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Atomic gases tightly trapped near the focus of an electromagnetic wave interact with
photons that exhibit a complex structure, displaying strong gradients of field amplitude and
local polarization that can lead to topological phase singularities. We illustrate the
consequences of this structure on a paradigmatic nonlinear optical process: three-
wave mixing. The process begins by proper selection of the pump field, whose spatial
structure is tailored to present huge gradients of the EM field that enhance atomic
excitations through forbidden transitions. Atoms can then be depopulated via two
electric dipole decays in a cascade configuration, thus providing the three necessary
waves. The properties of the down-converted photons are conditioned to those of the
pump field through phase matching conditions. It is emphasized that the expression of the
photons must incorporate both the structure of the vectorial EM modes and the spatial
configuration of the atomic trap. Due to the three-dimensional focusing, the slowly varying
envelope approximation becomes inadequate when describing the scattered EM field. We
discuss an alternative using a Green function formalism valid for any configuration of the
field that also allows to identify the phase matching conditions. Spherical vectorial waves
exemplify most concepts here discussed, including the possibility of observing nonlinear
quantum phenomena at the single photon level.

Keywords: quantum optics and applications, nonlinear optics and laser properties, structured light (SL), three-wave
mixing (TWM), forbidden transition

It is now 60 years from publication of the emblematic work: Interaction between light waves in a
nonlinear dielectricwhere Bloembergen and collaborators set out to connect the radiative response of
electrons in atomic gases to the nonlinear optical properties of macroscopic dielectrics [1]. The
connection was based on the collective, coherent scattering of light from atoms inside the gas and its
relation to the incident electromagnetic field. The authors showed that the coherence between
scattered and incident fields induces electric moments on the atoms that can yield nonlinear terms in
the field strength, thus coupling waves of different frequencies. To unearth these effects a
quasimonochromatic light source of high-brightness, directionality, and stable intensity as that
given by the laser was required [1]. As modern technologies delve deeper into miniaturization, we
need to look back at this connection but now placing emphasis on an efficient transfer of light at low
intensities. An efficiency that can be reached by tailoring spatial and temporal profiles of light and
matter through light-shaping techniques [2] and versatile atomic traps [3, 4].
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Considered most broadly, the nonlinear process arises from
the underlying interaction between light and matter. An
illuminated atom probes and modifies the surrounding
electromagnetic (EM) field, acquiring information on field
intensities, gradients, and temporal correlations as it scatters
photons between populated and vacuum modes. When the
illuminating field is tailored to match the spatial and temporal
profiles of the atomic radiation pattern, it can create a strong
nonlinear response. Three-wave mixing represents the most
simple response where fields of different frequencies couple
and the potential of structured light is made apparent. Its
implementation requires for three waves to induce a cycling
transition in an atomic medium: moving up via, for instance,
an electric quadrupole transition and cascading down via two
electric dipole transitions through an intermediate level. Under
adequate phase matching conditions an incident beam inducing
the quadrupole transition gives rise to lower frequency waves,
thus acting as a parametric amplifier. This example was chosen in
Ref. [1] to show how symmetry constraints affect the nonlinear
coupling. The experimental challenges to induce this process in
atomic gases at the time were, however, formidable, with the
conditions for observing quadrupole transitions being found in
astrophysical or laboratory plasmas mostly [5]. Experiments
searching to create correlated photons whose frequencies
matched the atomic transition moved towards next order [1].
The first sources of correlated photon pairs were based on a
cascade decay in a four-wave mixing process [6, 7] and led to
enabling technologies in lithography [8], tomography [9],
cryptography [10] and imaging [11, 12] with multiple physics
[13] and transdisciplinary [14, 15] applications.

Atomic electric quadrupole transitions require large gradients
in the amplitude of the incoming field. It is now possible to meet
the experimental challenges to induce these transitions and
explore three-wave mixing in atomic gases. On the one hand,
further development of high-intensity lasers allows for the
observation of quadrupole transitions even using thermal
atomic samples and paraxial pump beams [16–18]. On the
other hand, a quadrupole transition can be induced by large
gradients in the amplitude of the incident EM field down to the
limit of weak intensities. For this, spatial gradients are generated
by shaping light using either phase singularities [19, 20] or
evanescent waves [21] for which even micro-Watt intensity
lasers can suffice [22].

In this manuscript we look back at the three-wave mixing
process following ideas of light shaping and monitoring
mechanisms that have been developed since the early days of
nonlinear optics. Deep down this work is driven by the following
thought: transitions with a single photon can trigger strong
nonlinear optical processes when the spatial profile of the
photon is tailored. The ideal scenario involves spherical
vectorial waves, whose implementation remains challenging as
they require control of the full 4π angle surrounding the atom.
There are, however, experimental platforms where this control is
achieved to a good approximation. In particular a single ion
trapped at the focus of a parabolic mirror [23, 24] is a feasible
set-up for achieving nonlinear strong coupling between few
photons associated to vectorial modes. It has already been

shown that a single photon can induce an electric dipole
transition with high-probability in this set-up due to the
similarities between parabolic and spherical waves [25]. Here,
we study a three-wave mixing process based on ideal spherical
vectorial modes [26]. We consider tightly trapped atoms in the
Lamb-Dicke regime where the spatial confinement approaches the
typical transition wavelengths. Through this ideal scenario we
identify the theoretical tools necessary to understand the
nonlinear process in detail, and establish a route to perform
theoretical and experimental realizations of nonlinear optics
events with a minimum number of photons.

The manuscript is organized as follow. In Section 1 we
introduce our model where a tightly trapped atom is coupled
to a structured EM field. Emphasis is placed on the vectorial
structure of the field and effects related to the spatial extent of
the trap on the atom-light coupling. We show that the trap
strength can alter the atomic multipole decay rates through a
form factor. At the end of this Section we revisit spherical
vectorial waves and their relevance for the system under study.
Section 2 concerns the connection between atomic transitions
and nonlinear optics. We consider the specific example of an
atom in a cascade configuration driven via an electric
quadrupole transition by an incoming spherical wave. The
nonlinear susceptibilities and collective responses of atomic
systems are worked out for tightly trapped atoms. The
mesoscopic densities of electric dipole and quadrupole
polarization as sources of scattered photons are discussed. In
Section 3 we introduce a dyadic Green function formalism that
can be used to overcome the theoretical challenges that rise for
deeply focused modes, such as, non-applicability of the slowly
varying envelope approximation and the identification of the
phase matching conditions. We conclude in Section 4 with a
recapitulation of our results and the scope of our analyses.

1 ELECTRODYNAMICS BEYOND THE
ELECTRIC DIPOLE APPROXIMATION

We consider an atomic gas coupled to a free electromagnetic field.
The dynamics of this composite system are given by the
Hamiltonian

Ĥ � Ĥatom + Ĥfield + Ĥint, (1)
where Ĥfield describes the free electromagnetic field, Ĥatom the
center-of-mass and electronic state of the atomic gas in the
absence of the EM field, and Ĥint links atom and field.

The gas is assumed to be tightly trapped and formed by atoms
with three relevant electronic states |s〉(s = a, b, c) in a cascade
configuration sketched in Figure 1. It is described by the
Hamiltonian

Ĥatom � ∑ ZωA|ΦA〉〈ΦA| +∑ Zωs|s〉〈s|, (2)
where the operator σ̂ss′ � |s〉〈s′| acts over electronic states while
|ΦA〉〈ΦA| acts over vibrational states that describe the atomic
motion inside the trap; the parameters ωs and ωA refer to
electronic and vibrational frequencies, respectively. These
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states are connected by the free EM field, whose evolution is
described by

Ĥfield � ∑
γ

Zωγâ
†
γâγ (3)

with âγ the annihilation operator for an EM mode of frequency
ωγ. The index γ denotes a set of parameters that characterize the
mode, e.g., in a plane wave γ = {k, ϵk,λ} refers to modes of
wavevector k and polarization ϵk,λ. The evolution of the EM field
is given by Maxwell equations for the electric Ê and magnetic B̂
field operators that, when expanded within a normal mode basis,
read

Ê x, t( ) � ∑
γ

E +( )
γ x( )âγe−iωγt + h.c., (4)

B̂ x, t( ) � ∑
γ

i
ωγ

c
∇× E +( )

γ x( )âγe−iωγt + h.c.. (5)

It is convenient to write the mode amplitudes Eγ inside a
restricted Fourier space where the free-space dispersion relation
|k|2 = ω2/c2 has been imposed. In this space the amplitudes are

E +( )
γ x( ) � ∫ dΩke

ik·xfγ θk ,φk( ), (6)

with dΩk a solid angle element and fγ the angular spectrum of the
mode. Equation 6 gives a direct connection between plane waves
and general structured modes.

The interaction between atom and field supports a multipole
description due to the small size of the atom as compared to the
wavelengths involved in most radiative transitions [27]. For
extremely 3D-focused structured light, large gradients of the
field amplitude and spatial-dependent polarization are found
[28]. If the atom is trapped nearby the focus of the light mode
it is necessary to move beyond the dipole approximation, done
here through an interaction Hamiltonian

Ĥint � − Ê X̂, t( ) · d̂ + B̂ X̂, t( ) · m̂ + 1
2
∇Ê X̂, t( ): q̂[ ], (7)

written in terms of the atomic electric dipole d̂ � er̂, magnetic
dipole m̂ � e

2m l̂ + (μ/s)̂s, and electric quadrupole

q̂ij � e(3r̂ir̂j − |̂r|2δij), operators. These operators act over the
internal states of the atom with r̂, l̂, ŝ, refering, respectively, to the
relative electronic position, orbital angular momentum, and spin
angular momentum; while parameters e, m, and μ refer to the
electron charge, mass, and magnetic moment. The vibrational
states are accounted for through the operator X̂ that denotes the
atomic center-of-mass position where field operators are
evaluated. Notice the double product of two range tensors
defined as F: G = ∑i,jFijGij.

Equation 7 illustrates how an atom probes an electromagnetic
field by correlating its internal states to the state of the field.
Through the electric and magnetic dipole moments it probes local
field amplitudes and quadratures, through the quadrupole moment
it gains information of spatial gradients of the field. Bymoving past
the dipole moment it is possible to acquire a better landscape of the
EM field. Furthermore, the theoretical tools used to describe this
extended landscape resemble those commonly used under the
dipole approximation. The similarity is made transparent by
inserting Eq. 4 into Eq. 7 and applying the rotating-wave
approximation, such that—in a reference frame oscillating with
Ĥatom—the interaction Hamiltonian takes the form

Ĥint � ∑
γ

∑
s,s′

ei ωss′−ωγ( )tZκγss′ ~X( )âγσ̂s,s′ (8)

where ~X is evaluated in the rotating frame and the coupling
strength contains electric dipole, magnetic dipole, and electric
quadrupole contributions

κγss′ x( ) � κ ed( )
ss′;γ x( ) + κ md( )

ss′;γ x( ) + κ
eq( )

ss′;γ x( ). (9)
The contributions read explicitly as

κ ed( )
ss′;γ x( ) � E +( )

γ x( ) · dss′, (10a)
κ md( )
ss′;γ x( ) � B +( )

γ x( ) ·mss′, (10b)
κ

eq( )
ss′;γ x( ) � 1

2
∇E +( )

γ x( ): q̂ss′. (10c)

Here, the matrix elements Oss′ � 〈s|Ô|s′〉 that connect two
electronic states |s〉 and |s′〉 are used.

FIGURE 1 | (A) A three-level atom mediates the interaction between different waves. It is considered to be excited via a quadrupole transition connecting levels |a〉
and |b〉 and decays through cascade dipole transitions along level |c〉. (B) Since the atomic system is trapped in a region comparable to the involved radiative
wavelengths, vibrational motion effects must be included.
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From Eq. 7 it is possible to obtain Rabi oscillations, decay
rates, and radiative shifts caused by higher multipole terms
following standard techniques used in quantum optics. There
is, however, a difference that has to be emphasized. The coupling
depends on the trapping strength through the operator X̂, which
can induce transitions among vibrational states ruled by the
matrix element

〈ΦA|κ ed( )
ss′;γ

~X( )|ΦB〉 � dnm · ∫ d3XΦp
A X( )E +( )

γ X( )ΦB X( )[ ]eiωABt,

(11)
plus two analogue terms for the magnetic dipole and electric
quadrupole moments. With vibrational states defining the
strength at which EM field an atom interact, a natural question
is raised: Is it possible to alter the decay rate of an atom in an
structured environment by changing the location and strength of the
trap?While the effect of the location has been studied at length in the
past, where tests of the Purcell enhancement factor depend on the
location of an atom with respect to a boundary that alters the field
distribution [29], the effect of trap strength is less explored. We
answer this question in the affirmative below, where we show that for
localized environments the spontaneous decay rate can be reduced
(enhanced) for weaker (tighter) traps. The change is attributed to the
extension of the atomic trap, which leads to an average over regions
where field intensity and gradient change.

1.1 Spontaneous Emission of Tightly
Trapped Atoms in Structured Environments
To describe the spontaneous emission of an atomic gas inside a
structured environment, we consider the probability that an
excited atom emits a photon into a free mode during a time
interval τ. From Eq. 8 the probability for this process to occur,
regardless of the final vibrational state, is given by the integral

Pγ
s→s′ � ∫τ

0

dt∑
B

ei ωss′+ωAB−ωγ( )t〈ΦB|κγss′ X( )|ΦA〉
∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣
2

, (12)

thus posing frequencymissmatch conditions on the modes the atom
interactsmost strongly with. In general these conditions depend on a
vibrational shift ωAB, but, when the electronic transition frequency is
much larger than the relevant CM transition frequencies ωss′ ≫ ωAB,
this shift can be neglected [30]. By removing these shifts from the
equation the states |ΦB〉 can be averaged out using the completeness
of the vibrational states, leading to

Pγ
s→s′ ≃ S ωab − ωγ( )〈ΦA|κγ†ss′ X( )κγss′ X( )|ΦA〉, (13)

with S(ωab − ωγ) a sharp spectral function that satisfies
S(ω) ~ 2πτδ(ω) as τ → ∞ [31].

Equation 13 should be read as a probability distribution that
weights the decay process. The atom interacts with many modes
of the environment such that the spontaneous decay rates is
obtained from the sum

Γss′;A � ∑
γ

z

zτ
Pγ
s→s′ (14)

consistent with the Born and Markov approximations. By
removing the correlations that build-up between field and
atom we have made the Born approximation, and by
extending the time integral without accounting for
selfconsistent exchanges we have performed the Markov
approximation. In this sense, the spread ωss + ωAB introduced
by vibrational states has to be much smaller than the free mode
density in order to be neglected. This is usually achieved in free
space, and is a good approximation to half cavities where modes
acquire a linewidth.

It is now possible to identify the decay rate of an atom inside
an structured environment. The transition rates between
electronic states incorporate information about the spatial
region explored by the atom and the vectorial nature of the
radiated field. By using the angular spectrum of the field defined
in Eq. 6 the spontaneous rates are found to be [25].

Γ ed( )
ab;A � ∑

σ�,±,0
∑
γ

S ωab − ωγ( ) dp
ab[ ]−σ T ed( )

γ;A[ ]
σσ

dab[ ]−σ, (15a)

Γ md( )
ab;A � ∑

σ�,±,0
∑
γ

S ωab − ωγ( ) mp
ab[ ]−σ T md( )

γ;A[ ]
σσ

mab[ ]−σ, (15b)

Γ eq( )
ab;A � ∑

σ,σ′�,±,0
∑
γ

S ωab − ωγ( ) qp
ab[ ]−σ−σ′ T eq( )

γ;A[ ]
σσ′σσ′

qab[ ]−σ−σ′,
(15c)

where we have used square brackets [x]σ to denote the σ
component of vectors and tensors and adopted the circular
polarization basis {eσ} = {e± = ex ± iey, e0 = ez}. The
contribution of each mode becomes

T ed( )
γ;A[ ]

σσ
� 2π

Z2
∫ dΩk ∫ dΩk′gA k, k′;ωγ( ) fpγ θk ,φk( )[ ]

σ
fγ θk′,φk′( )[ ]

σ
,

(16a)
T md( )

γ;A[ ]
σσ

� 2πc2

Z2ω2
γ

∫dΩk ∫ dΩk′gA k, k′;ωγ( ) k × fpγ θk ,φk( )[ ]
σ
k′ × fγ θk′ ,φk′( )[ ]

σ
,

(16b)
T eq( )

γ;A[ ]
σσ′σσ′

� 2πc2

Z2ω2
γ

∫dΩk ∫ dΩk′gA k, k′;ωγ( ) k[ ]σ fpγ θk ,φk( )[ ]
σ′ k′[ ]σ fγ θk′ ,φk′( )[ ]

σ′.

(16c)

The effect of the vibrational states for all multiple moments is
given entirely by a form factor

gA k, k′;ωγ( ) � ∫ d3XΦp
A X( )ei k̂−k̂′( )· ωγX/c( )ΦA X( ). (17)

The form factor shows that the center-of-mass motion
performs an average over the field distributions. The average
depends on the atomic center of mass initial state. For an atom
prepared in the ground state of an harmonic trap with angular
frequency components Λx,y,z centered at the position X0—which
does not need to coincide with the origin used to describe the EM
field—the form factor is

gA k, k′;ωγ( ) � ei k̂−k̂′( )· ωγX0/c( ) ∏
i�x,y,z

e−
2πηi k̂i−k̂i′( )2

2 (18)

The average carries information on the trap through the
Lamb-Dicke parameters ηi �

�����������
Zω2

γ/2Mc2Λi

√
� li/λγ relating the

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8961744

Gutiérrez-Jáuregui and Jáuregui Nonlinear Quantum Optics with Structured Light

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ground-state size of the trap li � 2π
�������
Z/2MΛi

√
to the wavelength

of the electromagnetic mode λγ. In the Lamb-Dicke limit ηi < 1,
the atoms are confined below the photon wavelength and will not
be heated by light scattering [32]. Notice that even if ωγ ≫Λi, the
condition is achieved for ωγ ≪

�������
2Mc2/Z

√
taking into account the

value of the atom rest energy Mc2. The Lamb-Dicke regime has
been achieved for trapped ions [33] and neutral atoms [34].

Through Eqs 15a, 15b, 15c, 16a, 16b, 16c, Eq. 17 we have
shown that decay rates depend on the EMmode density evaluated
at the atomic resonance frequency and also on the average value
determined by the vibrational states. The electromagnetic modes
γ that participate in Eqs 15a, 15b, 15c can be constrained by
imposing physical boundaries, as done in experiments with
optical cavities. Then, the enhancement [29] or inhibition [35,
36] of the spontaneous emission rate depends on the
electromagnetic structure of the environment and the location
and trapping strength of the atom. Notice that this control is
expected not only for electric dipole transitions, but for any
multipole transition as we have just illustrated for electric
quadrupole and magnetic dipole cases.

It is worth mentioning that for atoms in free-space the EM
field is homogeneous and the dipolar and quadrupolar
spontaneous emission decay rates are

Γ ed( )
ss′ � 4|dss′|2ω3

ss′
3Zc3

, (19a)

Γ md( )
ss′ � 4|mss′|2ω3

ss′
3Zc3

, (19b)

Γ eq( )
ss′ � |qss′|2ω5

ss′
15Zc5

. (19c)

This can be shown by evaluating the T (mult)
γ;A integrals with

angular spectrum

ffree
γ θk , ϕk( ) � 1

| sin θk| δ θk − θγ( )δ ϕk − ϕγ( )
for each polarization, and using the completeness relation of
polarizations ϵk,λ and wavevectors k. For a systematic approach
beyond the quadrupolar interaction, however, it is more
convenient to use the spherical modes.

1.2 Spherical Vector Waves: Atomic
Radiation Patterns
The structure of the radiated field incorporates the atomic
symmetries that arise from the central field model. In the
mean field scheme, individual radiative electronic transitions
involve a single electron that changes its orbital and yields a
non-null electromagnetic multipole for the atom as a whole. An
EMmultipole transition of an atom can be either described as the
emission or absorption of a single photon in an appropriate
spherical vectorial mode, or as divided along multiple photon
channels with wavevectors k and specific angular distribution
probabilities. Spherical vectorial modes then lead to a more
efficient transfer than their wavevector counterparts.

This efficient transfer is already suggested by the form of the
spherical vectorial modes. In free space a monochromatic

spherical wave of frequency ω and amplitude A has an
angular spectrum

fγ � A ~Y
P( )
jm θk ,φk( ). (20)

The spectrum describes the coupling of orbital and polarization
angular momenta of photons to yield a total angular momentum
{jm} as described by the functions ~Y

(P)
jm where P = E, M refers to

either transverse magnetic or transverse electric waves. These
functions are written explicitly in the Supplementary Appendix
SAI in terms of standard spherical harmonic functions Yℓm(θ, φ)—
that account for the orbital angular momentum—and spherical
polarizations e± = ex ± iey, e0 = ez. Spherical vectorial modes are
then characterized by the parameters γ: {ω/c = k, j,m, P} that can be
compared to the electronic degrees-of-freedom involved during a
transition. In particular to the atomic angular momentum that
includes both orbital and spin contributions of the electronic
configurations and the angular momentum of the nucleus. Note
that the electronic and electromagnetic fields should be described in
the same reference frame. In particular, the same quantization z-axis,
which is either arbitrarily selected or predetermined by anisotropic
environments. The latter can be, e.g., external electric and magnetic
fields selected to manipulate the internal or external degrees of the
atom, or they could refer to the geometry of cavities designed to
control the classical or quantum features of the electromagnetic field.

The radiative transitions that connect two-atomic states are
ruled by strict conservation laws for energy, linear momentum,
and angular momentum of the atom-radiation system as a whole.
These conservation laws are naturally satisfied by spherical modes
where electric and magnetic multipole transitions involve a single
Y

(E)
jm or Y(M)

jm photon [37]. As such, they can be used to connect
the atomic internal state to the most probable decay processes and
the specific EM modes involved. For example, the spatial pattern
of magnetic spherical waves Y(M)

jm is obtained from Eq. 6 as

∫ dΩke
−ik·r ~Y

M( )
jm θk ,φk( ) � 4πi−jjj kr( )Y M( )

jm θ,φ( ), (21)

with jj(kr) the spherical Bessel functions with k = ω/c and the
position r = {r, θ, ϕ}. This form was used to obtain the radiative
decay of Eqs 19a, 19b, 19c, but, by portraying the wave as a single
vectorial mode, there is no need to account for the contribution of
each wavevector and polarization. Similar descriptions are found
for the spherical electric modes. Relevant, well-known
mathematical properties of spherical vectorial modes are
summarized in Supplementary Appendix SAI including a
connection to vectorial plane waves. We show explicitly the
simple structure of the modes in k-space that is used to define
a scalar product from which the EM field can be quantized. These
properties emphasize that the mode structure results from the
direct coupling of orbital and polarization angular momenta of
the field.

Figures 2–4 are used to illustrate the rich spatial patterns of
vectorial modes. In an effort to show the symmetries involved,
isointensity surfaces are drawn for each polarization e±,0, and for
the total intensity of the spherical waves. As anticipated in the
Introduction, the polarization and configuration structure in this
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subwavelength region is complex. High gradients of the intensity
and vortices along a dislocation line for certain polarizations can
be found as shown by the phase structure in the XY plane.

We begin with Figure 2 where each polarization component of
the electric dipole spherical wave is described by a combination of
spherical functionsYℓmwith ℓ = 0 and 2, as we now discuss. Figure 2

shows the Y(E)
11 spherical wave. The σ+ polarization component is a

combination of both Y20 and Y00, the latter being independent of θ
and φ and not null at r = 0. Neither Y20 nor Y00 components exhibit
orbital vortices. For comparison, the σ− component is proportional
Y22 and displays an optical vortex with topological charge 2 along the
Z-axis. The π component is proportional to Y21 with a unit

FIGURE 2 | Isosurfaces of an electric dipole Y
(E)
11 spherical wave at 40% of the intensity divided into: (A) total intensity; (B) σ− polarization component; (C) π

polarization component; and (D) σ+ componentsof the polarization. In (E–G) the phase distributions at the z = 0 plane are plotted for different polarization components.

FIGURE 3 | Isosurfaces of an electric quadrupole Y
(E)
22 spherical wave at 40% of the intensity divided into: (A) total intensity; (B) σ− polarization component; (C) π

polarization component; and (D) σ+ components of the polarization. In (E–G) the phase distributions at the z = 0 plane are plotted for different polarization components.
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topological charge vortex. Consider next the quadrupole electric
spherical wave Y(E)

22 shown in Figure 3. An analogous description
follows but through a combination ofYℓm functions with ℓ = 1 and 3.
This implies an odd behavior for quadrupole waves in contrast to the
even behavior of dipole electric waves with respect to the parity
transformation. Finally, Figure 4 illustrates a Y(M)

11 spherical wave.
In general, each circular polarization σ±(π) component of Y(M)

jm is
proportional to the Yjm∓1(Yjm) spherical harmonic. The parity of
magnetic spherical modes is even (odd) for even (odd) values of j.

The results are to be compared with standard paraxial optics.
For paraxial optics, light polarization is approximately a global
concept. There is a main direction of propagation and the
polarization vectors are approximately perpendicular to it.
This facilitates the identification of processes where only either
σ+, σ− or π transitions occur; π-transitions require a main
direction of propagation perpendicular to a quantization-axis
defined by the environment as mentioned in the beginning of this
Subsection. For each type of transition the atomic internal states
experience a change of the internal magnetic number Δm = 1, −1,
0 respectively. If a realization of a few atomic levels model is
desired, a search of an atomic- EM field configuration is
performed to maximize the relevance of predetermined
internal atomic sublevels that participate in the nonlinear
optical process.

2 THREE-WAVE MIXING INDUCED BY A
FORBIDDEN TRANSITION

Having described how light can be tailored to induce particular
transitions with high probability, we now move to the nonlinear

response of an atomic gas. For this we are going to consider the
case drawn in Figure 1where a three-level atomic gas is driven by
a structured EM mode. States |a〉 and |b〉 are connected through
two paths: one via a quadrupole transition with moment qab; and
the other via two electric dipole transitions through an
intermediate level |c〉 with moments dac and dbc. All other
moments are considered negligible. The incident mode â1 is
tailored to display a large spatial gradient, it presents the adequate
polarization to connect a and b states, and is slightly detuned
from the quadrupole transition. It provides the conditions for
modes â2 and â3 to become populated as the atom descends down
the dipole ladder, thus describing a three-wave mixing process.
Most studies in the literature do not consider the possibility of the
quadrupole transition and focus only on the two-photon electric
dipole processes associated to the ladder configuration of a three
level atom-EM field system [38]. Nevertheless, those studies
illustrate a plethora of interesting phenomena whose analogs
and extensions when three-wave mixing is allowed deserve
further analyses.

Three-wave mixing relies on the coherent scattering from
mode â1 to modes â2 and â3. To account for this scattering we
divide the total Hamiltonian of Eq. 1 as

Ĥ � ∑
i�1,2,3

Zωiâ
†
i âi +∑

s,s′
Zκiss′

˜̂X( )âiσ̂ n( )
s,s′ +H.c.{ } + Ĥatom + Ĥfield′

+ Ĥint′
(22)

where we separated the three EM modes â1, â2, â3 from other
environment modes accounted for in the primed terms. The
evolution of the mode operators

FIGURE 4 | Isosurfaces of an magnetic dipole Y
(M)
11 spherical wave at 40% of the intensity divided into: (A) total intensity; (B) σ− polarization component; (C) π

polarization component; and (D) σ+ components of the polarization. In (E)–(G) the phase distributions at the z = 0 plane are plotted for different polarization components.
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_̂aj � −iωjâj − i∑
ss′

κjpss′σ̂ss′, (23)

naturally divides into free and scattered components. The
electromagnetic Ê and B̂ field operators are then obtained by
solving the self-consistent equations for field and atom operators
and performing a sum over all the modes (see Eq. 4 above).
Equivalently, we could define atomic polarizabilities and obtain
the evolution of the field from Maxwell equations. To do so we
consider first a density matrix for the atomic state

ρtw � ρCM ⊗ ρ (24)
where ρCM describes the vibrational motion of the atom and ρ
describes its electronic state. This form requires that center of
mass and internal states are not correlated at an initial time, and
remain so throughout the nonlinear process. This condition
could be valid in the Lamb-Dicke regime. From Eqs 23, 24
dipole and quadrupole moment densities P and Q of the
three-level atomic gas can be defined as

P X, t( ) � NρCM X( ) dacρac + dcbρcb + h.c.( ), (25a)
Q X, t( ) � NρCM X( ) qabρab + q†

abρba( ), (25b)
where the total number of trapped atoms N is first introduced.

Non-linearities enter the picture through the internal state of
the atom. They result from the participation of photons inside γ
modes at different orders in the coupling strength κ

ρ � ∑
n

gn κ( )ρ n( ). (26)

The series converges for κ lower than the detunings Δ and
decay rates Γ(mult). Three-wave mixing appears at second order in
the series, the details are described in the Supplementary
Appendix SAII following a semiclassical approach equivalent
to an adiabatic elimination of the atomic variables in the fully
quantum regime [39]. The final expression for the atomic
polarization at a position X is

P̂ X, t( ) � ∑
ℓ

P̂ℓ X,ωℓ( )e−iωℓt, (27)

where the leading terms are shown to be

P̂2 X,−ω2( ) � N

Z2
ρCM X( ) qab: ∇Eγ1aγ1( )† dcb · Eγ2aγ2( )dac

Δ3 Δ1 − i 12Γ
(eq)
ab[ ] , (28)

P̂3 X,−ω3( ) � N

Z2ρ
CsM X( ) qab: ∇Eγ1aγ1( )† dac · Eγ3aγ3( )dcb

Δ2 − i 12 Γ(eq)ab + Γ(ed)cb( ) 1

Δ1 − i 12Γ
(eq)
ab

+ 1

Δ3 + i 12Γ(ed)ac

⎛⎜⎝ ⎞⎟⎠
(29)

Meanwhile, the quadrupole densities oscillate as

Q̂ X,−ω1( ) � N

Z2ρ
CM X( ) d̂cb · Eγ2aγ2( )† d̂ac · Eγ3aγ3( )†q̂ab

Δ1 − i 12Γ
(eq)
ab[ ] Δ3 − i 12Γ(ed)ac[ ] (30)

Once the electronic states are adiabatically eliminated, the
field evolution of Eq. 23 is equivalent to an effective

Hamiltonian density of the atomic gas interacting with the
EM field

Ĥeff � ∑
γ1

1
2
Q̂ ω1,X( ): ∇E γ1( ) X, t( ) +∑

γ2

P̂ −ω2,X( ) · E γ2( ) X, t( )

+∑
γ3

P̂ −ω3,X( ) · E γ3( ) X, t( ).

(31)
Here, the summation is performed over free modes γi whose

frequency ωi close to the transition frequency ωss′ and their
polarization and angular momentum jimi are adequate to
induce the atomic transition with the corresponding
multipole moment. That is, rapidly oscillating terms derived
from far from resonance conditions or an spatial configuration
out of the expected spherical vector mode one have been
discarded.

2.1 Multipole Densities as Sources of
Radiation
Having revisited the connection between electronic processes and
nonlinear optical processes, we can now exploit the connection to
Maxwell equations. For localized sources which admit an efficient
multipole expansion, the radiated field operator Ê is known to
satisfy the equation [31, 37, 40]

− ·  + 1
c2

z2

zt2
[ ]Ê � 4π

c

z

zt
Ĵ (32)

where the sources

Ĵ � Ĵ
(ed) + Ĵ(eq) (33)

divide into electric dipole Ĵ
(ed)

and quadrupole Ĵ
(eq)

operators that
satisfy

J(ed) � 1
c

zP̂
zt
, J(eq) � −1

c

z

zt
 · Q̂. (34)

It is possible to extend the formalism to include magnetic
dipole transitions through a magnetization term

Ĵ
(md) �  × M̂. (35)

In our case, Eq. 32 stems from the interaction Hamiltonian
beyond the dipole approximation written in Eq. 7 and the
decomposition of the electric fields [4]. The form of the
interaction led naturally to the vectorial spherical waves
associated to each atomic radiative transition and then to
source terms of this form. The particular atomic evolution
follows from a master equation evolution (as defined in
Supplementary Appendix SAII), but the form is universal.

Note that radiation can also be generated by so-called “free”
sources. An example is radiation scattered by structureless ideal
charges such as electrons, i.e., the Compton effect, which has
frequently been described using a plane wave expansion of the
quantized EM field [31]. Recent theoretical studies concern the
Compton effect with photons associated to structured beams
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[41], and the implementation of the inverse Compton effect for
twisted electron beams is an active area of research [42].

For the three-wave mixing process considered here, the
induced moments oscillate at frequencies ω1, ω2 and ω3. As
such, the evolution of the field amplitudes can be decomposed
into a Fourier series that leads to

− ·  − ω2
1

c2
[ ]E γ1( ) � −4πω

2
1

c2
 ·Q −ω1( ), (36a)

− ·  − ω2
i

c2
[ ]E γi( ) � 4πω2

i

c2
Ps −ωi( ), i � 2, 3 (36b)

whenever the temporal phase matching condition is imposed ω1

= ω2 + ω3. From them, conditions yielding a high efficiency of
parametric processes based on atomic coherence can be obtained
[43]. Note that the full quantum treatment implicit in Eq. 32
allows to study correlations of the quadrature equations of the
EM modes, including squeezing conditions [44].

Most implementations of nonlinear optics processes consider
input paraxial beams driving the atomic gas. The set of paraxial
modes {γpxi } neither matches the atomic symmetry nor provides
any guarantee of an adequate description of the EM field in the
radiation zone [45]. Within the paraxial regime, the theoretical
description of the classical and quantum properties of light is
incorporated using the slowly varying amplitude approximation
[1]. It states that the relative change in the amplitude per
wavelength is small and there is a main direction of
propagation z of the light fields so that the dominant spatial
variation of the amplitude can be approximated by (ω/c)zzE(γi).
This is not valid when the electromagnetic beams are focused,
but, as we now show, the vectorial waves provide a form to
describe the evolution.

3 DYADIC GREEN FUNCTIONS

Schwinger [46] introduced an elegant formalism to evaluate the
response function between the electromagnetic field and a
polarization source using the Green function dyadic. As
Maxwell equation, Eq. 32, can be worked out using this
formalism for generalized multipole sources we now revisit
this formalism.

The Green dyadic Γ is a tensor with r, s components

Grs X, t;X′, t′( ) � 〈T̂ Ê
−( )
r X, t( )Ê +( )

s X′, t′( )〉 (37)
with T̂ a time ordering operator that, in field theory applications,
leads to Feynman symmetric order; and, in optical studies, is
chosen to guarantee the retarded scheme. By being written in
normal order it also provides a natural connection to photon
detection theory and real time monitoring of the emitted field.
This tensor is responsible of the propagation of fields. It then
allows us to write the free and scattered fields discussed above as

Êr X, t( ) � Ê
free

r X, t( ) + Ê
scatt

r X, t( ) (38a)

Ê
scatt

r X, t( ) � ∑
s�1,2,3

∫ d3X′dt′Grs X, t;X′, t′( ) zct′J( )s X′, t′( ).
(38b)

Where the free field Ê
free

is, by construction, the adequate
quantum field solution of the Maxwell equations with no sources,
andmay include the incident EM field. And the scattered EM field
Ê
scatt

is created by the atomic multipole densities.
For a retarded scheme and a vectorial spherical expansion of

the electric field operators in free space, the tensor is
decomposed as

Grs X, t;X′, t′( ) � ∫ dωGrs X,X′;ω( )e−iω t−t′( )

Grs X,X′;ω( ) � ω2 ∑
P�E,M

∑
ℓ,m

jℓ
ωr<
c

( )h 1( )
ℓ

ωr>
c

( ) ~Y
P( )

ℓm( )
r
θ,φ( ) ~Y

P( )*
ℓm( )

s
θ′,φ′( ) (39)

with jℓ and h(1)
ℓ

the spherical Bessel functions.

3.1 Spatial Phase Matching Conditions
We can now use this formalism to describe the phase
matching conditions that rule the underlying nonlinear
processes. For plane waves phase matching conditions
establish the relations between the wave vectors of the
involved EM modes that guarantee the highest efficiency of
an optical nonlinear process. In the quantum realm, these
equations are interpreted as the conservation of linear
momentum of the participating photons. For a
homogeneous atomic gas, the three-wave mixing phase
matching conditions are

k1 � k2 + k3. (40)
For beams exhibiting a common dislocation line—and

correspondingly a non-trivial local orbital momentum along
that line—the phase matching conditions correlate the
topological charge of the vortices so that the angular
momentum of the photons is conserved [47, 48]. For an
isotropic atomic sample and for modes exhibiting optical
vortices of topological charge mi along a common axes, for
our process

m1 � m2 +m3. (41)
In this Section we show how they naturally emerge from the

dyadic treatment of the scattered field. To that end it is just
necessary the integrate the Maxwell Equation Eqs 38a, 38b over
the spatial variables of the localized source

∫ d3X′jℓ ωr/c( ) ~Y P( )p
ℓm θ′, φ′( ) · J X′, t′( ) (42)

If the 3D sample is in an isotropic trap, the angular
integration acquires an analytic expression (some formulae
useful for the calculation of the spatial derivatives of the
spherical waves can be found in the Supplementary
Appendix SAI). The integrals are, in general, a linear
combination of the Wigner 3-j symbols
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∫ dΩYℓ1m1 θ,φ( )Yℓ2m2 θ,φ( )Yℓ3m3 θ,φ( ) �����������������������
2ℓ1 + 1( ) 2ℓ2 + 1( ) 2ℓ3 + 1( )

4π

√
ℓ1 ℓ2 ℓ3

0 0 0
( ) ℓ1 ℓ2 ℓ3

m1 m2 m3
( ) (43)

available in most numerical platforms. The phase matching
conditions result from the identification of non-null Wigner 3-
j symbols,

miϵ −ℓi, . . . , ℓi{ }, i � 1, 2, 3,

m1 +m2 +m3 � 0, |ℓ1 − ℓ2|≤ ℓ3 ≤ ℓ1 + ℓ2.

These phase matching conditions can be interpreted as a
conservation of the total angular momentum and not just its
z-component for the photons involved in the three-wave mixing
process.

3.1.1 Scattered Field
Since just a constrained set of γpm modes satifies the phase
matching conditions, the scattered field is given by

Ê
scatt

r X, t( ) � ∫ d3X′dt′Γrs X, t;X′, t′( ) zct′J( )s X′, t′( ) (44a)

� ∑
γpm

∑
s

α
γpm
rs h 1( )

ℓpm

ωpmr

c
( ) ~Y

P( )
ℓpmmpm

( )
r
θ,φ( ), ω1 � ω2 + ω3

(44b)
α
γpm
rs � ∫ d3X′ρCM X′( )jℓpm ωpmr′

c
( ) ~Y

P( )
ℓpmmpm

( )
r
θ′,φ′( )Js X′( )

(44c)
An advantage of working with spherical vectorialmodes is that any

set of three modes γab, γbc and γca with ω1 = ω2 + ω3 must be
considered as usual, but the phase angular matching conditions select
a discrete set of few modes specified by the polarization P and the jss′
and mss′ values that satisfy the angular phase matching conditions.
This is a basic difference with standard studies where the spatial phase
matching is satisfied by a continuous set of spatial modes.

Once few of these modes are identified one could now apply,
e.g., the semiclassical approximation or other standard
techniques [49–51] to work out the behavior of the quantum
quadratures of the field and their correlation to the atomic
degrees of freedom. The modes, of course, depend on the
experimental conditions.

4 DISCUSSION

We have presented a description of three-wave mixing inside
an atomic cloud. We began by showing how this process could
be efficiently induced by properly shaping the light field and
then moved to the description of the free and scattered field
that are ultimately measured in an experiment. For this, we
went beyond the dipole approximation and showed that the
system is naturally described by multipole spherical waves.
Multipole spherical waves yield the optimal description of the
basic radiative atomic processes. As such, they are
paradigmatic structured light fields. Yet, their use in the

description of nonlinear systems is scarse. The reason is
that most implementations of nonlinear processes employ
laser beams and assume a paraxial regime. Nowadays
technological developments go in a different direction.
Optimal coupling to minimize energy costs in, e.g.,
quantum information protocols require the realization of
nonlinear processes triggered by single photons [52]. A
natural scheme to achieve such a coupling is by trapping
atoms nearby the focus of spherical vectorial waves.

The main task in this work was to emphasize both the effects
of trapping on the radiative responses of an atom and present a
way to surmount the difficulties that arise. These included
moving beyond dipolar approximation, and the breakdown
of commonly used approximations as the slowly varying
envelope one. We showed how the dyadic Green function
formalism is easily implemented and allows for the
identification of a discrete set of modes that would
participate in the nonlinear process once the relevant atomic
states are identified.

The calculations were described by a paradigmatic process that
can now be reached in experiments with atomic gases: three-wave
mixing. Notice, however, that the general concepts introduced in
our work can be extended to any nonlinear process. In addition
the dyadic formalism can be directly applied for other
symmetries; yielding a direct route for the identication of the
phase matching condition. While standard techniques were
developed with dipolar transitions and plane waves in mind,
the extension to structured light can be readily done with the
appropriate basis in mind.
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