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We systematically study the constructions of unextendible entangled bases with a fixed
Schmidt number k (UEBk) in a bipartite system Cd ⊗ Cd′. Motivated by the methods of
[J. Phys. A 52 : 375,303, 2019], we construct (dd’ − v)-member UEBks in Cd ⊗ Cd′ by
using generalized weighing matrices and thus generalize the results of [arXiv: 1909.10043,
2020]. We also present the corresponding expressions of our constructions and
graphically illustrate UEB3s in C5 ⊗ C6 and C6 ⊗ C6.
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1 INTRODUCTION

Entanglement is an essential resource of quantum information processing, and it presents the nature
of quantummechanics [1, 2]. It is also related to some fundamental problems in quantummechanics
such as reality and non-locality [3, 4]. Quantum entanglement has significant applications in many
fields such as quantum teleportation [5], quantum dense coding [6], quantum tomography [7], and
the mean kings problem [8].

In order to characterize quantum entanglement, the analysis of various bases in the state space has
attracted extensive attention in recent years. The notion of unextendible product basis (UPB) in
multipartite quantum systems has been deeply studied. The member of a UPB is not perfectly
distinguishable by local positive-operator-valued measurements and classical communication, which
shows the non-locality without entanglement [9]. As the generalization of UPB, the notion of
unextendible maximally entangled basis (UMEB) has been proposed [10]. Since then, many results of
UMEBs in arbitrary bipartite spaces are established: no UMEB in C2 ⊗ C2, 6-member UMEB in
C3 ⊗ C3, 12-member UMEB in C4 ⊗ C4 [10], 30-member UMEB in C6 ⊗ C6 [11], d2-member
UMEB in Cd ⊗ Cd′(d′/2< d< d′), and qd2-member UMEB in Cd ⊗ Cd′(d′ � qd + r, 0< r< d)
[12–14] and different members of UMEBs in Cpd ⊗ Cqd′(p≤ q) [15–18].

In [19], Guo first proposed the unextendible entangled basis with a fixed Schmidt number k
(UEBk) in Cd ⊗ Cd′(2≤ k< d< d′); thereafter, the concepts and constructions of entangled basis
with Schmidt number k (EBk) and special entangled basis with Schmidt number k (SEBk) have been
presented successively [20]. Later, Guo also generalized the construction of UEBk from bipartite
systems to multipartite quantum systems [21].

Li et al [22] first constructed the SEBks in Cd ⊗ Cd′ via some generalized weighing matrices,
which is a breakthrough structure for dd’ is not the multiple of k. Furthermore, Wang [23] combines
the decomposition of the whole matrix space and generalized weighing matrices to consrtuct the
SUEBks, which provides a useful way to construct different members of UEBks in Cd ⊗ Cd′, but it
still has some imperfections and unmentioned issues, such as the bounds of the space dimension, the
order, and the concrete mathematical expression of the UEBks.
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In this paper, we mainly focus on the construction of UEBks in
bipartite systems. Motivatied by the method of [22, 23], using
generalized weighing matrices, we provide flexible and diverse
constructions of different members of UEBks. We first introduce
some related notions and terminologies; then, we propose three
different ways to construct (dd’ − v)-member UEBks in Cd ⊗ Cd′

and present the corresponding mathematical expressions. We
also give some examples of UEB3 in C5 ⊗ C6 and C6 ⊗ C6.

2 PRELIMINARIES

In order to better comprehend the notion of UEBk in Cd ⊗ Cd′,
we first introduce the concept of EBk and SEBk in Cd ⊗ Cd′. In
the sequel, we always assume that d ≤ d′.

The Schmidt number of a bipartite pure state |ϕ〉∈ Cd ⊗ Cd′,
denoted by Sr (|ϕ〉), is defined as the length of its Schmidt
decomposition: if its Schmidt decomposition is
|ϕ〉 � ∑k−1

n�0λn|en〉|en′〉, then its Schmidt number is k, that is, Sr
(|ϕ〉) = k. It is clear that Sr (|ϕ〉) = rank (ρ1) = rank (ρ2), where ρi
denotes the reduced state of the ith part of ρ = |ϕ〉〈ϕ|. If an
orthonormal basis is constructed by such |ϕi〉s, then it is called an
entangled basis with Schmidt number k (EBk) [20]. Particularly, if
it is an EBk and all the Schmidt coefficients of {|ϕi〉}s equal to 1�

k
√ ,

then it is called a special entangled basis with Schmidt number k
(SEBk). It is obvious that SEBk becomes a product basis (PB)
when k = 1 and a maximally entangled basis (MEB) when k = d.

A set of states {|ϕi〉∈ Cd ⊗ Cd′: i � 1, 2, . . . , m,m< dd′} is
called an m-number unextendible entangled bases with
Schmidt number k (UEBk) [19] if and only if

(i) Sr (|ϕi〉) = k and |ϕi〉, i = 1, 2, . . . ,m are all entangled states;
(ii) 〈ϕi|ϕj〉 = δij;
(iii) if 〈ϕi|ψ〉 = 0 for all i = 1, 2, . . . , m, then Sr (|ϕi〉) ≠ k.

Actually, there is a similar concept in matrix spaces [20]. Let {|
k〉} and {|ℓ′〉} be the standard computational bases ofCd andCd′,
respectively, and {|ϕi〉}dd′i�1 be an orthonormal basis of Cd ⊗ Cd′.
Let Md×d′ be the Hilbert space of all d × d′ complex matrices
equipped with the inner product defined by 〈A|B〉 = Tr (A†B) for
any A, B ∈Md×d′. If {Ai}dd′i�1 constitutes a Hilbert–Schmidt basis of
Md×d′, where 〈Ai|Aj〉 = dδij, then there is a one-to-one
correspondence between {|ϕi〉} and {Ai} as follows [20]:

|ϕi〉 � ∑
k,ℓ

a i( )
kl |k〉|ℓ′〉∈ C

d ⊗ C
d′ 5 Ai �

��
d

√
a i( )
kℓ[ ] ∈ Md×d′,

Sr |ϕi〉( ) � rank Ai( ), 〈ϕi|ϕj〉 � 1
d
Tr A†

i Aj( ), (1)

A set of d × d′ complex matrices {Ai: i = 1, 2, . . . , n, n ≤ dd′} is
called an unextendible rank-k Hilbert–Schmidt basis of Md×d′
[24] if and only if

(i) rank (Ai) = k for any i;
(ii) Tr(A†

i Aj) � δi,j;

(iii)if Tr(A†
i B) � 0, i = 1, 2, . . . , n, then rank(B) ≠ k.

It turns out that {Ai: rank (Ai) = k} is an unextendible
Hilbert–Schmidt basis of Md×d′ if and only if {ϕi} is a UEBk of
Cd ⊗ Cd′. Therefore, the UEBk problem is equivalent to the
unextendible rank-k Hilbert–Schmidt basis of the associated
matrix space.

We next introduce the definition and properties of a
generalized weighing matrix, which has been effectively
used to construct SEBks in Cd ⊗ Cd′ [22]. As a
continuation, we will use it to construct UEBks in Cd ⊗ Cd′

in this paper.

Definition 1: [22] A generalized weighing matrix is a square a × a
matrix A all of whose non-zero entries are nth roots of unity such
that AA† = kIa. It follows that 1/

�
k

√
A is a unitary matrix so that

AA† = kIa and every row and column of A has exactly k non-zero
entries. k is called the weight, and n is called the order of A.
Denoting the set of all such generalized weighing matrices by
W(n, k, a).

It is worth noting that the generalized weight matrix does not
always exist; for the existence and detailed discussion of the
generalized weight matrix, we can refer to Ref. [22].

Lemma 1: [22] Let a, b be two positive integers with a great
common divisor being g. For any integers d, d′ ≥ max{a, b}, if g|
dd’, then dd’ can be written as dd’ = sa + pb, where s, p ∈ N.

3 THREE KINDS OF (DD’ − V)-MEMBER
UEBKS

LetMd×d′ be the Hilbert space of all d × d′ complex matrices, V be
a subspace of Md×d′ such that each matrix in V is a d × d′ matrix
ignoring v elements, depending on the position occupied by the
ignored v elements: 1) all the ignored elements occupy N
columns, 2) all the ignored elements occupy N rows, and 3)
all the ignored elements occupy rows and columns; we construct
three kinds of (dd’ − v)-member UEBks.

3.1 All the Ignored Elements Occupy N
Columns
In this section, we first construct the (dd’ − v)-member UEBk in
Cd ⊗ Cd′, in which all the v ignored elements occupied N
columns in the matrix, and then present some examples of
UEB3s in C5 ⊗ C6.

Theorem 1: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1 (the greatest common divisor
of k and b). Let V be a subspace ofMd×d′ such that each matrix in
V is a d × d′ matrix ignoring v elements which occupied N rows
withN = 1, . . . , k − 1 and d −N ≥ b and dd’ − v = s · k + p · bwith 1
≤ v ≤ d′N. If min{d, d′}≥ max{k, b}, then there exists dd’ − v
member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: when p ≥ 1 and s ≥ 1, set
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|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(2)

when s = 0, p ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (3)

when p = 0, s ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1, (4)

where ξk � e
2π
��−1√

k , m � 0, 1, . . . , k − 1; x(t)
i,j means the t (0 ≤ t ≤ b −

1) row of the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = c · (d −N + 1) + e = f · d′ + g; l · k + u = c · (d −N + 1) +
e = f · d′ + g with 0 ≤ e < d, 0 ≤ g < d′. Also,

|rlk+u〉 � |e⊕ d−N+1( ) ∑α
i�0

Ci ⊕ d−N+1( )C e⊕ d−N+1( ) ∑α
i�0

Ci, g⎛⎝ ⎞⎠〉|g′〉, 0≤ α≤ v,

(5)
with

C e⊕ d−N+1( ) ∑α
i�0

Ci, g⎛⎝ ⎞⎠ � 1, C e⊕ d−N+1( )∑α

i�0Ci, g( ) � Cα,
0, otherwise,

{
(6)

where C0 = 0, Cα = 1 denotes the ignored elements.
We next prove that all the above {|ϕm.l〉} constitute a dd’ − v (1

≤ v ≤ d′N)-member UEBk in Cd ⊗ Cd′:

(i) It is clear that Sr (|ϕl〉) = k for any l, m, t.
(ii) Orthogonality.

According to the construction given by the above expression,
the elements of each state lie in different rows and columns, so the
proof of the orthogonality is as follows:

〈ϕ
m̃,l
|ϕm,l〉 � 1

k
∑k−1
~u�0

∑k−1
u�0

ξml
k ξ−̃m

~l
k 〈r~lk+u|rlk+u〉 � 1

k
∑k−1
u�0

ξml− ~m~l
k δl~l � δm ~mδl~l ,

〈ϕ
t̃,l
|ϕt,l〉 � 1

k
∑p−1
~u�0

∑p−1
u�0

x
~t( )

ij x t( )
ij 〈rsk−1+ ~l−s( )b+u|rsk−1+ l−s( )b+u〉 � 1

k
∑p−1
u�0

δt~tδl~l � δt~tδl~l ,

〈ϕ
m̃,l
|ϕt,l〉 � 1

k
∑k−1
~u�0

∑p−1
u�0

ξ−̃m
~l

k x t( )
ij 〈r~lk+u|rsk−1+ l−s( )b+u〉 � 1

k
∑k−1
~u�0

∑p−1
u�0

δξ,xδl~l � δξ,xδl~l.

(iii) Unextendibility.

It is obvious that there are no UEBk in V⊥ since N < k.
In order to understand the above structure more intuitively,

we give the following examples to illustrate it.

Example 1: Constructing 26-member UEB3 in C5 ⊗ C6.
As d = 5, d′ = 6, k = 3, n = 2, b = v = 4, and 5 × 6–4 = 26 = 6 × 3 +

2 × 4, s = 6, p = 2, 0 ≤ l ≤ 7 and

W 2, 3, 4( ) �
0 1 1 1
1 0 −1 1
1 1 0 −1
1 −1 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (7)

According to the proof of Theorem 1, we have the following
pure states:

| ϕm,0〉 � 1�
3

√ (ξ03|r0〉 + ξm3 |r1〉 + ξ2m3 |r2〉);
..
.

| ϕm,5〉 � 1�
3

√ (ξ03|r15〉 + ξm3 |r16〉 + ξ2m3 |r17〉);
| ϕt,6〉 � 1�

3
√ (x(t)

t,0 |r18〉 + x(t)
t,1 |r19〉 + x(t)

t,2 |r20〉) + x(t)t,3 |r21〉;
| ϕt,7〉 � 1�

3
√ (x(t)

t,0 |r22〉 + x(t)
t,1 |r23〉 + x(t)

t,2 |r24〉) + x(t)t,3 |r25〉;
where m = 0, 1, 2, t = 0, 1, 2, 3.
As C0 = 0, C1 = C (4, 4) = 1, C2 = C (4, 2) = 1, C3 = C (4, 4) = 1,

C4 = C (4, 3) = 1,
α = 0, |ri〉 = |e ⊕ 5C (e, g)|g′〉;
α = 1, |ri〉 = |e ⊕ 5C1 ⊕ 5C (e ⊕ 5C1, g)|g′〉;
α = 2, |ri〉 = |e ⊕ 5(C1 + C2) ⊕ 5C (e ⊕ 5(C1 + C2), g)|g′〉;
α = 3, |ri〉 = |e ⊕ 5(C1 + C2 + C3) ⊕ 5C (e ⊕ 5(C1 + C2 + C3),

g)|g′〉;
α = 4, |ri〉 = |e ⊕ 5(C1 + C2 + C3 + C4) ⊕ 5C (e ⊕ 5(C1 + C2 + C3 +

C3), g)|g′〉;
Taking specific values into the above formula, the 26-member

UEB3 in C5 ⊗ C6 can be expressed as follows:

|ϕ0,1,2〉 � 1�
3

√ |00′〉 + α|11′〉 + α2 |22′〉( ),
|ϕ3,4,5〉 � 1�

3
√ |33′〉 + α|04′〉 + α2 |15′〉( ),

|ϕ6,7,8〉 � 1�
3

√ |20′〉 + α|31′〉 + α2 |02′〉( ),
|ϕ9,10,11〉 � 1�

3
√ |13′〉 + α|24′〉 + α2|35′〉( ),

|ϕ12,13,14〉 � 1�
3

√ |40′〉 + α|01′〉 + α2 |12′〉( ),
|ϕ15,16,17〉 � 1�

3
√ |23′〉 + α|34′〉 + α2 |05′〉( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ϕ18〉 � 1�
3

√ |21′〉 + |32′〉 + |03′〉( ),
|ϕ19〉 � 1�

3
√ |10′〉 − |32′〉 + |03〉( ),

|ϕ20〉 � 1�
3

√ |10′〉 + |21′〉 − |03′〉( ),
|ϕ21〉 � 1�

3
√ |10′〉 − |21′〉 + |32′〉( ),

|ϕ22〉 � 1�
3

√ |25′〉 + |30′〉 + |41′〉( ),
|ϕ23〉 � 1�

3
√ |14′〉 − |30′〉 + |41′〉( ),

|ϕ24〉 � 1�
3

√ |14′〉 + |25′〉 − |41′〉( ),
|ϕ25〉 � 1�

3
√ |14′〉 − |25′〉 + |30〉( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where α = 1, ω, ω2 and w � e
2π
��−1√

3 .
The following chart is indeed the space decomposition of the

space of the coefficient matrices, whose first column and first row
represent the bases of the previous space and latter space,
respectively. The stars represent the ignored elements, and the
same number or alphabet in Table 1 together constitutes a state
in UEB3.

Example 2: Constructing 29,28,25,24-member UEB3s in
C5 ⊗ C6.

Similar to the analysis in Example 1, we only present the chart
of corresponding matrix to represent the structure of UEB3s.

Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. V2 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (9)
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V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 ⋆ ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. V4 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (10a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 2-5
respectively.

3.2 All the Ignored Elements Occupy N
Rows
In this section, we first construct the (dd’ − v)-member UEBk in
Cd ⊗ Cd′, in which all the v ignored elements occupied N rows in
the matrix, and then present some examples of UEB3s also in
C5 ⊗ C6.

Theorem 2: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1. Let V be a subspace of Md×d′
such that each matrix in V is a d × d′ matrix ignoring v elements
which occupiedN rows withN = 1, . . . , k − 1, d′ −N ≥ b and dd’ −
v = s · k + p · bwith 1 ≤ v ≤ dN. If min{d, d′}≥max{k, b}, then there
exists dd’ − v (1 ≤ v ≤ dN)-member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: if p ≥ 1 and s ≥ 1, let

|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(10b)

if s = 0, p ≥ 1, let

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (11)

if p = 0, s ≥ 1, let

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1. (12)

where ξk � e
2π
��−1√

k ;m � 0, 1, . . . , k − 1; x(t)
i,j means the t (0 ≤ t ≤ b −

1) row in the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = c · d + e; l · k + u = c · d + e with 0 ≤ e < d,

|rlk+u〉 � |e〉| c⊕ d′−N+1( )e⊕ d′−N+1( )C e, c⊕ d′−N+1( )e( ) + β( )′〉,
(13)

with

C e, c⊕ d′−N+1( )e( ) � 1, C(e, c⊕ d′−N+1( )e � Cα,
0, otherwise,

{
(14)

where C0 = 0, Cα = 1 denotes the ignored elements. It is worthy of
note that β in formula (13) is a regulating term, β = 0 in the
common cases, β = 1 if |e〉|c ⊕(d′−N+1)e〉 coincides with the
previous answer of formula (13).

Similiar to Theorem 1, we can prove that {|ϕm.l〉} constitute dd’
− v (1 ≤ v ≤ dN)-member UEBks in Cd ⊗ Cd′.

Example 3: Constructing 29,26,25,23-member UEB3 in C5 ⊗ C6.
Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (15)

V3 �

0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (16a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 6-9
respectively.

3.3 All the Ignored Elements Occupy Both x
Rows and y Columns
In this section, we will construct (dd’ − v)-member UEBk in a
bipartite system Cd ⊗ Cd′ with all the v ignored elements
occupying both x rows and y columns in the matrix, and we
will also present some different examples of UEB3s in C5 ⊗ C6.

Theorem 3: Let k be a positive integer, b, n ∈ N such thatW(n, k,
b) is non-empty, and gcd(k, b) = 1 (the greatest common divisor
of k and b). Let V be a subspace ofMd×d′ such that each matrix in
V is a d × d′ matrix ignoring v elements which occupied x rows
and y columns with x + y < k, d − x ≥ b and d′ − y ≥ b; dd’ − v = s ·
k + p · b with 1 ≤ v ≤ d′x + dy. If min{d, d′}≥max{k, b}, then there
exists (dd’ − v), (1 ≤ v ≤ d′x + dy)-member UEBk in Cd ⊗ Cd′.

Proof. First, for different values of p and s, we construct
different pure states as follows: if p ≥ 1 and s ≥ 1, set

|ϕm.l〉 �
1�
k

√ ∑k−1
u�0ξ

mu
k |rlk+u〉, 0#l#s − 1,

1�
k

√ ∑b

u�1x
t( )

ij |rsk−1+ l−s( )b+u〉, s#l#s + p − 1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(16b)

if s = 0, p ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑b
u�1

x t( )
ij |rsk−1+ l−s( )b+u〉, 0#l#p − 1, (17)

if p = 0, s ≥ 1, set

|ϕm.l〉 � 1�
k

√ ∑k−1
u�0

ξmu
k |rlk+u〉, 0#l#s − 1. (18)

where ξk � e
2π
��−1√

k , m � 0, 1, . . . , k − 1; x(t)
i,j means the t (0 ≤ t ≤ b −

1) row in the generalized weights matrixW (n, k, b), and sk − 1 +
(l − s)b + u = f · (d′ −N + 1) + g; l · k + u = c · (d −N + 1) + e = f · (d′
− N + 1) + g with 0 ≤ e < d, 0 ≤ g < d′. Denoting A � e⊕d∑α

i�0Ci,
B � g⊕d′∑α

i�0Ci, then
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|rlk+u〉 � |A⊕d C A, B( )〉|B⊕d′ C A, B( )′〉, (19)
with

C A, B( ) � 1, C A, B( ) � Cα,
0, otherwise,

{ (20)

where C0 = 0, Cα = 1 denotes the ignored elements.
Similar to Theorem 1, we can prove that {|ϕm.l〉} constitute dd’

− v (1 ≤ v ≤ d′x + dy)-member UEBks in Cd ⊗ Cd′.

Example 4: Constructing 26,25,24,23-member UEB3 in C5 ⊗ C6.
Considering the following matrices,

V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (21)

V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (22a)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 10-13,
respectively.

Comparing Tables 4, 8, 11, we can find that they are all 25-
member UEB3s in C5 ⊗ C6, but they are different since the
ignored elements occupy different positions. The above
structure has given the location of the elements in each
state, but the expressions are not always applicable when
d = d′. For the case of d = d′, Ref. [23] provided a good
method to construct the UEBk; now, we give some concrete
examples to illustrate it.

Example 5: Constructing 26,25,24,23-member UEB3 in C6 ⊗ C6.
Considering the following matrices,

TABLE 1 | 6×3+2×4=30,−,4=26-member UEB3.

|09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 a 2 6
|1〉 a 1 5 4 b 2
|2〉 3 A 1 6 4 b
|3〉 b 3 A 2 6 4
|4〉 5 B * * * *

TABLE 2 | 7×3+2×4=29-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 b 7 6 4 2
|1〉 3 1 b a 6 4
|2〉 5 3 1 b a 6
|3〉 7 5 3 2 b a
|4〉 a 7 5 4 2 *

TABLE 3 | 8×3+1×4=28-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 a 5 4 2 7
|1〉 7 1 a 6 4 2
|2〉 3 8 1 a 6 4
|3〉 5 3 8 2 a 6
|4〉 7 5 3 a * *

TABLE 4 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 a 2 6
|1〉 7 1 5 4 a 2
|2〉 3 7 1 6 4 a
|3〉 a 3 7 2 6 4
|4〉 5 * * * * *

TABLE 5 | 8×3+0,×,4=24-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 5 3 8 2 6
|1〉 7 1 5 4 8 2
|2〉 3 7 1 6 4 8
|3〉 5 3 7 2 6 4
|4〉 * * * * * *

TABLE 6 | 7×3+2×4=29-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 b
|1〉 b 1 3 4 6 a
|2〉 a b 1 3 5 6
|3〉 7 a b 2 3 5
|4〉 4 5 7 a 2 *

TABLE 7 | 6×3+2×4=26-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 a b
|1〉 a 1 3 4 6 *
|2〉 6 b 1 3 5 *
|3〉 5 a b 2 3 *
|4〉 4 5 a b 2 *
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TABLE 8 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 *
|1〉 a 1 3 4 6 *
|2〉 6 a 1 3 5 *
|3〉 5 7 a 2 3 *
|4〉 4 5 7 a 2 *

TABLE 9 | 5×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 a b *
|1〉 b 1 3 4 a *
|2〉 a b 1 3 5 *
|3〉 3 5 a 2 * *
|4〉 2 4 5 b * *

TABLE 10 | 2×3+5×4=26-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 e d b a 2
|1〉 2 1 e d c a
|2〉 b a 1 e d c
|3〉 c b a 2 e *
|4〉 d c b * * *

TABLE 11 | 7×3+1×4=25-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 a 6 5 4 2
|1〉 2 1 a 7 5 *
|2〉 4 3 1 a 7 *
|3〉 6 4 3 2 a *
|4〉 7 6 5 3 * *

TABLE 12 | 8×3+0,×,4=24-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 7 6 5 3 2
|1〉 2 1 8 6 5 4
|2〉 4 3 1 8 7 *
|3〉 5 4 3 2 8 *
|4〉 7 6 * * * *

TABLE 13 | 5×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 b a 4 3 2
|1〉 2 1 b a 5 *
|2〉 4 3 1 b a *
|3〉 5 4 3 2 b *
|4〉 a 5 * * * *

TABLE 14 | 9,×,3+2×4=35-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 a 1 3 5 7 9
|2〉 9 b 1 3 5 7
|3〉 7 9 b 2 3 5
|4〉 6 8 a b 2 4
|5〉 4 6 8 a b *

TABLE 15 | 8×3+2×4=32-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 b 1 3 5 7 8
|2〉 a b 1 3 5 7
|3〉 7 a b 2 3 5
|4〉 6 8 a b 2 4
|5〉 4 6 * * * *

TABLE 16 | 8×3+2×4=32-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 7 a
|1〉 a 1 3 4 6 8
|2〉 8 6 1 3 5 *
|3〉 6 8 b 2 3 *
|4〉 5 7 a b 2 *
|5〉 4 5 7 a b *

TABLE 17 | 8×3+2×4=23-member.

— |09〉 |19〉 |29〉 |39〉 |49〉 |59〉

|0〉 1 2 4 6 8 a
|1〉 b 1 3 4 6 8
|2〉 8 b 1 3 5 6
|3〉 7 a b 2 3 *
|4〉 5 7 a b 2 *
|5〉 4 5 7 a * *

TABLE 18 | construction in [23].

|09〉 |19〉 |29〉 |39〉 |49〉 |59〉 |69〉

|0〉 1 2 3 4 5 a b
|1〉 b 1 2 3 4 5 a
|2〉 a b 1 2 3 4 5
|3〉 a b * * * * *
|4〉 * * * * * * *
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V1 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V2 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ⋆ ⋆ ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (22b)

V3 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, V4 �

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 ⋆
0 0 0 0 0 ⋆
0 0 0 0 ⋆ ⋆

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (23)

the specific UEB3s of V1, V2, V3, V4 are shown in Table 14-17,
respectively.

Remark 1: We systematically show three methods (or orders) to
construct the UEBks in different cases and present the corresponding
mathematical expressions, which is better than that in [23] since it
only provide one limited order. For example, we can construct 23-
member SUEB3 in C5 ⊗ C7 when a = 3, b = 4, which cannot be
constructed by the order in [23], see Table 18, 19.

Remark 2: Our results cover wider spaces than that of Ref. [23].
The smallest space we can discuss is C4 ⊗ C5 when a = 3, b = 4,
while the smallest space [23] can discuss is C5 ⊗ C7 when a = 3,

b = 4, k = 3. Futhermore, even in C5 ⊗ C6, we also present
different members of UEB3s.

4 CONCLUSION

We have proposed three ways to construct different members
of UEBks in Cd ⊗ Cd′ and have shown their concrete
expressions. As an example of each method, we have
presented different members of UEB3s in C5 ⊗ C6 and
C6 ⊗ C6. It is noteworthy that our result is based on the
existence of generalized weighing matrices, so it is also of
significance for us to find more generalized weighing matrices,
such as skew Hadamard matrices.

By using our constructions, one can get at most (dd’ − v)
members of UEBk in Cd ⊗ Cd′, which has not specifically
mentioned in the previous literature studies.
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