. To detect an unknown parameter entering
the sensor, a waveguide is coupled to one of the cavities where detecting fields can pass
through for homodyne detection. We find that multiple position-dependent couplings can
induce an inherent non-reciprocal coupling between the cavities, which can enhance the
performance of sensors. Compared to the results in the work of Lau and Clerk, (Nat
Commun, 2018, 9: 4,320), our output noise can remain at the shot noise level, which is
about one order of magnitude lower. In addition, the signal-to-noise ratio per photon is also
enhanced by about one order of magnitude. These results showed that the multiple-point
coupling structure is beneficial to existing quantum devices.

Keywords: giant cavities, quantum sensors, SNR (signal-to-noise ratio), non-Markovian quantum systems, quantum
metrology, waveguide quantum electrodynamics, homodyne detection, position-dependent coupling

1 INTRODUCTION

High-precision measurement of physical quantities lies in the core of metrology, e.g., gravitational
wave detection [1, 2], nano-particle detection [3–6], thermal sensing [7], navigation [8, 9], and
magnetometers [10–12]. Towards fundamental detection limits in weak-signal measurements, non-
reciprocity [13] has become a powerful resource [14]. Since reciprocity is hard to break due to
Lorentz theorem [15], many methods have been proposed for inducing non-reciprocity, for example,
biasing with odd-symmetric quantities under time reversal [16], steering systems into exceptional
points [17,18], constructing directional couplings [19], employing asymmetric or non-linear
elements [20–29], or breaking the time-invariance of systems [30, 31].

Recent progress on quantum systems with multiple-point couplings (e.g., giant atoms [32–48])
provides a new possibility to acquire non-reciprocity. For example, when several giant atoms couple
to a common reservoir, an indirect coupling among atoms can be built up via the shared reservoir.
This indirect coupling depends on the arrangements of atoms and the relative phase between
coupling points [36]. Therefore, one can construct an effective directional coupling between atoms
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by tuning the relative phase and adjusting the arrangements. It
should be noticed that the non-reciprocity realized in this way is
an inherent property of the system and it can be totally tuned by
the relative phase, such that this method of acquiring non-
reciprocity requires no other non-linear elements such as
Faraday rotators [20, 21] or Josephson parametric converters
[26, 28], and thus, it is easy to be integrated into an on-chip
structure and flexible in experiments.

In this study, we propose a quantum sensor consisting of two
giant cavities, where two coupled cavities couple to reservoirs at
multiple points.We find that an inherent non-reciprocal coupling
between cavities can be built up through a shared reservoir.
Compared with the small-cavity-based structures in [14],
i.e., cavities couple to reservoirs at a single point, the signal-
to-noise ratio in our proposal can be improved by one order of
magnitude. The study is organized as follows. In Section 2, we
propose the theoretical model of the quantum sensor, including
the Hamiltonian and equations of motion. Following the
standard frame [14], we propose the performance indicator of
sensors in Section 3, including signal, output noise, and signal-to-
noise ratio per photon. The comparison with the sensor made up
of small cavities is shown in Section 4. Finally, further discussion
and conclusion are given in Section 5.

2 MODEL OF GAINT-CAVITY-BASED
QUANTUM SENSOR

2.1 Hamiltonian
Generally speaking, a quantum sensor means the sensor utilizing
quantum resources, such as quantum devices, quantum states,
quantum effects, etc. [49, 50]. In [14], a paradigm in designing

quantum sensors is proposed that several coupled cavities couple
to a gain reservoir and a dissipative reservoir at a single point.
Illuminated by this paradigm, the sensor we considered consists
of a coupled double-cavity interacting with two reservoirs. The
first cavity is coupled to a dissipative reservoir at x1 and x2, and
the second cavity is coupled to it at x3 and x4, as shown in
Figure 1. On the contrary, a gain reservoir couples to both cavities
at the same point. In addition, a classical pump β with a noise
input Bin enters the readout waveguide which only couples to the
cavity 1, and its reflected field Bout is measured by homodyne
detection. This model can be realized by superconducting
quantum circuits, i.e., two LC resonators couple to three
waveguides, where one of the waveguides is used for readout
and the others are used as reservoirs. According to the model, the
total Hamiltonian reads

Htot � H0 +Hd +HI, (1)
where

H0 � ∑2
i, j�1

Hij ε[ ]a†i aj + ∫ dk ωb,kb
†
kbk + ∫ dk ωc,kc

†
kck

+ ∫ dk ωd,kd
†
kdk, (2a)

Hd � �
κ

√
βe−iωLta†1 +H.c.( ) + �

κ
√ ∫ dk���

2π
√ a†1bk +H.c.( ), (2b)

HI �∑2
i�1

∫dk Yia
†
i c

†
k +H.c.( )

+∫dk Z1 eikx1 + eikx2( )a†1dk +Z2 eikx3 + eikx4( )a†2dk +H.c.( ).
(2c)

Equation 2a describes the free Hamiltonian of the two cavities,
the readout waveguide, the gain and dissipative reservoirs with
bosonic annihilation operators ai, bk, ck, and dk, respectively.
Here, we have assumed that the perturbation ε is small enough
such that Hij [ε] has a linear form1 [14, 51] Hij[ε] � Hf

ij + εVij,
where Hf

ij is the unperturbed part of the coupled cavities and Vij

denotes the coupling of perturbation ε on the cavities. The first
term in Eq. 2b represents a classical pump β with a driving
frequency ωL and a coupling strength κ that enters cavity 1
through the readout waveguide. The second term denotes the
interaction between cavity 1 and the readout waveguide, which
yields a noise input Bin to the cavity, as shown later. Eq. 2c
describes couplings between the cavities and the reservoirs with
strengths Yi and Zi, respectively. Notably, the position-dependent
phase eikxm , (m = 1, 2, 3, 4) with a wave vector k is introduced by
the multi-point couplings.

2.2 Langevin Equations
For the sake of sensing, we analyze how the output varies when
the perturbation ε acts on the sensor, which can be done with the
quantum Langevin equation. Before we proceed, we assume that

FIGURE 1 | Schematic of the two giant-cavity quantum sensor. Both
cavities couple to a dissipative reservoir at multiple points, i.e., x1 and x2 for
cavity 1 (denoted by annihilation operator a1), x3 and x4 for cavity 2 (denoted by
operator a2). The distance between the two points for one cavity is
sufficiently large, which induces non-negligible time delays, such that it forms
two giant cavities. As a result, the couplings between cavities and dissipative
reservoir are position-dependent. On the contrary, both cavities couple to the
gain reservoir at the same point. Also, a classical pump with an amplitude β

and a noise inputBin is injected into the readout waveguide which only couples
to the cavity 1. Its reflected field Bout is measured by homodyne detection.
Initially, both reservoirs and the waveguide are prepared in the vacuum state.
This sensor can reflect the external perturbation ε from the variations of the
output Bout.

1Since the perturbation is small enough, such that it can be expanded as a small
quantity and kept to the first order.
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the coupling points are equally spaced, i.e., d = x2 − x1 = x3 − x2 = x4 −
x3. For simplicity, we let x1 = 0. Also, the linear dispersion relation
holds in the dissipative reservoir, i.e.,ωd,k= vgkwith vg being the group
velocity [48, 52, 53]. With the abovementioned assumptions, the
equations of motion for two cavities take the form

_~a1 t[ ] � F11 ε[ ]~a1 t[ ] − 2π|Z1|2~a1 t − τ[ ]eiωLτ + F12 ε[ ]~a2 t[ ]
− ~M

in

1 t[ ], (3a)
_~a2 t[ ]�F22 ε[ ]~a2 t[ ]−2π|Z2|2~a2 t−τ[ ]eiωLτ+F21 ε[ ]~a1 t[ ]−Fdir

21 t[ ]
− ~M

in

2 t[ ], (3b)
where

F11 ε[ ] � iωL − iH11 ε[ ] + π|Y1|2 − 2π|Z1|2 − κ

2
, (4a)

F22 ε[ ] � iωL − iH22 ε[ ] + π|Y2|2 − 2π|Z2|2, (4b)
F12 ε[ ] � −iH12 ε[ ] + πY1Y

p
2, (4c)

F21 ε[ ] � −iH21 ε[ ] + πY2Y
p
1, (4d)

Fdir
21 t[ ] � 2πZ2Z

p
1e

iωLτ ~a1 t − τ[ ] + 2~a1 t − 2τ[ ]eiωLτ + ~a1 t − 3τ[ ]e2iωLτ( ), (4e)
~M

in

1 t[ ] � i
�
κ

√
β + ~Bin t[ ]( ) − i

���
2π

√
Y1

~C
†

in t[ ]
− i

���
2π

√
Z1

~Din t[ ] + ~Din t − τ[ ]eiωLτ( ), (4f )
~M

in

2 t[ ] � i
���
2π

√
Y2

~C
†

in t[ ]
− i

���
2π

√
Z2e

2iωLτ ~Din t − 2τ[ ] + ~Din t − 3τ[ ]eiωLτ( ), (4g)
with τ= d/vg being the time delay between the two neighboring points.
Here, ~ai[t] � ai[t]eiωLt denotes the slowly-varying operator. Also,

~Bin t[ ] � Bin t[ ]eiωLt � 1���
2π

√ ∫ dk bk 0[ ]e−i ωb,k−ωL( )t, (5a)

~C
†

in t[ ] � C†
in t[ ]eiωLt � 1���

2π
√ ∫ dk c†k 0[ ]ei ωc,k+ωL( )t, (5b)

~Din t[ ] � Din t[ ]eiωLt � 1���
2π

√ ∫ dk dk 0[ ]e−i ωd,k−ωL( )t (5c)
are the inputs for the readout waveguide, gain, and dissipative
reservoirs, respectively. In addition, the input-output relation for
the field in the readout waveguide is given by

~Bout t[ ] � ~Bin t[ ] + β( ) − i
�
κ

√
~a1 t[ ], (6)

where

~Bout t[ ] � Bout t[ ]eiωLt � 1���
2π

√ ∫ dk bk t1[ ]e−iωb,k t−t1( )eiωLt (7)

is the output field in the waveguide at a final time t1.
Using Fourier transformation, the delayed differential Eqs. 3a,

3b can be solved as

�a1 ω;ε[ ]
�a2 ω;ε[ ]( )� ωL +ω( )I−H ε[ ]−πiGY +2πiDZ + i~κ

2
( )−1

�Min ω[ ]

� χ ω;ε[ ]
iκ

�Min ω[ ],
(8)

with ~κ � κ
1 0
0 0

( ),
GY � |Y1|2 Y1Y

p
2

Yp
1Y2 |Y2|2( ) � Y1

Y2
( ) Yp

1 Yp
2( ) � YY†, (9)

DZ� |Z1|2 1+ei ωL−ω( )τ( ) 0
Z2Z

p
1 ei ωL−ω( )τ +2ei 2ωL−ω( )τ+ei 3ωL−ω( )τ( ) |Z2|2 1+ei ωL−ω( )τ( )( ),

(10)
and

�Min ω[ ] � ( �
κ

√ 2πβδ ω[ ] + �Bin ω[ ]
0

( ) + ���
2π

√ Y1

Y2
( )�C

†

in ω[ ]

+ ���
2π

√ Z1 1 + ei ωL−ω( )τ( )
Z2 ei 2ωL−ω( )τ + ei 3ωL−ω( )τ( )( ) �Din ω[ ]). (11)

Here, I denotes a 2 × 2 identity matrix and χ[ω; ε] is the
dimensionless state transfer matrix. Operators with a bar�· denote the
Fourier transformation of the corresponding operators in the
frequency domain. The diagonal terms in the gain matrix (9) and
dissipative matrix (10) describe decays to the reservoirs, while the off-
diagonal terms represent indirect couplings between the two cavities
induced by the shared reservoir. Different from Eq. 9, the non-
Hermitianity of Eq. 10 shows that the arrangement of the giant
cavities can induce a non-reciprocal coupling a1 → a2 which results
from the delayed coupling term Fdir

21 [t](4e). This non-reciprocal
coupling means that the cavity 2 can affect the excitation of the
cavity 1, but not vice-versa. The reasons lie in that: for the cavity 1, the
interaction provided by the cavity 2 occurs at a later time, such that the
dynamics of the cavity 1 does not include this interaction at the current
time.However, for the cavity 2, the interaction provided by the cavity 1
comes fromapreviousmoment, such that the dynamics of the cavity 2
preserves this interaction at the currentmoment. Or equivalently from
a steady-state viewpoint, the time-delay property makes the exchange
of photons between two cavities via the shared reservoir
unidirectional, i.e., the a1 → a2 exchange is allowed but the a2 →
a1 exchange is forbidden. It should be noticed that this directional
coupling is an inherent delay effect and thus it does not involve
interferences between cavities. Therefore, our proposal requires no
other non-linear elements in acquiring non-reciprocity, e.g., Faraday
rotators [20, 21] and Josephson parametric converters [26, 28]. In
addition, the delayed differentialEqs. 3a, 3b indicate a non-Markovian
effect, i.e., the dynamics of the system depends on a moment in the
past. In the frequency domain, the non-Markovian effect behaves as
the dependence of the matrix DZ on the driving frequency ωL. These
two forms of non-Markovian effect are connected with the spatial
non-locality resulting from themultiple-point couplings [48]. Another
change induced by the arrangement lies in the last term of the input
matrix (11), where exponents describe delayed inputs. Similarly, the
input-output relation (6) in the frequency domain reads

�Bout ω[ ] � 1 − χ11 ω; ε[ ]( ) �Bin ω[ ] + 2πβδ ω[ ]( ) − ���
2π
κ

√
�C
†

in ω[ ] χ11 ω; ε[ ]Y1 + χ12 ω; ε[ ]Y2( )
−

���
2π
κ

√
�Din ω[ ] χ11 ω; ε[ ]Z1 1 + ei ωL−ω( )τ( ) + χ12 ω; ε[ ]Z2 ei 2ωL−ω( )τ + ei 3ωL−ω( )τ( )( ).

(12)

We have provided a description of our sensor in the Heisenberg
picture. From the above derivation, we can investigate how the
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unknown parameter affects the output of the detecting field.
Different from the existing sensors, the dynamics of our sensor
involve non-reciprocity induced by time-delayed terms which
would improve the performance of the sensor.

3 PERFORMANCE EVALUATION OF THE
SENSOR

3.1 Homodyne Detection
As we have introduced, our sensor employs homodyne detection
to extract the perturbation, where the photon current of the
output field

I t( ) �
��
κ

2

√
eiφBout t( ) +H.c.( ) (13)

is measured. All the information of ε is contained in the real part
of eiφBout [t]. Note that the current is measured in a steady-state of
the system such that we can evaluate the response of the system to
the perturbation at the zero frequency; i.e., ω = 0. Also, for small ε,
the expectation value of the output is assumed to be in a linear
response to ε [14], i.e.,

〈�Bout 0[ ]〉ε � 〈�Bout 0[ ]〉0 + λε, (14)
where 〈·〉z denotes taking expectations at ε = z. Using this
relation, the response coefficient λ reads

λ � limε→0
〈�Bout 0[ ]〉ε − 〈�Bout 0[ ]〉0

ε
� −2πβδ 0[ ] dχ11 0; ε[ ]

dε
|ε�0

� 2πiβδ 0[ ]
κ

~χV~χ( )11,
(15)

whose phase φ = − arg λ determines the angle in Eq. 13.

3.2 Signal, Noise, and Signal-to-Noise Ratio
per Photon
To estimate the performance of the sensor, we further define a
measurement operator m[ω] as the windowed Fourier
transformation of current I [t], i.e.,

m ω[ ] � 1��
T

√ ∫T/2

−T/2
dt I t[ ]e−iωt, (16)

where the segment T should be much greater than 1/κ such that
the sensor can reach the steady states during the measurement
window. Under this condition, the integral limits can be extended
to ±∞. Notably, this definition of m[ω] makes it have a unit
of A/

���
Hz

√
[54].

The power associated with the signal can be defined as the
square of the difference of measurement operator m [0] between
the perturbed and unperturbed cases, i.e.,

S � 〈m 0[ ]〉ε − 〈m 0[ ]〉0( )2 � 2κε2

T
|λ|2. (17)

In addition, the total average photon number induced by the
classical input can be calculated as

ntot � ∑2
i�1

〈�a†i 0; ε[ ]〉0〈�ai 0; ε[ ]〉0 � |2πδ 0[ ]β|2
κ

~χ†~χ( )11, (18)

where the mean-field approximation [55, 56] has been used. With
this definitaion, the signal per photon can be expressed as

S

ntot
� 2ε2

T

| ~χV~χ( )11|2
~χ†~χ( )11 , (19)

where we let ~χ � χ[0; 0] for brevity.
Similarly, the power of the output noise is defined as thefluctuation

of the measurement operator m [0] in the unperturbed case; i.e.,

N � 〈m2 0[ ]〉0 − 〈m 0[ ]〉20 �
κ

2T
(1 + |~χ11|2 − ~χ11 + ~χp11( )

+2π
κ

~χGY~χ
†( )11 + 2π

κ
1 + eiωLτ( )2 ~χ ~Z ~Z

†
~χ†( )

11
)

� κ

2T
(1 + 2Ξ · θ Ξ[ ] + 4π

κ
1 + cos ωLτ( )( ) 1 + eiωLτ( )|Z1~χ11

+Z2~χ12e
2iωLτ |2), (20)

where ~Z � (Z1 Z2e2iωLτ )T, Ξ � |~χ11 − 1|2 − 1, and θ[·] is the
Heaviside step function introduced by the semi-defined
positivity of the matrix ~χGY~χ

†. In the derivation, we have
assumed that both reservoirs and the waveguide are initially
prepared in the vacuum states. Note that the output noise (20) is
complex due to the exponent eiωLτ , which is in contrast to Refs. [14,
51]. However, one can define its real part Re(N) as themeasured noise.
The constant part is the so-called shot noise [14], which describes the
minimum noise of the sensor. The second term denotes the reflective
gain resulting from the gain reservoir.When the sensor has a reflective
gain, i.e., |~χ11 − 1|> 1, the output noise must be greater than the
simple shot noise. Or equivalently speaking, a linear amplification for
signal also amplifies the noise. And the third term results from the
dissipative noise of the dissipative reservoir.

Combining Eqs. 19, 20, one can obtain the signal-to-noise
ratio (SNR) per photon

S

Nntot
� 4ε2

κ

| ~χV~χ( )11|2
1 + 2Ξ · θ Ξ( ) + 4π

κ 1 + cos ωLτ( )( ) 1 + eiωLτ( )|Z1~χ11 + Z2~χ12e
2iωLτ |2( ) ~χ†~χ( )11,

(21)

which is the sensitivity of the sensor. Notably, the state transfer
matrix ~χ is now independent in the perturbation ε, which means
that the SNR has a purely parabolic response to the changes of ε
for a determined ~χ.

3.3 Corresponding Results for the Sensor
Composed of Two Small Cavities
For comparison, we also consider the sensor made up of two
small cavities that couple to the dissipative reservoir in a single-
point way. This is a standard model of two-mode quantum
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sensors [14, 51], which is used as a benchmark. In this case,
the second line in interaction Hamiltonian Eq. 2c is
rewritten as

HS
I−D � ∑2

i�1
∫ dk Zia

†
i dk +H.c.( ). (22)

This induces a modification on Eq. 10

DS
Z � 1

2
|Z1|2 Z1Z

p
2

Z2Z
p
1 |Z2|2( ) � 1

2
Z1

Z2
( ) Zp

1 Zp
2( ) � 1

2
ZZ† (23)

and Eq. 11

�M
S
in 0[ ] � ( �

κ
√ 2πβδ 0[ ] + �Bin 0[ ]

0
( ) + ���

2π
√ Y1

Y2
( )�C

†

in 0[ ]

+ ���
2π

√ Z1

Z2
( ) �Din 0[ ]), (24)

and the gain matrix GY (9) remains the same. Hereafter, we use
superscript S to label the corresponding quantities of the sensor
composed of small cavities.

An interesting fact is that, the third term in Eq. 20 then
reduces to 4π

κ |Z1~χ
S
11 + Z2~χ

S
12|2 in this case, which is an unavoidable

and untunable noise. However, in our proposal, one can adjust ωL

or τ to eliminate the dissipative noise such that the output noiseN
can remain at a lower level.

4 NUMERICAL COMPARISON OF GIANT
VS. SMALL SENSORS

To numerically estimate the performance of the sensor, we set the
Hamiltonians Hf [0] and V as

Hf � ω1 J
J ω2

( ) and V � 1 1
1 1

( ), (25)

which describes a common linear coupled-cavity system. For
simplicity, we consider that both Yi and Zi are real. With these
specific matrices, one can easily rewrite the state transfer
matrix as

~χ � iκ⎛⎝ Δ − iΓ
2 + iκ

2 −J − iΓ
2

−J − iΓ
2 Δ + Δ12 − iΓ

2

⎛⎝ ⎞⎠ + iγ 1 + ei Δτ+ϕ( )( )
1 0

ei Δτ+ϕ( ) + e2i Δτ+ϕ( ) 1
( )⎞⎠−1

, (26)

~χS � iκ
Δ − iΓ

2 + iκ
2 −J − iΓ

2

−J − iΓ
2 Δ + Δ12 − iΓ

2

⎛⎝ ⎞⎠ + i
γ

2
1 1
1 1

( )⎛⎝ ⎞⎠−1

, (27)

where Δ = ωL − ω1 and Δ12 = ω1 − ω2 are detunings, Γ � 2πY2
1 �

2πY2
2 and γ � 2πZ2

1 � 2πZ2
2 denote the decay rates of the cavities

to the reservoirs, and ϕ = ω1τ is a fixed phase. For numerical
simulations, we set Δ12 = 0 and J = Γ = 0.1κ, which describes a
good cavity in the weak coupling regime [57].

We first plot the frequency responses of the relative signal per
photon, noise, and SNR per photon of the sensor made up of two
small cavities, as shown in Figure 2. We find that both the signal per
photon and the noise reach the maximum value at the resonant
point, as shown in Figure 2A,B, but does not the SNR per photon, as
shown in Figure 2C. To characterize the influences of the loss γ, we
replot the above quantities as the functions of γ at the resonant point
Δ = 0, as shown in Figure 3. Hereafter, we only consider the
responses at the resonant point. As the loss γ increases, both the
signal per photon and the noise gradually increase until reaching their
maximum values at γ ≃ 0.65Γ and then decrease, shown as the blue
and red lines in Figure 3A. Especially, one can find that the output
noiseNS is always greater than the shot noise in the whole intervals of
γ, which means that the shot noise is a fundamental limit of the
output noise. Notably, this result also applies to the sensormade up of
giant cavities, and we will discuss it later. Indeed, by rewriting Eq. 20
with the replacements ~χ → ~χS and ~Z → Z, it becomes
NS � κ

2T (1 + 2Ξ · θ[Ξ] + 2γ
κ |~χS11 + ~χS12|2), where Ξ � |~χS11 − 1|2 − 1.

One can find that the last two terms respectively representing the
reflective gain and the dissipative loss are always greater than or equal
to zero, as shown in Figure 3B. Another point that need to be noticed
is a sudden change of SNRper photon occurs when γ= Γ, as shown in
the inset of Figure 3A. The reason behind this can be found in
the inset of Figure 3B, where the reflective gain becomes zero
at this point. This is because |~χS11 − 1|2 < 1 when γ > Γ, such that
the reflective gain is cut off by the Heaviside function, and thus
the output noise includes a non-zero dissipative loss only. This

FIGURE 2 | (Color online) Frequency responses of the relative signal per photon, noise, and SNR per photon. Parameters in plotting areΔ12 = 0 and J = Γ = 0.1κ. (A)
Spectra of the relative signal per photon. The signal reaches the maximum at the resonant point and decreases as the loss γ increases. (B) Spectra of the relative noise.
Similar to (A), the noise reaches the maximum at the resonant point and decreases as the loss γ increases. (C) Spectra of SNR per photon. SNR per photon does not
reach its maximum value at the resonant point.
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result indicates that the dissipative loss is an inevitable and
unadjustable noise in a small-cavity-based proposal.

With the previous results, we now turn to the sensor made
up of two giant cavities. In contrast to the case we discussed in
the last section, the dissipative matrix DZ additionally
introduces a degree of freedom of the fixed phase ϕ (Δτ is
zero at the resonant point), such that the relative signal per
photon, noise, and SNR per photon have a response to ϕ, as
shown Figure 4 where we also use the same parameters in
plotting. Both the signal per photon and the noise experience a
process of first increasing and then decreasing as the phase ϕ
increases, as shown in Figure 4A,B. An interesting point is
that, thanks to the phase ϕ, the output noise can remain at the
shot noise level, e.g., N ≃ 1.12 at ϕ = 0.76π when γ = 0.5Γ (Blue
line), N ≃ 1.03 at ϕ = 0.84π when γ = Γ (Red line) and N ≃
1.00 at ϕ = 0.89π when γ = 2Γ (Green line), which are about one
order of magnitude smaller than NS, as shown as the inset in
Figure 4B. In Figure 4C, it shows that SNR per photon
increases as the loss γ increases when ϕ ∈ [π, 2π], but

indeed, SNR per photon reaches its maximum value at γ ≃
2Γ. 2As we mentioned in the last section, the shot noise is the
fundamental limit of the output noise for any sensor. This
result also applies to our giant-cavity-based proposal, as shown
in Figure 5. The reflective gain and dissipative loss cannot
simultaneously be zero although they can be zero by adjusting
the phase ϕ, which also explains why the noise is always greater
than the shot noise in Figure 4B.

A clear comparison with the sensor made up of the small
cavities is plotted in Figure 6. As Figure 6A shows, the signal per
photon of giant-cavity proposal S/ntot can be about one order of
magnitude greater than that of small-cavity proposal SS/nStot,
especially when γ = 2Γ (green line). An interesting point is
that Re(N) is almost always smaller than NS in the entire

FIGURE 3 | (Color online) Relative signal per photon and noise as functions of γ at the resonant point. Parameters in plotting are: Δ = Δ12 = 0, J = Γ = 0.1κ. (A) Both
signal (blue line) and noise (red line) experience a process of first increase and then decrease, and reach their maximum value at γ ≃ 0.65Γ, but SNR (black line in inset)
reaches the maximum value at γ ≃ 0.85Γ. In addition, the noise NS is always greater than the shot noise (Gray dotted line). (B) The reflective gain (Blue line, the second
term in Eq. 20) and the dissipative loss (Red line, the third term in Eq. 20) as functions of γwith the replacement of matrix DS

Z . Inset: the amplified curves of reflective
gain. One can clearly see that it is zero when γ > Γ, because the Heaviside function in Eq. 20 cutoff the parts |~χS11 − 1|2 − 1<0.

FIGURE 4 | (Color online) Relative signal per photon, noise, and SNR per photon as the functions of ϕ at the resonant point. Parameters in plotting are: Δ = Δ12 = 0,
J = Γ = 0.1κ. (A) The relative signal as the function of ϕ. As the loss γ increases, the maximum value of the signal decreases; (B) The relative noise as the function of ϕ. The
term “SN” is the abbreviation for Shot Noise. Similar to (A), the noise also increases as the loss γ increases, and it is always greater than the shot noise. However, at some
certain ϕ, the noise can remain at the shot noise level, e.g., N ≃ 1.12 at ϕ = 0.76πwhen γ = 0.5Γ,N ≃ 1.03 at ϕ = 0.84πwhen γ = Γ andN ≃ 1.00 at ϕ = 0.89πwhen γ
= 2Γ. (C) The relative SNR per photon as the function of ϕ. Similar to (A) and (B), SNR per photon also increases as the loss γ increases.

2We have simulated SNR with γ ∈ {0.25Γ, 0.5Γ, Γ, 2Γ, 4Γ, 8Γ, 16Γ} and found SNR
per photon is maximum at γ = 2Γ. For the sake of keeping the picture simple and
clear, we do not show other curves in Figure 4C.
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interval [0, 2π] when γ = Γ, as shown as the red line in Figure 6B.
This means that our proposal can effectively decrease the output
noise by adjusting the parameter ϕ, compared to Ref. [14]. In
addition, from the green and blue lines in Figure 6A,B, one can
find that both the ratio of signal per photon S

ntot
/ S

S

nStot
and the ratio of

noise Re(N)/NS are greater than 1 at some certain values of ϕ,
which means both the signal per photon and the noise of the
giant-cavity proposal are enhanced compared to the small-cavity
proposal. Indeed, this enhancement is led by the non-reciprocal
coupling. As we mentioned in Section 2.2, the non-reciprocal
coupling means that the cavity 1 can affect the excitation of the
cavity 2 via the shared reservoir but not vice-versa, and thus both
the signal per photon and the output noise are amplified by this
non-reciprocity since the readout waveguide is coupled to the
cavity 1. The mathematical reason lies in that the non-reciprocal
state transfer matrix ~χ effectively amplifies the element ~χ12 but
decrease the element ~χ21 when ϕ ≠ (2k + 1)π. Physically, such the
amplification and decrease means that the incident photons are
transmitted back to cavity 1 rather than stored in cavity 2, with the
help of the directional interaction a2 → a1. For the signal per
photon, this process is equivalent to amplifying the signal S but

decreasing the total photon number ntot; For the output noise
Re(N), this process amplifies the dissipative loss. One can examine
the above results by substituting Eqs. 25-27 into Eqs. 19, 20.
Furthermore, although both the signal S per photon and the
output noise Re(N) are enhanced in the interval [π, 1.5π] when γ =
2Γ (green lines in Figure 6A,B, respectively), the SNR per photon
is much greater than those with other γ, as shown as the green line
in Figure 6C. These results show that the giant-cavity structure is
a powerful resource in designing quantum sensors.

5 CONCLUSION AND FUTURE WORKS

In conclusion, we proposed a quantum sensor consisting of two
giant cavities. By coupling cavities to a dissipative reservoir at
multiple points, a non-reciprocal interaction can be engineered
between the cavities and the common reservoir, which requires
no non-linear elements. Compared to the standard two-mode
quantum sensor [14], the output noise can remain at the shot
noise level, which is reduced by about one order of magnitudes.
And the signal-to-noise ratio per photon is also enhanced by

FIGURE 5 | (Color online) Reflective gain (A) and dissipative loss (B) as the functions of ϕ. Parameters in plotting are: Δ = Δ12 = 0, J = Γ = 0.1κ. Both reflective gain
and dissipative loss can be zero at some certain ϕ but they cannon be zero simultaneously, which is the reason why the noise is always greater than the shot noise in
Figure 4B.

FIGURE 6 | (Color online) The ratios of signal per photon (A), output noise (B) and SNR per photon (C) between sensors made up of giant and small cavities.
Parameters in plotting are: Δ = Δ12 = 0 and J = Γ = 0.1κ. (A) For some certain intervals, e.g [π, 1.5π], the signals S/ntot are greater than SS/nStot. Especially, when γ = 2Γ, S/
ntot is about one order of magnitude enhanced compared to SS/nStot. (B) By properly adjusting phase ϕ, Re(N) can be lower than NS. In particularly, when γ = Γ, Re(N) can
be almost smaller than NS globally. (C)With proper gain and loss, e.g., γ = 2Γ, S/(Re(N)ntot) is about one order magnitude greater than SS/(NSnStot). These results
show that the giant-cavity structure is a powerful resource in designing quantum sensors.
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about one order of magnitude. These results show that the
giant-cavity-based sensor can effectively improve sensing
precision.

A future direction is to consider how the non-Markovian effect
affects the sensing performance. Since we only consider the cases
at the resonant point, such that the non-Markovian effect
depending on Δτ is neglected. However, this degree of
freedom plays important roles in the deep non-Markovian
regime τ ≫ 1/κ [35], e.g., it induces a non-exponential decay
[37] and a multi-peak excitation spectrum [48]. Therefore, how
these non-Markovian effects affect the sensing performance is an
open question to be explored in the future, especially when a
coherent feedback is applied to control the system [58–62]. A
possible method to investigate the influences of the non-
Markovian effect is utilizing the quantum simulation
platform [63].
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