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One of the essential features of capital markets as an adaptive complex network

is their collective behavior. In this paper, we have analyzed the collective

behavior of banking sectors of four stock markets, which are composed of

emerging and mature ones. By plotting the dendrograms and heat maps of the

correlation matrices, it is found that the mature markets are more similar to

each other. By applying the method of Random matrix theory(RMT), one of the

important complexity notions, and its tools: participation ratio(PR) and relative

participation ratio(RPR), it is obvious thatmaturemarkets have a lower degree of

collective behavior than the emerging ones. By perturbing the correlation

matrix of these markets, it is found that the mature markets are more

vulnerable. It means that emerging markets that have lower cross-

correlations are less vulnerable to perturbations. The findings of this paper

are useful for policymakers of these countries to concentrate on the market

structures and their behaviors.

KEYWORDS

cross-correlation matrix, random matrix theory, collective behavior, global
perturbation, emerging and mature markets

1 Introduction

Financial markets are an important type of complex system. Complex systems consist

of different components that interact with each other and with the environment outside

the system [1]. These interactions may occur due to competition, dependence,

relationships, and interactions between components, and modeling the intrinsic

behavior of them are difficult [2, 3]. For these reasons, these systems have various

properties, including nonlinearity and collective behavior. Therefore, the study of an

entity alone will not be helpful and the whole system must be analyzed collectively [4–9].

A notable feature of these systems is the spatial and temporal dependence of their

components [10–13].

There are various methods for measuring collective behavior, including mathematical

models such as the Boids model [14, 15] and Kuramoto model [16, 17], that they consider

the study of society as a complex system.
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As mentioned above, there are several ways to measure

collective behavior [17, 18], but a common method of

complex systems for studying collective behavior is Random

Matrix Theory (RMT) [19–23]. RMT also has been used for the

optimal selection of investment portfolio, Identification of

“market states” and long-term precursor to a critical state and

Characterization of catastrophic instabilities (market crashes)

[24, 25]. RMT was developed to explain the statistical properties

of the energy levels of complex quantum systems in nuclear

physics [26]. This theory was first applied in financial markets by

Potters et al [27] at the end of the 20th century. The basis of RMT

is the study of the behavior of the eigenvalues and their

corresponding eigenvectors [27–30]. This theory states that

the eigenvalues of the correlation matrix are divided into two

noises and information parts.

Noises correspond to the eigenvalues of the random matrix,

the area where they are located is called the bulk region and the

information is the largest eigenvalues, which are outside the bulk

region [31–33]. The largest eigenvalue of the correlation matrix

contains the market information and has the same effect on the

whole system, which is called market-wide effect [34–36]. By

removing this eigenvalue, the collective behavior of the market

changes [12]. One of the ideas based on RMT is shuffling the off-

diagonal elements of the correlation matrix C. This idea

eliminates the pattern of correlation between market

components and thus the collective behavior of the market

[33, 37]. Comparing the statistical characteristics of the C and

shuffled C, we can provide valuable information about the

collective behavior of the market. Whatever the difference

between the two matrices is less, the collective behavior of the

market is weaker [28, 33, 38].

Another statistical tools of RMT is participation ratio(PR)

[39]. The participation ratio is a tool for estimating the number of

significant participants in an eigenvector of a matrix [40]. We

also use the relative participation ratio(RPR)that is used to

measure the degree of collective behavior of each market and

can be used to rank different markets in terms of collective

behavior [4, 33].

As mentioned above, one of the features of complex systems

is the spatiotemporal interdependence between the components

of the system that change in the placement of one component to

another. Lim et.al [41] by applying the local and global

perturbations to the correlation matrix changed the

spatiotemporal interdependence. They emphasized that

markets are more sensitive to global perturbation than local

ones. Namaki et.al [42]in their research expressed mature

markets are more sensitive to global perturbation than

emerging markets.

Many empirical findings describe the drivers of capital flows to

the emerging markets [43]. So, studying these markets and

comparison with mature markets is important for scholars [44–46].

On the other hand, historically banks have been one of the

most important sectors of financial markets. Although mature

markets have tried to reduce their dependencies on these

financial institutions and to some extent they could do it, but

they are still the most important source of financing in emerging

markets. The goal of this paper is to analyze the degree of

collective behavior of the banking sectors of four stock

markets: Tehran stock exchange (TSE) and regional bank

sector in the SSE180 index as emerging markets and regional

banking sector activity in Standard and Poor 500 index (S&P500)

and Nikkei225 index as mature ones. So we measure the

robustness of these banks against local and global

perturbations, and whether is there a relationship between the

degree of collective behavior of each market and its vulnerability

to perturbation. The data are for 4-years from March 2016 to

December 2020.

This paper is organized as such after the introduction, the

models used in the research are briefly presented then modeling

results are shown and at the end of the paper, conclusions have

been done.

2 Method

2.1 Cross-correlation matrix

To calculate the correlation of a pair of stocks, we first need to

calculate the logarithmic returns of two-time series (two-stock

prices). Return Ri(t) is defined as follows:

Ri t( ) � logPi t + Δt( ) − logPi t( ) (1)

In the Eq. 1, Pi(t) refer to the price of stock i at the time of t. In

this paper, we consider the Δt is 1 day as the daily prices of each
stock are collected. To exclude the large effect of price on the

correlation coefficient, we use the normalized returns ri(t)

defined as follows.

ri t( ) � Ri t( ) − 〈Ri〉( )
σ i

(2)

In Eq. 2,σi is the standard deviation of the Ri, and 〈/ 〉
denotes a time average over the period studied. The cross-

correlation coefficient is defined as follows:

Cij � 〈ri t( )rj t( )〉 (3)

The amount of Cijis in the range of [ −1, 1] and the amount of

Cij and Cji are equal [42].

2.1.1 Shuffled cross-correlation matrix
Before defining Relative participation ratio(RPR), we should

first introduce the shuffled cross-correlation matrix (shuffled C),

the matrix C can be a diagonal matrix which means that there is

no relationship between market components, but non-diagonal

elements of the matrix C may be non-zero, indicating a

correlation between market components, non-zero elements of

matrix C are necessary for collective behavior but not a sufficient
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condition [33]. For the emergence of collective behavior in the

market. In fact, we do not expect to behave collectively in a

market where their constituents are in a completely random way.

Therefore, in addition to having a correlation between market

components, some kind of pattern or structure for that

correlation is essential. To create the shuffled C matrix we

randomly displace the non-diagonal components of matrix C

this new matrix is called Csh. By changing the matrix C any

particular pattern of correlation disappears in off-diagonal

regions of C but the relationships between individual elements

of C are maintained. So the matrix Csh is a matrix where only the

individual elements of the market components are correlated and

the specific pattern of correlation in the off-diagonal regions

is lost.

2.2 Relationship between RMT distribution
and correlation matrix

As mentioned above, the Cij is important for analyzing the

relationship between a pair of stocks, However, in this study, we

use the empirical approach. In previous work [47], it was shown

that the correlation matrix C is separated into two parts. The part

that corresponds to the RMT predictions and called noise and the

other that deviates from the RMT is called the information. To

separate the noise and information parts the eigenvalues of the

correlation matrix C are analyzed. It has been shown in previous

work [42, 47], that few of these eigenvalues are too far apart from

others that these eigenvalues are the same information and their

respective stocks have a wide effect on the whole market, which is

called the market-wide effect [27, 41].

2.3 Participation ratio

Participation ratio’s statistical tool was first introduced by

[39]. In the context of atomic physics, which later came into

financial physics [22, 33, 48, 49] and is used to measure the

degree of collective behavior in markets. In the diagonal matrix

CN×N gives us a set of eigenvectors (uk) and eigenvalues (λk).

Eigenvalues show the collective mode of the market.

Participation ratio (PR) for the kth stock is defined as follows:

FIGURE 1
Color image of correlation matrices. Warmer colors show higher cross-correlation between components. (A) S&P500, (B) Nikkei225, (C)
SSE180, (D) TSE.
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FIGURE 2
Comparing the dendrograms and Heat maps of indices: vertical axis in dendrograms represents proximity of components. In mature markets,
this criteria shows a strong correlation and in TSE, it shows a weak correlation but in SSE180, themarket is separated into 2 sections. Each section has
a strong correlation but another section is weak. In heat maps warmer colors show a stronger correlation with markets and the results are similar to
dendrograms.
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Pk � ∑N
l�1

uk l( )[ ]4⎛⎝ ⎞⎠−1

(4)

Where uk(l), l = 1, . . . , N are the components of uk. For the

eigenvector even if it has a non-zero component, the value of

PR from above is limited to N, and from below is limited to

the unit. Then it can therefore be concluded that the amount

of PR depends on N, (the size of the market under

investigation). Therefore, it is necessary to eliminate the

dependency on PR on the market size and normalize it.

For this reason, a new relative participation ratio(RPR)

parameter is defined, so that the PR does not depend on

the size of the markets.

2.3.1 Relative participation ratio
The parameter Relative participation ratio RPR to eliminate

the dependency of PR is defined as the size of the matrix. The

amount of PRsh is calculated according to the Section 2.1.1, 2.3.

Then the amount of RPR is defined as follows:

δ � 〈PRsh〉 − 〈PR〉
〈PRsh〉

(5)

Where 〈PR〉 and 〈PRsh〉 represent average of PRs For all the

eigenvectors of C and Csh respectively. If the answer to Eq. 5 is

close to zero, it means that it is no different in C and Csh. So it is

implied that there is no specific pattern of correlation in the off-

diagonal regions in matrix C so the collective behavior of the

market is also weak. Conversely, if the answer to the Eq. 5 is far

from zero, the specific pattern of correlation is strong and as a

result, the collective behavior of the market is strong.

2.4 Perturbing a correlation matrix

As summarized above, applying the perturbation to the

correlation matrix eliminates some of the stylized features

observed in financial time series, such as the genuine

correlation between two stocks belonging to the same business

group [41]. In the following, this section, we describe the details

of the perturbation on the correlation matrix, Firstly, the local

perturbation:

1) Select randomly one of the off-diagonal components of the

cross-correlation matrix.

2) Generate two Gaussian-distributed time series (white noise

series) and calculate their cross-correlations.

3) Substitute the calculated correlation in step 2 instead of the

original correlation selected in step 1.

FIGURE 3
The largest eigenvalues of correlation matrix Vs. largest eigenvalues of the shuffled matrix in markets from March 2016 to December 2020 are
plotted. The sliding yearly window is usedwith discrete steps of 1 day. In Tse distance between the two graphs is high, which indicates that themarket
behavior is not random and there is a dominant collective mode. (A) S&P500, (B) Nikkei225, (C) SSE180, (D) TSE.
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Because of the symmetry of the cross-correlationmatrices, Cij

and Cji are equal. So, when the local perturbation is applied, they
are both placed simultaneously. As mentioned, local perturbation
is a technical study [41]. It has no practical value. The meaning of
global perturbation is its overall impact on market returns, so the
global perturbation has a stronger andmore pervasive effect. This
perturbation applies as follows:

1) Select an off-diagonal component of the cross-correlation

matrix.

2) Identify the two stocks belonging to the correlation coefficient

of Step 1.

3) Generate two Gaussian-distributed time series.

4) Instead of the two stocks identified in step 2, place two

Gaussian-distributed time series in the return matrix.

5) From the modified return matrix, calculate the new cross-

correlation matrix.

FIGURE 4
Comparing PR and PRsh for 4 indices. Whatever PR and PRsh indices behave more similarly, their collective behavior of them is weaker. PR and
PRsh for S&P500 and Nikkei225 are similar to others, so we can conclude they have weaker collective behavior than emerging. (A) S&P500, (B)
Nikkei225, (C) SSE180, (D) TSE.

FIGURE 5
RPR is plotted for indices. RPR shows the level of collective
behavior in markets. In this figure, RPR is higher for TSE and
SSE180. Therefore, the collective behavior of the Iranian and
Chinese index is stronger than other indicators.
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Steps 4 and 5 create a global perturbation that is related to

the pair of stocks selected in Step 1 to add a more structured

account of the behavior of stocks to global perturbation, we

add a rule to step 1 instead of randomly selecting the

correlation coefficient, we first choose the pair of stocks

with the strongest correlation rather than the weakest

correlation. This is called the top-ranked method, and vice

versa, from the weakest to the strongest correlation, this is

called the bottom-ranked method.

3 Results

The purpose of the methods presented in this study is to

compare the collective behavior of the banking sector in the

4 indices S&p500, Nikkei225, SSE180, and TSE. In these

4 indices, The first two are active in mature markets and the

other is in the emergings. To check this comparison, we use

RMT and its tools. At to end of the discussion, we will also

analyze the behavior of these banks to the perturbation, and

answer the question of whether markets with stronger collective

behavior are more vulnerable to perturbation. To introduce, we

see in Figure 1 color images of correlation matrix C for

4 markets, 2 mature markets have higher correlation and

SSE180 is weaker than them. While TSE has a weaker

correlation than the rest.

Also, we draw dendrograms and heat maps of cross-

correlation matrices, which measure the degree of

clustering of correlation markets. Both are derived from the

clustering algorithm [50], and they are clustered in Ward’s

method [51]. Ward’s method is a statistical criterion used in

hierarchical cluster analysis. This criterion is based on the

minimum variance, which minimizes the total intra-cluster

variance. At each stage of the method, the pair finds clusters

that after merging, lead to a minimal increase in the total

variance within the cluster. This is an increase in the square

weight and distance between the centers of the clusters. In the

initial stage, all clusters are single (clusters containing a single

point). To apply a recursive algorithm under this objective

function, the initial distance between individual objects must

FIGURE 6
Comparison of global perturbation and local perturbation for indices. Global perturbation hasmore effect on indices than local. In TSE the effect
of both types is weaker than another. Because this market is isolated from world markets. (A) S&P500, (B) Nikkei225, (C) SSE180, (D) TSE.
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be (proportional to) the square Euclidean distance in

dendrograms, Figure 2 horizontal axis represents the

Proximity criteria of the correlation coefficients and the

vertical axis represents the criterion of non-proximity of

correlation coefficients As expected, mature markets have

clustered more rapidly, which is concluded that cross-

correlation coefficients of these markets are close, in the

emerging markets, TSE clustered slower than matures.

While the SSE180 is split into 2 completely separate

clusters, which is illustrated in both the color image of the

correlation matrix C and the heat map too. In heat maps,

Figure 2 warmer colors represent the stronger correlation,

which can be seen that the matures have a stronger correlation

as seen in dendrograms. This begs the question: do more

cluster markets have stronger collective behavior? To answer

this, we use RMT for analyzing and applying PR to measure

the degree of collective behavior.

As discussed above for measuring the degree of collective

behavior, we use RMT tools that the base of this theory is the

eigenvalues of the cross-correlation matrix. In Figure 3, we

plotted maximum eigenvalues of correlation matrix Vs.

maximum eigenvalues of the shuffled matrix from March

2016 to December 2020. For the first three markets, the

behavior of the two charts is similar, which can be

understood that the random behavior in these three markets

is strong and there is no dominant mode in them, so these

markets are highly efficient. But the behavior of the TSE is

different from theirs, which shows its inefficiency. In Figure 4,

PR and PRsh for the 4 indices is plotted. If PR and PRsh behave

closely together, the collective mode is weaker. Because PR is

dependent on the size of the market(N)and we cannot compare

collective modes of the market by graphs, plot RPR In Figure 5

the δ value is shown, as stated if the δ value is near to zero The

collective mode of the market is weak and random movement

dominates the market and vice versa. So it can be concluded that

the collective behavior of each of the 4 indices is weak [33]. But

for the TSE index, this behavior is stronger than the rest, as in (3)

and 4 were also seen.

FIGURE 7
The plots show the range of mean changes for the global perturbed correlation matrices. Comparing these graphs using the standard deviation
shows that moving toward stationary conditions in mature markets is slower than in emerging ones. (A) S&P500, (B) Nikkei225, (C) SSE180, (D) TSE.
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Other methods used in this study are local and global

perturbation. In Figure 6 global and local perturbations apply

to all indices. As stated in the paper [42] mature markets react

more to these perturbations. Because the range of mean values of

correlation coefficient changes is higher in mature markets. It can

be said that the effect of global and local perturbations on mature

markets is higher than in emerging markets. The TSE index has

been less responsive to the perturbation as it is more isolated than

the other markets, and it is almost internally active. Thus, mature

markets are more vulnerable to local and global perturbations

[42]. The Figure 7 shows the range of mean changes in the global

perturbed correlation matrix. As can be seen, this range is greater

for mature markets, and we conclude that global perturbation is

more effective in these markets. In addition, the rate of stationary

is faster in emerging markets, so it can be found that the effect of

the perturbation on these markets is less lasting. As mentioned in

the Section 2.4 there are two methods top-ranked and bottom-

ranked to make the perturbation. In Figure 8the two methods are

compared which shows that they are not significantly different

from each other and the type of perturbation acts has no effect on

the results.

4 Conclusion

In this study, it is investigated two themes: the collective

behavior of the banking sector in 4 indices and the extent of

their robustness to global and local perturbations. As

expected, the cross-correlation of mature markets is

stronger than emerging ones, but their collective behavior

of them is weaker. When random behavior is strong in a

market, the collective mode is weak. In this study, it was found

that mature markets have a lower degree of collective behavior

and a stronger random mode. It can also be concluded that

mature markets are more efficient.

As the collective behavior of mature markets is weaker than

emerging markets, they are more vulnerable to perturbations.

Therefore, the collective behavior of the market has no clear

relationship with its vulnerability to perturbations, and it can be

concluded that markets with stronger cross-correlation are more

vulnerable to perturbations. In TSE, because this market works

internally and is isolated from other markets, the effect of the

perturbation on it is weak. In addition, the perturbation effect on

mature markets is more effective than emergings. The effect of

FIGURE 8
Comparing global perturbation by two methods top-ranked and bottom-ranked is plotted. As can be seen, the method of perturbation isn’t
effective in results. (A) S&P500, (B) Nikkei225, (C) SSE180, (D) TSE.
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perturbation methods on markets, Top-Ranked and Bottom-

Ranked, are the same. For future studies, it can be analyzed the

structures of different types of markets such as commodity,

currency, and crypto markets by this approach and by measuring

their sensitivity by applying perturbations. Also, by applying

quantum mechanics, for more concentration on the concept of

collective behavior, using the Density Matrix Theory for the

comparison of mature and emerging markets is proposed. The

idea of the Density Matrix comes from quantum mechanics for

dealing with mixed states such as quantum statistical mechanics

[52–54]. Mixed states arise in different situations such as when the

state of the system is not completely clear or the systems are

entangled with each other such as in Financial markets.
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