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The systemic risk of banks is a multi-dimensional factor correlation and multi-interbank
contagion, forming a multi-dimensional multi-correlation (MDMC) contagion risk. After
superposition, the multiplier effect magnifies the destructive power of a single impact. In
this study, the weighted averagemethod is used to integrate the four interbank contagion
paths of jump-diffusion, interbank lending, stock price information, and common assets,
establish the multi-level interbank contagion matrix, apply the quantile estimation of the
spatial Dubin panel model, estimate the MDMC infectious bank conditional risk value,
and decompose and identify the systemically important risk factors, systemically
important banks, and systemically vulnerable banks. The following conclusions were
drawn. First, the superposition contagion effect of MDMC networks is significant.
Second, the systemic importance of default risk, interest rate risk, liquidity risk, and
the GDP growth rate of the banking industry is high, followed by changes in stock market
returns and investor sentiment. Third, the four major state-owned banks have an MDMC
network contagion effect, which has the characteristics of systemic importance and
vulnerability.

Keywords: MDMC network, spatial Dubin panel model, bank conditional VaR, infectious effect decomposition,
system importance

1 INTRODUCTION

The core feature of systemic risk is infectivity. The infectious characteristics of systemic risk events
are prominent after 2008. In particular, the contagion path is more complex and diversified, which
significantly multiplies the superposition effect [1]. Most theoretical and empirical studies focus on
the single related contagion path. However, the single contagion analysis is not systematic. Recently,
some studies began to explore the problem of financial crisis contagion under the coexistence of two
contagion paths. It is necessary to introduce asset price-related contagion channels into an interbank
lending-associated contagion [2]. The impact of price on the net asset value and collateral value
affects the default loss rate [3], which leads to the acceleration of risk contagion and the jump increase
in risk contagion loss [4]. The results of matching simulation experiments show that [5] the two
paths of interbank debt credit risk contagion and liquidity risk contagion caused by asset impairment
sale will have a superposition effect, and the destructive power of this accelerated amplification
mechanism is much greater than that of the two independent contagion paths. Caccioli et al. [6],
Shen et al. [7], and Yao et al. [8] construct a model of the joint action of the two contagion paths of
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interbank lending and asset price reduction sale. They simulate
and analyze the impact of different combinations of asset
diversification and initial shock on the probability, scope, and
loss of financial risk contagion.

The limitations of the current literature research are
prominent. The correlation between bank risks is complex and
multiple. These studies only consider somemain contagion paths,
ignoring the superposition effect of multiple contagions under the
action of multi-dimensional factors [9], jump-related [10], and
risk spillover effect [11,12]. Nor do they consider the market risk-
related caused by the linkage between stock price jumps and
fluctuations. Ignoring these important transmission paths may
seriously underestimate the risk of the spillover transmission
effect. Furthermore, the research methods used in the theoretical
research literature are still simulation analyses, and the research
conclusions cannot provide the actual estimation results. The
accuracy and effectiveness of model conclusions depend on the
rationality of the model algorithm and accuracy of the model
parameters [13]. The empirical research literature only uses
related measurement techniques or inference estimation
methods, such as the VAR, VECM, and multivariate GARCH
models, which make it difficult to consider more superimposed
contagion paths. Multilayer information spillover networks
provide synthetic information on the connectedness among
financial institutions [14]. Therefore, this study integrates four
associated contagion networks, establishes a spatial Dubin panel
data model, and uses the quantile estimation method to estimate
the conditional VaR of banks in the MDMC contagion.

This study expands the existing research in the following three
aspects. First, we use spatial-related analysis to integrate the
jump-diffusion related to bank stock price, asset-liability
correlation of interbank lending, equity information
correlation of stock price market risk, and asset-related
holding joint loans into a unified risk contagion measurement
and analysis framework. Second, we constructed a panel data
Spatial Dubin Model (SDM) to estimate the total risk value,
including individual and contagion risks. Third, we use the results
of four risk-related contagion effects to further decompose the
total effect of the risk contagion; summarize the total effect of risk
contagion factors, total spillover effect, and total feedback effect of
banks; and identify systemically important factors, systemically
important banks, and systemically vulnerable banks.

2 THEORETICAL ANALYSIS AND
HYPOTHESIS OF MULTI-DIMENSIONAL
MULTI-CORRELATION CONTAGION OF
BANK RISK

2.1 The KMV Model
We analyze the MDMC contagion of bank risk. It is assumed that
the banking industry consists of two representative banks: bank-1
and bank-2 (they are affiliated banks). The KMV model is the
primary method used for bank credit risk evaluation. It can
evaluate the bank risk by integrating bank financial

information and market information. The default distance
estimated by the KMVmodel can better measure bank credit risk.

The KMV model regards the equity value as a European
option with asset value as the target, book value of liability as
the execution price, and maturity t of liability as the holding
period. Under the definition of insolvency default, the default
distance equals the value of assets minus liabilities. It measures
the size of bank risk. The smaller the default distance, the
greater the bank risk. The default distance is calculated as
follows:

DDi �
ln(VAi/Di) + (rf − 0.5σ2Ai)t

σAit
, i � 1, 2, (1)

where DD is the bank default distance, VA is the revaluation of
the bank assets, D is the bank liabilities (default threshold), σA is
the implied volatility of the bank asset value, rf is the risk-free
rate, t is the residual maturity, and i � 1, 2 denotes bank-1 and
bank-2.

From the sensitivity analysis of the BS option pricing formula
for European options, the sensitivity equation of the implied
volatility σA of bank assets concerning the volatility σE of bank
stock prices is

σAi � Ei

VAiN(d1i)σEi, (2)

where E is the bank equity and N(d1) is the cumulative
probability of the standard normal distribution corresponding
to quantile d1,

d1i �
ln(VAi/Di) + (rf + 0.5σ2

Ai)t
σAit

, i � 1, 2. (3)

The estimation effect of the jump-diffusion GARCH model is
better than that of the continuous-diffusion GARCH model [15].
The jump-diffusion GARCH model divides the stock price
volatility into two parts: continuous volatility σh and jump
volatility σλ,

σEi � σhi + σλi. (4)
We assume that bank assets are interbank assets VT, common

assets held VG, and other assets held VQi. Bank liabilities are
composed of interbank liabilities DT and other liabilities DQ,

VAi � VTi + VGi + VQi, (5)
Di � DTi +DQi. (6)

2.2 TheMulti-Dimensional Multi-Correlation
Model
2.2.1 Jump Fluctuation Correlation
The jump and fluctuation in bank stock prices are interrelated
[16–18].We assume that the jump fluctuations of these two banks
are interrelated. The bank’s jump fluctuation (σλ1) equals the
bank’s jump fluctuation (σλ0) and the related jump
fluctuation (σλ2),
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σλ1 � σλ0 + β1σλ2. (7)

2.2.2 Stock Price Information Correlation
The diffusion of macroeconomic information, industry market
information, and company characteristic information leads to the
coordinated linkage change in stock price. This correlation in
stock price information leads to continuous fluctuations in stock
prices [19,20]. We assume that the continued volatility of stock
price of bank-1 is equal to market linkage fluctuation (σs1), self-
continuous fluctuation (σh0), and related continuous
fluctuation (σh2),

σh1 � σh0 + σs1 + β2σh2. (8)
By substituting Eqs 7, 8 into Eq. 4, we can obtain the stock

price volatility of bank-1,

σE1 � (σh0 + σλ0) + σs1 + (β1σλ2 + β2σh2). (9)
It can be seen from Eq. 8 that the stock price volatility of bank-

1 consists of volatility, market factor volatility, and related
volatility of adjacent banks.

Then substitute Eq. 9 into Eq. 2 to obtain the implied volatility
of bank-1 assets as follows:

σA1 � E1

VA1N(d11) [(σh0 + σλ0) + σs1 + (β1σλ2 + β2σh2)]. (10)

2.2.3 Interbank Lending Correlation
Interbank lending satisfies short-term liquidity needs. Interbank
short-term loans lead to the correlation of interbank assets
[21–25]. In a banking system composed of two banks,
interbank assets and interbank liabilities are equal,

VT1 � DT2, (11)
DT1 � VT2, (12)

where T refers to the interbank asset-liability business.

2.2.4 Common Asset Correlation
Banks’ assets are diversified, and banks with similar risk appetites
hold more common assets. When the banking system suffers a
negative impact, asset price reduction and selling lead to the
simultaneous decline in asset prices, which leads to the risk
resonance covariance of the sequential fluctuation of the
revaluation value of the common assets held by the two banks
(e.g., real estate loans). Thus, an indirectly related party holding
common assets, mediated by a change in the revaluation price in
the asset market, is formed [26–28]. The asset trading market is
perfectly competitive under the control of asset concentration.
The revaluation value of common assets depends mainly on the
quantity sold by both parties and the asset market price. The
revaluation value of the common assets of bank-1 depends on the
book value of the jointly held assets of the bank itself and the
revaluation value of the common assets of another bank,

VG1 � Vg1 + β3VG2. (13)

Substituting Eqs 11–13 into Eqs 5, 6, and then into Eq. 1, we
obtain the asset value, liability value, and default distance of
bank-1,

VA1 � DT2 + (Vg1 + β3VG2) + VQ1, (14)
D1 � VT2 +DQ1, (15)

DD1 �
ln(DT2+(Vg1+β3VG2)+VQ1

VT2+DQ1
) + (rf − 0.5σ2A1)t

σA1t
. (16)

Eqs 10, 13–16 constitute the theoretical analysis framework
for bank risk.

2.3 Multi-Dimensional Risk Factor
Correlation Analysis
First, bank risk is directly determined by the bank’s assets,
liabilities, and other financial factors, including the book value
of jointly held assets, equity value, value of other assets, and value
of other liabilities. The increase in the book value of assets and
other assets jointly held by the bank and the decrease in other
bank liabilities will reduce the bank’s financial leverage, increase
the default distance, and reduce its credit risk. An increase in the
bank equity value reduces the default distance and increases the
sensitivity coefficient of the implied volatility of bank assets to the
volatility of bank stock prices. The increased probability that the
revaluation value of bank assets falls below the default threshold
increases bank credit risk.

Second, bank risk is also determined by the revaluation value
of interbank liabilities, interbank assets, and common assets of
related banks. The increase in interbank liabilities and decrease in
interbank assets of related banks will reduce the bank’s financial
leverage through the interbank borrowing business. Increasing
the bank default distance can reduce bank credit risk. The
increased revaluation value of the common assets of affiliated
banks reduces the bank default distance.

Third, bank risk is determined by the bank stock prices and
market factors. The bank volatility and common market volatility
increase the implied volatility of bank assets and then reduce the
bank default distance.

Finally, bank risk is also directly determined by the
equilibrium interest rate of the money market, that is, the
risk-free interest rate. The macroeconomic factors affecting the
relationship between the money supply and demand determine
the equilibrium interest rate. The increase in money demand
factors and the decrease in money supply regulated by monetary
policy will push up the equilibrium interest rate of the money
market, increase the default distance, and reduce bank credit risk.

Therefore, according to the theoretical model analysis, we
propose the following.

Hypothesis 1. Bank risk factors are multi-dimensional. The
sources of bank risk mainly include the bank’s assets and
liabilities, assets and liabilities of related banks, financial
factors, stock market factors, and macroeconomic factors.

Hypothesis 2. The sources of bank risk are multi-dimensional,
and these multi-dimensional risk factors impact-related spillovers.
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2.4 Multiple Interbank Related Contagion
Analysis
From the perspective of the related path, the jump-related degree
between banks and other banks, related degree of stock price
information, scale of interbank assets and liabilities, and related
degree of common assets are also important bank risk factors.
The jump fluctuation of other related banks in the same industry
affects the jump fluctuation of banks through the jump-related
path. The continuous fluctuation of other related banks in the
same industry affects the continuous fluctuation of banks through
the contagion of stock price information. These two factors form
a correlation that increases the volatility of bank stock prices. The
implied volatility of bank assets reduces the default distance and
increases bank risk.

The interbank lending business of related banks in the same
industry has formed the interbank assets and liabilities of the
bank. Interbank banks with similar risk appetites hold common
assets. Under asset price reduction and selling and valuation
trampling, the value of the common assets held fluctuates.
Through interbank lending and holding common assets, the
asset-liability business of related banks in the same industry
jointly affects the bank’s financial leverage and acts on bank
risk, measured by the default distance. The increase in the value of
interbank liabilities and jointly held assets of related banks will
increase the value of interbank assets and jointly held assets of the
bank, reducing financial leverage, increasing the default distance,
and reducing bank risk through the connection between the
interbank lending business and the price of jointly held assets.
The increase in the interbank liabilities of affiliated banks
increases the financial leverage ratio, reduces the default
distance, and increases bank risk through the association of
the interbank lending business.

It can be seen that the risk-related contagion of different banks
is also interrelated and interactive, forming multiple interbank-
related contagions. Therefore, we propose the following
hypothesis:

Hypothesis 3. Multiple interbank-related contagions are
formed through the interaction of different bank risk-related
contagions.

2.5 TheMulti-Dimensional Multi-Correlation
Contagion Analysis
The foregoing analysis shows that multi-dimensional bank risk
factors are interrelated and interactive, with a related spillover
effect. The multiple interbank correlations of bank risk transmit
bank risk factors and their feedback effect of bank risk factors. After
being impacted by risk events, the frequency and amplitude of bank
jump fluctuations increase. The related effect causes the jump
fluctuation of related banks to increase. Under the interaction, an
increase in the jump fluctuation of related banks will cause an
increase in the impulse response of the bank jump fluctuation. If
the bank risk factors cause the continuous fluctuation of the bank
to increase, the continuous fluctuation of the related bank will
increase through information correlation, and the continuous
fluctuation of the related bank will increase further. Similarly,

bank risk factors also pass through the interbank asset-related path
and the value-related path of holding common assets, leading to a
high-order-related contagion.

Through the joint action of four paths: jump-related, stock
price information correlation, common asset-related, and
interbank lending correlation, the risk formed by multi-
dimensional factors will be aggregated into MDMC contagion
risk through multiple paths. These multi-dimensional factor-
related contagions and multiple interbank-related contagions
include MDMC risk-related networks. Therefore, the following
can be proposed:

Hypothesis 4. Bank risk is a MDMC contagion.
The technical roadmap of the study is shown in Figure 1.

3 THE METHOD OF MULTI-DIMENSIONAL
MULTI-CORRELATION NETWORK
CONSTRUCTION AND RISK CONTAGION
MEASUREMENT

3.1 Construction Method of Bank
Risk-Related Contagion Network
We comprehensively characterize the risk-related contagion
among commercial banks in four dimensions: jump risk
spillover correlation, internal-related banking system, role of
the financial market, and role of the capital market. A jump
risk spillover-related network is an extreme risk-associated
network in which the market affects the bank’s yield. Under
normal conditions, the stock price information network forms a
continuous fluctuation-related network of bank returns. The two
methods describe the relevance of returns from different
dimensions.

3.1.1 Constructing Jump Fluctuation-Associated
Network With ARJI-GARCH-SVQR
Owing to extreme financial events, bank share price jumps are
common [29]. Under the influence of financial market
mechanisms, such as herding, investor sentiment, industry
sector linkage, and common factors, a jump in the stock
price of any bank leads to a sharp jump and fluctuation in
the stock price of other banks in the same industry. Therefore,
we use the ARJI-GARCH model to predict annual jump
fluctuations. SVQR estimates the relative incremental
conditional VaR to measure jump risk spillover, and the
jump fluctuation-associated network is constructed using the
overflow threshold method.

3.1.1.1 ARJI-GARCH Model
The ARJI-GARCH model consists of the conditional mean
equation, jump setting, and conditional variance equation. The
conditional mean equation is as follows:

Rt � μ +∑l
i�1
ϕiRt−i +

��
ht

√
zt +∑nt

k�1
Yt,k, (17)

where
��
ht

√
zt represents the impact of general information on the

yield, called the continuous fluctuation term; zt is independent
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and identically distributed in the standard normal
distribution, that is, zt ~ NID(0, 1); ∑Yt,k represents the
impact of jump behavior on Rt, which is called the jump
fluctuation term; nt indicates the number of jumps in the yield
series from period t − 1 to period t; and Yt,k represents the
jump amplitude, which follows the normal distribution, with
mean θt and variance δ

2
t , that is, Yt,k ~ N(θt, δ2t )with θt and δ2t

being constant.
The jumping behavior is a random event. The number of

jumps nt is assumed to obey the Poisson distribution with
intensity λt (λt > 0), and the probability density function is

P(nt � j
∣∣∣∣Φt−1) � e−λiλjt

j!
, j � 0, 1, 2, · · ·, (18)

where Φt � [Rt, · · ·, R1] is the time t information set.
The expectation and deviation of conditional jump

strength are

λt ≡ E[nt|Φt−1], (19)
ξt−i ≡ E[nt−i|Φt−i] − λt−i � ∑∞

j�0
jP(nt−i � j

∣∣∣∣Φt−i) − λt−i. (20)

If λt � λ (constant), the ARJI-GARCH model degenerates into
the CJ-GARCH model.

The conditional variance equation is composed of the lag term
of the disturbance term and the lag term of the conditional
variance,

ht � ω +∑q
i�1
αiε

2
t−i +∑p

i�1
βiht−i. (21)

3.1.1.2 SVQR Model
The VaR refers to the maximum loss faced by financial assets
under a certain probability level and within a specific holding
period. It is implicitly defined as the q quantile, i.e.,

Pr(Ri ≤VaRi
τ) � q, (22)

where Ri is the variable of bank i for which the VaRi
τ is defined.

The expression of the SVQR model by Takeuchi [30] is

Yt � f(Xt) � w′
τφ(Xt) + bτ + εt, (23)

where wτ represents the parameter vector, bτ represents the
threshold, εt is the disturbance term, and φ(·) represents
nonlinear mapping. The low-dimensional nonlinear function is
transformed into a high-dimensional linear function, and the
optimal parameters (w, b) are obtained by training the sample set
{Yt;Xt}. The VaR estimated by the SVQR model is

FIGURE 1 | MDMC contagion of bank risk.
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VaRτ,t � Q̂Yt(τ|Xt) � ŵ′
τφ(Xt) + b̂τ . (24)

In this paper, the input variables of the SVQR model still refer
to the research idea of the QR-GARCH model proposed by
Taylor [31]. The jump volatility estimated by the ARJI-
GARCH model is used for quantile regression to estimate
jump VaR.

Conditional VaR is the mainstream index to measure the
systemic financial risk contagion, and it is a conditional quantile.
We use the method proposed by Adrian and Brunnermeier [32]
to calculate Covar.

3.1.2 Using the Minimum Density Method to Build the
Interbank Lending Network
Mutual lending between banks satisfies short-term liquidity
needs. However, the interbank business usually has the
problems of term and amount mismatch. The fund lender
bears the credit risk of the fund user, which makes it easy to
produce a cross-risk contagion caused by counterparty default.
Most scholars use the maximum entropy method to estimate the
lending network between institutions [33], which assumes that
the associated network is completely connected. However,
considering transaction and management costs, banks do not
have a lending relationship with each institution in the system
[34], and the relationship between the degree of risk contagion
and interbank lending is not monotonic, showing the
characteristics of stability and fragility [13,35]. Therefore, the
indirect inference associated with the network’s MDM can be
used [24,36]. The most effective sparse matrix is obtained by
reducing the transaction costs in the lending relationship as much
as possible. Therefore, we use bilateral exposure data and the
MDM to construct the interbank lending-associated network.

The objective function of the minimum density method is

min
xij

c∑n
i�1

∑n
j�1
I(xij > 0) , (25)

where c is the fixed cost required for interbank borrowing on
behalf of the bank. For the illustrative function I(xij > 0), the
following conditions are satisfied:

I(xij > 0) � { 1, xij > 0,
0, xij � 0.

(26)

The constraints are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai � ∑n
j�1
xij,

lj � ∑n
i�1
xij,

xij ≥ 0,
xii � 0.

(27)

The MDM is a matrix method. Each year’s interbank lending-
associated network is solved, and the matrix elements represent
the path weights between the two nodes. Therefore, a directed
weighted network matrix is obtained.

3.1.3 Using the Minimum Spanning Tree Algorithm to
Construct the Stock Price-Associated Network
Stock price information-related contagion is one of themain ways
to drive fluctuations in investment returns in financial markets.
This is an important source of systemic risk [37]. According to the
degree of openness, financial market information is divided into
historical, public, private, and new information. Financial market
effectiveness theory and news theory and their empirical results
show that the fully effective financial market price reflects all
historical and public information rather than using high-value
private information and new information in a fully effective
market. New information advantage investments can obtain
excess returns. Therefore, through the exchange and disclosure
of private information, the disclosure and acquisition of new
information, and the strong connection of information-
associated networks, the two parties continue to share
information, complex information mining, interpretation, and
rapid transmission, forming stock price information infection.
Therefore, in this study, the stock price information association
takes institutions as nodes and the related coefficient of
institutional stock return as an edge to construct the
association relationship, measure the information association
fluctuation, and adopt the minimum spanning tree algorithm
(MST) [38] to build a stock price-associated network.

The calculation expression of the Pearson correlation
coefficient is

ρPij �
E(RitRjt) − E(Rit)E(Rjt)��������������

E(R2
it) − E(Rit)2

√ ��������������
E(R2

jt) − E(Rjt)2√ , (28)

where ρPij ∈ [−1, 1] is the Pearson correlation coefficient, Rit

represents the rate of return of the bank in the period, and
E(xi) � 1

N∑N
i�1xi represents the desired function.

The higher the correlation of the return rate, the closer the
relationship between the two banks in the network. The
correlation coefficient matrix is transformed into a distance
matrix, and the calculation formula is as follows:

Dij �
��������
2(1 − ρij)√

. (29)

The association relationship in the network is obtained
through the MST algorithm using the distance matrix, and the
Pearson correlation coefficient is used as the weight to obtain the
bidirectional weighted associated network.

The specific steps are as follows. First, we arrange the distance
matrix data in ascending order and select the two important
nodes with the shortest distances to connect. Second, we choose
the smallest important nodes in the remaining distance to
continue the connection, and the spanning tree cannot form a
closed-loop structure in the process. Third, we repeat this process
until the number of connected edges is 1 less than the number of
nodes and form a connected graph.

The commonly used methods are the Kruskal and Prim
algorithms. We use the Kruskal algorithm to obtain a two-way
weighted associated network composed of important nodes and paths.
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3.1.4 Constructing the Value-Associated Network of
Common Assets by Using the Plane Maximum Filter
Graph Algorithm
According to the optimal portfolio theory, credit asset risk is
decentralized. Banks’ assets are distributed across several
industries. The development status and trends of the industry
determine the quality of banks’ assets and liabilities. Thus, many
banks with similar risk preferences will invest some of their credit
assets in the same industry to hold common assets. The
operational status jointly determines the value and risk of the
common assets of these banks, profitability and value
appreciation of these entity industries, and the changes in
asset prices in the entity industries, forming the value of assets
in the entity industries, and price and liquidity change as a link to
the common linkage of the risk contagion network. Therefore,
based on Cacioli et al. [6] and Fang and Zheng [26], we use the
Kendall rank correlation coefficient to measure relevant asset
value changes and the plane maximum filter graph algorithm to
construct the associated network of holding common assets.

The proportion of assets invested by the bank in each industry
is recorded as {xi1, xi2, · · ·, xim}. The weighted average value of the
price index of each industry {p1, p2, · · ·, pm} is used to represent
the characteristic price of the bank,

pp
it � xi1p1 + xi2p2 + · · · + ximpm. (30)

The calculation formula of the bank’s logarithmic
characteristic rate of return series rit is

rit � ln(pp
it/pp

it−1),
where pkt represents the price index of k the industry at t.

We use the Kendall rank correlation coefficient to describe the
consistency of changes in characteristic returns among banks,

ρKij � Prob[(rit − rit−1)(rjt − rjt−1)> 0] − Prob[(rit − rit−1)
(rjt − rjt−1)< 0],

(31)
where ρKij ∈ [−1, 1] is the Kendall rank correlation coefficient,
Prob[(rit − rit−1)(rjt − rjt−1)> 0] represents the probability that
the change in direction of the expected returns of the two banks is
the same, and Prob[(rit − rit−1)(rjt − rjt−1)< 0] describes the
probability that the expected returns of the two banks change
in opposite directions.

The Kendall rank correlation coefficient matrix of the
characteristic rate of return between banks is constructed to
obtain a complete correlation network. As each bank will not
lend to all industries, it will not associate with all banks because of
lending in the same industry. The plane maximum filtered graph
(PMFG) algorithm screens the network path to obtain the final
industry-common loan-associated network.

The specific steps of the PMFG algorithm are as follows. First,
we arrange the distance matrix weights of each effective path in
ascending order, and only the node positions are reserved in the
network. Second, we remove the paths in sequence and add them
to the network to ensure that the paths added in each step
maintain the plane graphic structure. Third, a network is

formed when the total number of added paths is reached.
Based on these steps, we can build a two-way industry-
associated network with rights each year.

3.2 Integration Method of
Multi-Industry-Related Infectious Networks
The bank risk-related contagion is complex, diverse, and
intertwined, forming the superposition effect of risk
contagions. Single-channel estimation seriously underestimates
the systemic risk. We use addition to integrate four
networks—jump fluctuation-associated network, interbank
lending network, stock price information-associated network,
and value correlation of common assets—to construct a four-
tier interbank correlation contagion network.

The four risk-related network matrices are recorded as
W1 � (a1ij)n×n, W2 � (a2ij)n×n, W3 � (a3ij)n×n, and
W4 � (a4ij)n×n. First, the elements in each associated network
matrix are row standardized to obtain the standardized matrix.
Second, the elements at the corresponding positions of each
matrix are added as elements in the multi-industry-associated
network matrix. Finally, according to the cumulative
superposition effect of risk contagions, a single associated
network is combined into the MDMC network as follows:

wij � ∑4
k�1

⎛⎝akij/∑n
j�1
akij⎞⎠ � a1ij

∑n
j�1
a1ij

+ a2ij

∑n
j�1
a2ij

+ a3ij

∑n
j�1
a3ij

+ a4ij

∑n
j�1
a4ij

. (32)

3.3 Model Setting and Variable Description
of Bank Comprehensive VaR Estimation in
Multi-Dimensional Multi-Correlation
3.3.1 Model Setting
To verify the hypotheses obtained from the theoretical model
analysis, we need to build a model that includes multi-
dimensional factor-related, industry-related, and MDMC items
simultaneously. General nonspatial models can only describe
multi-dimensional factors, not multiple industry associations,
and multi-dimensional factor correlations in multiple industry
associations. Therefore, it cannot be used to verify these two
assumptions. The general spatial econometric model can include
the spatial correlation of the explained variable, spatial
correlation of the explanatory variable, and spatial correlation
of the error term at the same time. SDM is a general spatial
econometric model, simultaneously including dependent variable
spatially related items, independent variable items, and
independent variable spatially related items.

Thus, we can measure the individual risk of banks
determined by their factors and consider the contagion
risk of MDMC network overflows between different bank
risks and the contagion risk affected by the risk factors of
connected banks. Therefore, we use a spatial weight matrix to
reflect multiple industry associations. Taking bank yield as
the explanatory variable, we use SDM to verify the four
hypotheses. We add nonspatial terms of multi-dimensional
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factors to the model. If the parameters of these non-spatially
related factors are significant, the hypothesis that the relevant
factors have an important explanatory effect on bank risk is
tenable. The spatial correlation terms of the multi-
dimensional factors are added to the model. If these
spatially related factors are significant, the hypothesis of
multi-dimensional factor correlation is tenable. The spatial
correlation term of the explained variable is introduced into
the verification model. If the spatial correlation parameters of
the explained variable are significant, the hypothesis of
multiple horizontal correlations is tenable. If hypotheses 2
and 3 are true simultaneously, hypothesis 4 of the MDMC
infectious network is true.

The matrix expression of SDM is

Yτ � ρτWYτ + ατ ιn + Xτβτ +WXτθτ + ε, (33)
where Y is the logarithmic yield vector of bank, τ is the significant
level of quantile-estimated VaR, ρ is the spatial autoregressive
correlation coefficient, W � (wij)n×n is the spatial weight matrix,

and α is the vector of intercept term. The diagonal elements of the
ιn matrix are 1, and the other elements are 0. X is the explanatory
variable vector. β and θ are the coefficient matrix of each
explanatory variable and the explanatory variable’s spatial
lag term.

In the financial stock market, the impact of upward and
downward risk spillover effects is different. The extreme
returns of the left and right tail have other state
characteristics. We use the standard deviation as the
threshold to divide the bank yield series into three regions
with normal fluctuation characteristics, namely, positive
shock, negative shock, and wave, which represent the three
characteristic states of high-value shock, medium-value
shock, and low-value shock, respectively,

R �
⎧⎪⎨⎪⎩

RP, R ∈ (σ,∞),
RW, R ∈ [−σ, σ],
RN, R ∈ (−∞,−σ).

(34)

TABLE 1 | Multi-dimensional factor variables of bank risk estimation.

Factors Index Variables Formula

Bank financial Non-performing loan ratio NPL NPL balance/Total loans
Return on total assets ROA Net profit/Total assets
Deposit loan ratio LDP Total deposits/Loans

Bank stock market Conditional volatility VOL Jump GARCH model
Investor sentiment ISM Sign (Yield)×turnover rate
Herfindahl index HHI ∑(Total loans of the ith bank/Total banking loans)2

Stock price returns MR Shanghai composite index yield
Stock price volatility MV The volatility of the Shanghai Composite Index

Industry
environment

Liquidity risk ML Difference between the 6-month Shibor interest rate and 6-month treasury bond spot yield
Interest rate risk RF 6-month treasury bond interest rate change
Default risk CS Changes in the difference between the spot yields of 10-year corporate bonds and 10-year treasury

bonds

Macroeconomic Consumer price index CPI -
GDP growth GDP -
National Housing boom
index

SHI -

TABLE 2 | Descriptive statistics and characteristic test of the yield.

Bank Mean Standard deviation Skewness Kurtosis JB test Adf test

PAB −0.028 2.760 −3.244 61.667 430000*** −54.553***
BON 0.008 2.475 −0.767 13.247 13000*** −55.841***
SPDB −0.048 2.507 −2.261 32.580 110000*** −54.368***
HXBC −0.034 2.440 −1.567 24.193 56000*** −56.099***
CMBC −0.031 2.182 −1.040 17.028 25000*** −54.532***
CMB −0.000 2.219 −0.278 9.262 4861*** −54.610***
BNC −0.028 2.608 −5.418 118.337 1700000*** −54.819***
CIB −0.034 2.734 −5.555 120.041 1700000*** −53.038***
BOB −0.045 2.247 −1.148 16.648 24000*** −56.624***
BCM −0.028 1.987 −0.158 9.459 5144*** −52.817***
ICBC −0.004 1.657 −0.143 10.916 7718*** −53.643***
CCB −0.006 1.825 −0.119 9.422 5080*** −53.854***
BOC −0.016 1.661 0.106 11.496 8884*** −55.081***
CITIC −0.020 2.235 0.145 7.219 2200*** −54.327***

The significance levels are indicated by ***p < 0.01, **p < 0.05, and *p < 0.1.
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The direct, indirect, and total effects of spatial correlation can
be obtained through the decomposition and summary calculation
of the spatial correlation terms [39].

We construct an SDM and use the quantile estimation method
to verify the research hypothesis, estimate banks’ conditional
VaR, and decompose the systemic financial risk contagion effect.

3.3.2 Variable Selection
According to the theoretical analysis results of the second part,
bank risk factors are multi-dimensional, mainly including the
bank’s assets and liabilities, financial factors, bank stock market
factors, industry-related environmental factors, and
macroeconomic factors. To verify hypothesis 1 (multi-
dimensional risk factors) and hypothesis 2 (multi-dimensional
factor-related infection) proposed in Section 2, we select the
factor indicators of these four dimensions as the model’s
explanatory variables.

3.3.2.1 Bank Financial Factors
We use the non-performing loan ratio to measure the quality of
bank credit assets [40]. The return on total assets reflects the
bank’s operating performance [41]. The deposit loan ratio
measures the matching degree of bank liquidity [42].

3.3.2.2 Bank Stock Market Factors
We use the conditional volatility calculated by the jump-GARCH
model to reflect the risk of bank stock price fluctuation. The
turnover rate is used to reflect the activity of bank stock trading,
purchase intention, and liquidity. Combined with the optimism
and pessimism reflected by the rise and fall in stock prices, we
measure investor sentiment toward bank stocks [43]. The
Herfindahl index in the banking industry reflects the
concentration of bank lending risk [44]. The log return and
volatility of the Shanghai composite index are selected to
reflect the overall value level and change risk of the bank
stock market [45].

3.3.2.3 Banking Business Environment Factors
The short-term liquidity spread is measured by the difference
between the 6-month Shibor interest rate and the 6-month
treasury bond spot yield, reflecting the risk of liquidity
shortage in the banking industry. Using the change of 6-

month treasury bond interest rate to measure the change in
the short-term treasury bond yield reflects the interest rate risk of
liquidity financing [46]. The difference between the spot yields of
10-year corporate bonds and 10-year treasury bonds is selected to
reflect the change in enterprise credit spread in the real
economy [47].

3.3.2.4 Macroeconomic Factors
We select the CPI to reflect the price level [48]. The GDP growth
rate is selected to reflect the speed of economic development [49].
China’s real estate boom index is selected to reflect the national
real estate industry [50].

The specific variable indicators, characterization variables,
interpretation, and calculation methods are summarized in
Table 1.

4 ESTIMATION RESULTS AND ANALYSIS
OF BANKING SYSTEMIC RISK IN THE
FRAMEWORK OF MULTI-DIMENSIONAL
MULTI-CORRELATION CONTAGION

We select 14 commercial banks listed before 2008, including
4 state-owned banks, namely, the Bank of Communications
(BCM), Industrial and Commercial Bank of China (ICBC),
China Construction Bank (CCB), and Bank of China (BOC);
7 joint-stock banks, namely, Ping An Bank (PAB), Shanghai
Pudong Development Bank (SPDB), Huaxia Bank Co., Ltd.
(HXBC), China Minsheng Banking Corp., Ltd. (CMBC),
China Merchants Bank Co., Ltd. (CMB), China Industrial
Bank Co., Ltd. (CIB), and China CITIC Bank (CITIC); and 3
other urban development banks, namely, Bank of Ningbo (BON),
Bank of Nanjing Co., Ltd. (BNC), and Bank of Beijing (BOB). The
total assets of 14 commercial banks account for approximately
80% of the total assets of China’s banking industry, accounting for
85% of the number of banks recognized by regulatory authorities
as systemically important banks. Therefore, the number of
commercial bankers we selected is sufficiently representative.
Due to data availability, the period is selected as the weekly
data from 2007 to 2019. The original daily data are transformed
into weekly data, and the corresponding weekly data are directly
selected. The quarterly macro-data are obtained by cubic spline
interpolation, and the original data of all indicators are obtained
from the Wind database. Descriptive information on the bank
yield data is shown in Table 2.

4.1 Characteristic Description of
Multi-Dimensional Multi-Correlation
Network
4.1.1 Characteristic Description of JumpRisk Spillover
Correlation Network
We use the ARJI-JUMP-SVQRmodel to calculate the conditional
VaR, including jump fluctuation, and then use the overflow
threshold method to construct the directed weighted jump
fluctuation risk overflow network incidence matrix. The

FIGURE 2 | Jump risk correlation network of commercial banks.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8956039

Wang et al. Multiple Network Contagion and CoVaR

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


annual average network topology relationship is shown in
Figure 2, and the first layer is shown in Figure 4.

Figure 2 shows that the network matrix contains both single-
and two-way overflows. Individual banks act as risk spillovers and
risk absorbers, reflecting the complexity of risk correlation
networks. Large state-owned banks, such as the ICBC, BOC,
CCB, and BCM, are located in the center of the network. Joint
stock banks such as PAB, CMBC, and CIB are located at the edge
of the network. State-owned banks have strong relevance and risk
contagion at the core.

We draw a network association diagram every 4 years, as
shown in Figure 3.

Figure 3 shows that the network relevance of each year is high.
Some nodes are only connected with a few nodes, but some key
nodes are connected with a considerable number of nodes (e.g.,
large state-owned bank nodes), which indicates that the
associated network has the characteristics of scale-free. The
banking system has the characteristics of robust and fragile,

and the possibility of infectious default is low. However, if
extreme risk events impact some high correlation nodes, they
will be quickly transmitted to other related banks through
network correlation, resulting in serious damage to the whole
financial system.

4.1.2 Description and Analysis of the Characteristics of
the Interbank Lending-Related Network
The annual interbank lending network data using the MDM are
shown in Table 3. Figure 4 shows the interbank lending network
diagram of the second layer.

As shown in the second-layer diagram in Table 3 and
Figure 4, the lending behavior of large state-owned banks
involves a large range of banks and a large number of times,
which indicates that asset liquidity is strong and accompanied by
high liquidity risk. When holding many small bank assets, the
occurrence of extreme risks will lead to a wide range of risk
spillover and infectious events.

FIGURE 3 | Jump risk network of commercial banks.
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TABLE 3 | Statistics of interbank lending networks from 2008 to 2018.

PAB BON SPDB HXBC CMBC CMB BNC CIB BOB BCM ICBC CCB BOC CITIC

PAB 19.403
{3}

18.568
{1}

8.057
{2}

1.700
{1}

10.998
{2}

9.916
{1}

2.095
{1}

BON 3.989
{1}

1.558
{1}

1.167
{1}

0.732
{1}

3.246
{2}

1.919
{3}

3.162
{2}

SPDB 8.883
{1}

26.013
{1}

20.943
{4}

17.635
{2}

13.404
{5}

35.312
{1}

HXBC 8.047
{1}

10.609
{2}

11.884
{1}

8.198
{2}

6.695
{2}

3.346
{2}

8.177
{1}

CMBC 25.188
{1}

34.377
{2}

33.065
{1}

10.377
{3}

28.438
{2}

19.019
{2}

CMB 19.066
{2}

12.160
{1}

23.155
{1}

14.492
{2}

11.192
{1}

13.213
{2}

25.031
{3}

30.326
{1}

BNC 2.954
{1}

2.711
{1}

6.100
{1}

0.635
{1}

0.508
{1}

4.158
{5}

1.948
{1}

CIB 10.874
{1}

3.374
{2}

15.165
{1}

5.605
{1}

6.097
{1}

10.920
{1}

15.197
{1}

21.491
{4}

7.306
{1}

BOB 12.190
{1}

28.332
{1}

16.103
{2}

9.399
{5}

17.148
{3}

BCM 15.114
{1}

6.555
{2}

36.133
{1}

29.640
{1}

11.133
{1}

15.363
{1}

5.990
{2}

23.595
{2}

38.088
{1}

30.049
{2}

25.125
{2}

19.911
{2}

29.649
{2}

ICBC 39.329
{1}

49.921
{1}

29.826
{1}

9.320
{1}

60.487
{3}

71.798
{1}

44.202
{3}

46.922
{2}

47.800
{1}

CCB 10.309
{1}

29.160
{4}

51.791
{7}

14.228
{1}

6.206
{2}

BOC 20.304
{6}

5.987
{5}

60.618
{1}

16.915
{3}

15.224
{1}

17.447
{1}

4.409
{5}

10.561
{2}

17.963
{4}

75.346
{4}

49.994
{5}

12.915
{2}

CITIC 6.097
{1}

23.781
{2}

6.962
{1}

6.053
{2}

25.403
{1}

19.958
{1}

22.409
{1}

24.223
{4}

18.911
{2}

Total {12} {11} {14} {6} {8} {7} {11} {14} {8} {19} {34} {23} {30} {13}

1) The number in the cell is the average value of the lending amount at this position in each year obtained by using theminimumdensity method (the average value of non-zero items). 2) The
brackets are the total number of interbank lending in each year, and the last row is the sum of the times in each column. The blank cell represents that there is no lending behavior each year.

FIGURE 4 | Four layers of the risk correlation network.
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4.1.3 Description and Analysis of the Characteristics of
Bank Stock Price-Associated Network
The Pearson correlation coefficient of continuous fluctuation is
used to measure the correlation of stock price information. The
MST algorithm is used to construct the associated network of
stock price information. The undirected weighted stock price
information-associated network matrix is obtained, as shown in
Table 4. A diagram is drawn to obtain the layer three network
diagram shown in Figure 4.

According to the third-layer network diagram in Table 4 and
Figure 4, HXBC, CIB, CMB, and CCB are often located on the
core path. All banks’ cumulative number of connections exceeds
11, meaning that there will be connections with at least one bank
every year, with a wide range of connections. The correlation
coefficient on the effective node is roughly between 0.6 and 0.9,
and the overall correlation is obvious.

4.1.4 Characteristic Description and Analysis of the
Associated Network of Holding Common Assets
First, we select the loan balance of each banking industry in 16
industries from the end of 2008 to the end of 2018 and calculate
the loan proportion of each industry of each commercial bank as
the characteristic price weight. The top five industries in terms of
the proportion of loans are manufacturing, real estate,
transportation, wholesale and retail, and business services. We

select the price indexes of various industries from 2008 to 2018,
calculate the weighted average value, obtain the characteristic
price of common assets held by commercial banks, and obtain the
characteristic logarithmic rate of return. Finally, the Kendall rank
correlation coefficient between characteristic log returns is
calculated to measure the relevant changes in the asset value.
The PMFG algorithm is used to construct the associated network
of holding common assets, and the results are listed in Table 5. A
diagram is drawn to obtain the associated network diagram of
common assets held by the bank, as shown in the fourth layer
diagram in Figure 4.

Table 5 and the fourth layer diagram in Figure 4 show that the
number of connections of large state-owned banks such as ICBC
and CCB is low, which indicates that their characteristic rate of
return is not affected by market fluctuations and the situation is
relatively stable. Joint-stock banks such as HXBC and CMB and
urban development banks such as BON and BNC have many
network connections, which shows that these banks’
characteristic rate of return evidently follows market changes
and is vulnerable to fluctuations.

4.1.5 Feature Description and Analysis of
Multi-Dimensional Multi-Correlation Networks
The four aforementioned bank risk correlation networks are
superimposed. After calculating the average value of network

TABLE 4 | Statistics of stock price-related networks of banks from 2008 to 2018.

PAB BON SPDB HXBC CMBC CMB BNC CIB BOB BCM ICBC CCB BOC CITIC

PAB 0.789
{1}

0.840
{1}

0.809
{2}

0.789
{3}

0.817
{3}

0.817
{2}

0.761
{1}

0.790
{1}

BON 0.789
{1}

0.811
{1}

0.807
{2}

0.813
{3}

0.869
{6}

0.813
{1}

0.847
{3}

0.818
{1}

0.879
{2}

SPDB 0.840
{1}

0.811
{1}

0.828
{2}

0.816
{2}

0.877
{1}

0.875
{3}

0.838
{1}

0.812
{1}

0.838
{1}

HXBC 0.809
{2}

0.807
{2}

0.828
{2}

0.807
{1}

0.848
{3}

0.824
{3}

0.824
{6}

0.799
{3}

0.806
{3}

0.796
{1}

0.801
{3}

0.816
{1}

0.786
{2}

CMBC 0.816
{2}

0.807
{1}

0.803
{1}

0.816
{1}

0.729
{2}

0.794
{1}

0.585
{1}

0.837
{1}

0.605
{1}

CMB 0.789
{3}

0.813
{3}

0.877
{1}

0.848
{3}

0.803
{1}

0.811
{2}

0.815
{5}

0.832
{3}

0.836
{4}

0.777
{1}

0.829
{3}

BNC 0.869
{6}

0.824
{3}

0.816
{1}

0.811
{2}

0.830
{1}

0.871
{4}

0.843
{2}

CIB 0.817
{3}

0.813
{1}

0.875
{3}

0.824
{6}

0.729
{2}

0.815
{5}

0.830
{1}

0.841
{2}

0.707
{2}

0.706
{2}

0.668
{2}

0.650
{1}

BOB 0.817
{2}

0.847
{3}

0.838
{1}

0.799
{3}

0.794
{1}

0.832
{3}

0.871
{4}

0.841
{2}

0.852
{1}

0.829
{2}

BCM 0.818
{1}

0.812
{1}

0.806
{3}

0.585
{1}

0.836
{4}

0.707
{2}

0.852
{1}

0.823
{1}

0.885
{2}

0.757
{3}

0.739
{3}

ICBC 0.796
{1}

0.777
{1}

0.823
{1}

0.847
{6}

0.808
{4}

CCB 0.761
{1}

0.801
{3}

0.837
{1}

0.829
{3}

0.706
{2}

0.885
{2}

0.847
{6}

0.815
{6}

0.894
{1}

BOC 0.816
{1}

0.668
{2}

0.757
{3}

0.808
{4}

0.815
{6}

0.841
{2}

CITIC 0.790
{1}

0.879
{2}

0.838
{1}

0.786
{2}

0.605
{1}

0.843
{2}

0.650
{1}

0.829
{2}

0.739
{3}

0.894
{1}

0.841
{2}

Total {14} {20} {13} {32} {11} {29} {19} {30} {22} {22} {13} {25} {18} {18}

1) The number in the cell is the average value of the Pearson correlation coefficient at this position in each year obtained by MST algorithm (the average value of non-zero items). 2) The
number of paths appearing at this position each year is shown in brackets. “The last line is the sum of the number of times in each column, and the blank cell represents that there is no
effective path in each year.”
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node connections at each layer annually and screening the paths,
a four-layer risk correlation network is formed. Then, according
to Eq. 1, the weighted average is integrated into a four-layer
directed weighted correlation network. The multilayer network is
formed by the superposition of the jump-risk overflow network
layer (layer 1), interbank lending-related network layer (layer 2),
the bank stock price-related network layer (layer 3), and a
common asset-related network layer (layer 4). The jump risk
spillover and interbank lending-related layers are directed toward
the weighted related network layers. The related bank stock prices
and holding common assets are undirected related network
layers. The results are shown in the multiple network diagram
in Figure 4.

The average characteristic indexes of the nodes in each layer
network and multilayer network are listed in Table 6.

Table 6 shows that the MDMC network superimposes risk
contagion effects in all directions and forms almost a fully
connected network between bank nodes. Therefore, it has the
highest degree of centrality and closeness centrality and reduces
each bank’s betweenness centrality to 1.099%. Compared with the
associated network for each layer. The MDMC network has a
high feature vector centrality and clustering coefficient, which
shows that after superposition, the connectivity between nodes is
higher, and the centrality of nodes as a whole is higher, reflecting
the universality and complexity of risk infection.

The MDMC network comprehensively considers the multi-
channel characteristics of risk contagion and reasonably explains
the possibility of changing overflow channels at nodes. High
connectivity also better explains the feedback effect of risk in the
contagion process, which is more in line with the characteristics
of extreme risk transmission. Therefore, the time-varyingMDMC
network constructed by year describes the risk-contagion process.
The characteristics of time-varying MDMC networks are listed in
Table 7.

4.2 Results and Analysis of Comprehensive
VaR Estimation of Banks Under
Multi-Dimensional Multi-Correlation
Networks
4.2.1 Descriptive Statistics
Table 8 shows the statistical characteristics of the weekly data
description of the multiple jump VaR estimation indicators.

The financial and macro-indicators in Table 8 are
quarterly data. We use cubic spline interpolation to
convert the quarterly data into weekly data, and the rest
are converted through calculation or directly selected weekly
data. The mean and variance of each index are within a
reasonable range, and the return series and a small
number of explanatory variables deviate from the normal

TABLE 5 | Statistics of related networks in various banking industries from 2008 to 2018.

PAB BON SPDB HXBC CMBC CMB BNC CIB BOB BCM ICBC CCB BOC CITIC

PAB 0.975
{2}

0.984
{11}

0.984
{11}

0.977
{11}

0.959
{10}

0.947
{5}

0.942
{5}

BON 0.975
{2}

0.974
{11}

0.974
{10}

0.977
{9}

0.932
{10}

0.919
{10}

0.943
{2}

0.882
{5}

0.959
{2}

0.854
{1}

0.974
{7}

0.974
{8}

SPDB 0.984
{11}

0.974
{11}

0.994
{11}

0.986
{11}

0.936
{3}

0.985
{3}

0.974
{4}

0.920
{2}

HXBC 0.984
{11}

0.974
{10}

0.994
{11}

0.987
{11}

0.879
{5}

0.939
{2}

0.968
{9}

0.955
{10}

0.952
{8}

CMBC 0.977
{11}

0.977
{9}

0.986
{11}

0.987
{11}

0.897
{6}

0.866
{5}

0.939
{1}

0.958
{5}

0.952
{4}

CMB 0.932
{10}

0.936
{3}

0.879
{5}

0.897
{6}

0.986
{11}

0.979
{9}

0.976
{9}

0.958
{6}

0.962
{4}

0.964
{5}

0.966
{5}

BNC 0.919
{10}

0.939
{2}

0.866
{5}

0.986
{11}

0.982
{11}

0.982
{11}

0.973
{11}

0.931
{4}

0.961
{5}

CIB 0.943
{2}

0.979
{9}

0.982
{11}

0.989
{11}

0.979
{9}

0.944
{6}

BOB 0.882
{5}

0.939
{1}

0.976
{9}

0.982
{11}

0.989
{11}

0.979
{11}

0.947
{11}

BCM 0.959
{2}

0.958
{6}

0.973
{11}

0.979
{9}

0.979
{11}

0.962
{11}

ICBC 0.854
{1}

0.962
{4}

0.931
{4}

0.944
{6}

0.947
{8}

0.962
{11}

CCB 0.959
{10}

0.985
{3}

0.968
{9}

0.958
{5}

0.939
{5}

0.915
{3}

BOC 0.947
{5}

0.974
{7}

0.974
{4}

0.955
{10}

0.952
{4}

0.964
{5}

0.939
{5}

0.990
{11}

CITIC 0.942
{5}

0.974
{8}

0.920
{2}

0.952
{8}

0.966
{5}

0.961
{5}

0.915
{3}

0.990
{11}

Total {55} {77} {56} {77} {63} {73} {70} {48} {56} {50} {37} {35} {51} {47}

1) The number in the cell is the average value of the Kendall correlation coefficient at this position in each year obtained by the PMFG algorithm (the average value of non-zero items). 2) The
number of paths appearing at this position each year is shown in brackets. “The last line is the sum of the number of times in each column, and the blank cell represents that there is no
effective path in each year.”
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distribution. Quantile regression can be used for robust and
effective estimation.

4.2.2 Spatial Correlation Analysis and Model
Identification Verification
The Moran index reflecting the degree of spatial correlation in all
observations is significantly greater than zero, indicating a
significant positive spatial correlation in the bank return series
under the action of the MDMC network. The LM lag and LM
error tests reject the original hypothesis, indicating interaction
effects between the model’s explanatory variables and error terms.
Robust LM error and LM lag tests also prove the rationality of the
spatial lag relationship and spatial error correlation. The Wald a
posteriori test shows that the SDMwith a nested structure is more
suitable for this study. These statistical test results show that

hypotheses 2 and 3 proposed in the theoretical analysis are
significantly valid. Therefore, we consider using the quantile
estimation method of the SDM to estimate and analyze the VaR.

4.2.3 Estimation Results and Analysis of Spatial Dubin
Panel Quantile Regression of Bank Comprehensive
Financial Risk
First, the SDQR is conducted for the return series of the entire
sample period. Then, the bank return series is divided into three
regions with the standard deviation as the threshold, that is, the
positive impact with an increase of more than one standard
deviation, the negative impact with a decrease of more than one
standard deviation, and the volatility within a positive and
negative standard deviation. The SDQR is estimated for the
three regions, and the results are listed in Table 9.

TABLE 6 | Characteristic description of multilayer networks.

Network Degree Closeness Betweenness Eigenvector Density Clustering Coef

Layer 1 32.967 57.950 6.502 35.571 0.254 0.000
Layer 2 78.022 83.130 1.832 37.387 0.111 0.651
Layer 3 14.286 25.369 25.733 30.207 0.123 0.000
Layer 4 39.560 55.676 7.051 35.839 0.384 0.723
Multilayer 86.813 89.163 1.099 37.581 0.218 0.810

TABLE 7 | Statistics of characteristics of time-varying MDMC networks from 2008 to 2018.

PAB BON SPDB HXBC CMBC CMB BNC CIB BOB BCM ICBC CCB BOC CITIC

PAB 0.148
{6}

0.566
{11}

0.329
{11}

0.386
{11}

0.221
{7}

0.084
{5}

0.527
{9}

0.264
{10}

0.339
{9}

0.242
{11}

0.349
{11}

0.322
{11}

0.175
{9}

BON 0.202
{7}

0.220
{11}

0.297
{10}

0.291
{11}

0.353
{11}

0.472
{11}

0.268
{7}

0.219
{11}

0.236
{10}

0.334
{11}

0.140
{10}

0.502
{11}

0.424
{11}

SPDB 0.241
{11}

0.306
{11}

0.343
{11}

0.426
{11}

0.157
{8}

0.085
{4}

0.822
{7}

0.367
{7}

0.194
{8}

0.654
{8}

0.346
{9}

0.244
{11}

0.171
{6}

HXBC 0.219
{11}

0.208
{11}

0.324
{11}

0.415
{11}

0.325
{9}

0.229
{7}

0.335
{7}

0.213
{9}

0.326
{10}

0.384
{9}

0.469
{11}

0.434
{11}

0.372
{10}

CMBC 0.299
{11}

0.200
{9}

0.508
{11}

0.263
{11}

0.381
{7}

0.259
{5}

0.430
{4}

0.195
{6}

0.288
{8}

0.627
{9}

0.544
{10}

0.436
{10}

0.164
{5}

CMB 0.247
{5}

0.218
{11}

0.459
{7}

0.243
{9}

0.323
{8}

0.231
{11}

0.476
{9}

0.369
{10}

0.398
{11}

0.351
{11}

0.416
{11}

0.530
{11}

0.319
{7}

BNC 0.257
{6}

0.368
{11}

0.089
{6}

0.225
{7}

0.183
{9}

0.337
{11}

0.238
{11}

0.328
{11}

0.343
{11}

0.321
{11}

0.261
{10}

0.639
{11}

0.277
{10}

CIB 0.327
{6}

0.169
{7}

0.332
{6}

0.368
{6}

0.148
{7}

0.511
{11}

0.308
{11}

0.446
{11}

0.516
{11}

0.343
{10}

0.353
{10}

0.547
{10}

0.228
{7}

BOB 0.217
{4}

0.287
{8}

0.135
{3}

0.379
{4}

0.174
{5}

0.277
{10}

0.389
{11}

0.343
{11}

0.566
{11}

0.671
{11}

0.240
{8}

0.592
{9}

0.181
{2}

BCM 0.448
{2}

0.239
{5}

0.340
{4}

0.419
{4}

0.362
{5}

0.388
{9}

0.238
{11}

0.526
{9}

0.385
{11}

0.590
{11}

0.439
{10}

0.420
{11}

0.495
{5}

ICBC 0.563
{2}

0.233
{1}

0.277
{3}

0.230
{4}

0.407
{3}

0.311
{5}

0.273
{5}

0.581
{9}

0.322
{9}

0.487
{11}

0.830
{8}

0.917
{8}

0.401
{3}

CCB 0.378
{10}

0.073
{1}

0.276
{6}

0.497
{9}

0.303
{7}

0.258
{3}

0.147
{2}

0.237
{4}

0.127
{2}

0.537
{7}

1.102
{10}

0.846
{10}

0.200
{7}

BOC 0.384
{9}

0.252
{7}

0.352
{5}

0.273
{11}

0.278
{6}

0.299
{6}

0.054
{5}

0.421
{3}

0.253
{3}

0.545
{5}

0.653
{8}

0.739
{10}

0.356
{11}

CITIC 0.325
{8}

0.297
{8}

0.486
{7}

0.310
{11}

0.170
{6}

0.277
{7}

0.253
{9}

0.288
{7}

0.155
{8}

0.305
{10}

0.224
{10}

0.575
{11}

0.738
{11}

Total {92} {96} {91} {108} {100} {104} {97} {97} {108} {122} {130} {129} {135} {93}

1) The number in the cell is the mean value of the elements in the multi-correlation networks each year (the average value of non-zero items). 2) The number of paths appearing at this
position each year is shown in brackets. “The last line is the sum of the number of times in each column, and the blank cell represents that there is no effective path in each year.”
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As seen in Table 9, the spatial autoregressive correlation
coefficient of the model in each stage is positively significant,
which indicates that the four-channel contagions of jump
spillover correlation, interbank lending correlation, and stock
price information correlation, and holding common assets
correlation are significant. The cumulative superposition effect
of four-channel contagion is also significant. The change in the
return rate of affiliated banks in a time-varying spatial multilayer
network will have a significant positive impact on the VaR of
target banks. Extreme risk events in affiliated banks are likely to
overflow risk to the target bank through MDMC networks,
resulting in local and systemic risks. Measuring the bank risk
contagion requires an all-around integration of the important

contagion effects. The single- and double-path contagion of
banking systemic financial risk underestimates the contagion
effect. This conclusion also provides a theoretical basis for the
simulation and calculation of risk contagion evolution, which
shows that hypothesis 3 proposed in Section 3 is significantly
valid. The four bank risk-related infectious networks interact,
forming multiple interbank-related contagious networks.

We use the SDQR to estimate the VaR of banks. As an
explanatory variable, the risk factor parameter is significant,
indicating that it includes the individual risk caused by risk
factors. Spatial autocorrelation is significant, showing that
different bank risks are transmitted through four paths. Five
parameters in the spatial correlation terms of the six explanatory

TABLE 8 | Description and statistics of variable data.

Variable Mean Standard deviation Minimum Median Maximum Skewness Kurtosis

RET −0.346 4.189 −48.185 −0.119 6.007 −1.592 12.218
VOL 22.269 13.969 0.156 18.188 51.359 0.788 2.555
NPL 1.143 0.398 −0.380 1.086 1.755 −0.015 1.984
ROA 1.636 0.510 0.216 1.661 2.420 −0.290 2.309
LDP 72.618 8.784 41.409 73.193 87.403 −0.419 3.280
ISM −0.171 4.035 −34.572 −0.105 6.546 −0.987 6.907
HHI 7.934 5.397 0.001 7.686 15.739 −0.005 1.690
MR −0.249 3.093 −13.841 −0.032 4.309 −1.027 5.083
MV 11.521 9.235 1.831 7.587 33.112 1.222 3.327
ML 1.131 0.487 0.002 1.110 1.977 0.143 2.080
RF −0.003 0.039 −0.369 −0.000 0.053 −2.797 23.174
CS −0.000 0.025 −0.116 0.001 0.038 −0.862 4.861
CPI 2.466 1.753 −1.800 2.061 5.938 0.190 3.408
GDP 0.247 0.522 −1.445 0.161 0.853 −1.222 4.772
SHI 99.242 3.428 92.430 100.747 103.888 −0.434 1.820

Sample size n = 7882.

TABLE 9 | Results of SDQR under the MDMC network.

Model I Model II Model III Model IV

Full-term Positive impact Fluctuation Negative impact

ρ 0.071*** −0.106*** −0.146*** 0.263***
VOL −0.032*** −0.027*** −0.021*** −0.014*
LDP 0.017 0.025* 0.003 0.008
ISM 0.536*** 0.505*** 0.452*** 0.425***
MR 0.811*** 0.744*** 0.605*** 0.551***
MV −0.098* −0.027 −0.020 −0.120**
ML −1.294 −1.612* −0.990 0.549
SHI 0.087* 0.106** 0.122** 0.084*
W*VOL −0.005 −0.018*** −0.028*** 0.001
W*LDP 0.022*** 0.021** 0.018* 0.007
W*ISM 0.074*** 0.052*** 0.043*** 0.043***
W*MR −0.078** −0.037 −0.029 −0.086**
W*MV 0.030** 0.014 0.021 0.030*
W*SHI −0.015* −0.018** −0.015* −0.009
Cons −9.669* −13.614*** −15.676*** −9.415*
Others Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes
Year effect Yes Yes Yes Yes
Sample size 7882 7882 7882 7882
Pseudo R2 0.489 0.498 0.505 0.566

1) The significance levels are indicated by ***p < 0.01, **p < 0.05, and *p < 0.1.
2) The number in brackets is the standard error of the coefficient.
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variables are significant, including the individual risk caused by the
risk factors and the spillover risk caused by the risk factors of related
banks. Therefore, the VaR estimated by the SDQR in this study is
the bank’s comprehensive risk, including individual risk and two
infectious risks. The simulation analysis literature cannot monitor
the comprehensive risk degree of banks but can only provide
simulation evolution results, which is not suitable for systematic
financial risk monitoring. Therefore, we compensate for the
deficiency of the existing research literature on risk contagion
simulation calculation and provide a methodological basis for the
entire process visualization of risk contagion path simulation.

From the results for the entire period, the conditional volatility
of the bank has a significant direct negative effect on the VaR of
the target bank. Investor sentiment, stock price returns, stock
price volatility, and the national housing boom index have a
significant direct positive impact on the VaR of the target bank.
The deposit loan ratio of affiliated banks and market investor
sentiment also affect the risk of affiliated banks, which has a
significantly positive spillover effect on the risk of target banks.
The market share price return and national housing boom index
have a significant negative spillover effect on the target bank risk
by affecting the related bank risk.

From the results of the zoning system, the conditional volatility
of banks has a significant negative direct impact in the three zoning
systems. Investor sentiment, stock price returns, and the national
housing boom index have a significant positive direct impact.
Investor sentiment also has a significant positive spillover effect
on related bank risk. In addition, banks’ conditional volatility has a
significant positive effect on the positive shock and shock
fluctuation regime. The conditional volatility of affiliated banks
also has a significant negative spillover effect. The deposit loan ratio
of affiliated banks has a significant positive spillover effect. The
national housing boom index has a significant negative spillover
effect on the risk of target banks by affecting the risk of related
banks. The deposit-to-loan ratio positively impacts bank liquidity
and directly impacts bank liquidity risk. In the negative impact
zone system, the market share price volatility has a significant
negative direct impact on the risk of target banks.

The market stock price return has a significant negative
spillover effect on the target bank risk by affecting the related
bank risk, while the market stock price volatility has a significant
positive spillover effect on the target bank risk by affecting the
related bank risk. The significance of the estimated values of these
parameters shows that hypotheses 1 and 2 proposed in the
theoretical analysis part are significantly valid. Bank risk factors
are bothmulti-dimensional and interactive. Hypotheses 2 and 3 are
significantly valid in the unified verification framework, confirming
that hypothesis 4 is valid. A multi factor-related contagion and a
multi-industry-related contagion exist significantly at the same
time and interact to form a MDMC contagion network.

By comparing the results of the whole period and different
zoning systems, it can be seen that the symbols of the parameters
of the risk factors and their spatial correlation items are the same,
but the estimated values are quite different, which indicates that
there is a jump impact on different market risks. The direct and
spillover feedback effects of the risk factors are asymmetric, and
the response to positive shocks is large.

5 IDENTIFICATION RESULTS AND
ANALYSIS OF SYSTEM IMPORTANCE IN
MULTI-DIMENSIONAL
MULTI-CORRELATION NETWORKS

To understand the characteristics of MDMCnetworks further, we
use the conclusions obtained from the above model verification to
decompose the spillover contagion effect of bank risk and identify
systemically important factors, systemically important banks, and
systemically vulnerable banks.

5.1 Decomposition Method of Bank Risk
Spillover Contagion Effect in
Multi-Dimensional Multi-Correlation
Networks
We use the LeSage and Pace [51] method to decompose the
spatial econometric model. The partial differential of the SDM
shown in Eq. 31 can be obtained, and the quantile partial effect
matrix of the explained variable Y to the explanatory variable X is

Sk(W) � (I − ρW)−1(Iβk +Wθk)
� (I − ρW)−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βk w12θk / w1Nθk
w21θk βk / w2Nθk

..

. ..
.

1 ..
.

wN1θk wN2θk / βk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (35)

The influence of the change in a specific independent variable
of an organization on a dependent variable is the direct effect
�M(k)D, which is numerically expressed as the mean of the
diagonal elements of the matrix Sk(W),

�M(k)D � n−1tr(Sk(W)). (36)
The impact of changes in the independent variables of

institutions on the dependent variables of affiliated institutions
is an indirect (spillover) effect �M(k)I, which is numerically
expressed as the mean of the sum of the non-diagonal element
columns of the matrix Sk(W),

�M(k)I � n−1ι′nSk(W)ιn − �M(k)D. (37)
The sum of the direct and indirect effects caused by the change

in an institution’s specific independent variables is the total effect
�M(k)T, which is expressed as

�M(k)T � �M(k)D + �M(k)I. (38)

5.2 System Importance Analysis Method in
Multi-Dimensional Multi-Correlation
Network
The analysis in this section mainly identifies important factors,
systemically important financial institutions, and systemically
vulnerable financial institutions. Systemically important factors
refer to those whose changes will have a significant negative
impact on the risk status of financial institutions and the entire
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financial system. They directly impact financial institutions and
infect the system through their risk overflow of financial
institutions, resulting in systemic risks. According to the
characteristics of systemically important factors, the total effect
of risk factors, including the direct impact on institutional risk
(direct effect) and indirect impact on financial system risk
(indirect effect), can be used to identify. The total effect of the
risk factors is calculated as Eq. 35.

Systemically important financial institutions refer to financial
institutions with a large scale and wide range of connections,
which will significantly impact-related institutions or the whole
financial system in case of risk events. It has a large scale, obvious
correlation and a high spillover effect (i.e., indirect effect). The
total spillover effect IE of banks can be used to identify
systemically important banks,

IEτ � ατ ιn +∑Xit
�M(k)I,τ . (39)

Systemic vulnerability refers to financial institutions that
are vulnerable to risk events and have a high degree of
absorption correlation. They are vulnerable to the greater
negative impact of the risk spillover contagion of related
banks, and the feedback effect of their risk spillover. Under
this effect, they can easily go bankrupt or face difficulties. The
feedback effect �M(k)F describes the feedback transmission
effect of the spatial spillover effect among related institutions,
including the cumulative effect of feedback transmission to
the institution, recorded as
Rk(W) � [(I − ρW)−1 − I − ρW](Iβk +Wθk). The feedback
effect is numerically expressed as the column and mean of
the matrix Rk(W),

�M(k)F � n−1ι′nRk(W)ιn. (40)
Therefore, the total feedback effect FE of a bank can be

calculated by decomposition, and the system vulnerability
bank can be identified as follows:

FEτ � ατ +∑Xit
�M(k)F,τ + vt. (41)

5.3 Identification Results and Analysis of
Systemic Importance Risk Factors From the
Perspective of the Total Effect
The total effect of the risk factor variables reflects the effects of
this factor on the VaR of all banks. The total effect of each factor
can be calculated using Eq. 35, and the specific results are listed in
Table 10.

It can be seen from Table 10 that default risk, interest rate
risk, liquidity risk, and the total effect of the GDP growth rate
are the four most influential factors. The total effect of the
factors includes the direct effect on the VaR of the explained
institution and the multilayer spillover effect on the VaR of
related institutions. The former forms the individual bank
risk, the latter forms the bank contagion risk, and the sum of
the two forms the comprehensive risk. The large effect of
these factors shows that they play a significant role in the
formation, outbreak, and spread of bank vulnerability and

systemic financial risk. Therefore, these systemically
important factors are the key operational objectives and
indicators of micro-prudential supervision and
macroprudential supervision and regulation. This
conclusion enriches the literature on single- and dual-
channel infections. The contagion simulation research
literature mainly analyzes the sensitivity pressure of
simulation algorithm parameters and identifies sensitive
factors, such as the asset price sensitivity coefficient and
interbank loan ratio [5]; Ccnnectivity, market density,
lending ratio, and leverage ratio [52]; and price shock
index and loss rate [2]. However, it is impossible to
perform an ergodic scenario stress analysis of exogenous
systemic risk factors.

5.4 Identification Results and Analysis of
Systemically Important Institutions From
the Perspective of Total Spillover Effect
The total effect of spatial spillover includes the direct effect of risk
factors on the institution and the indirect effect of risk spillover
on affiliated institutions. The total indirect effects of each
institution in each year are calculated and ranked using Eq.
37. The results are presented in Table 11.

It can be seen from the average annual total effect in
Table 11 that the bank spillover risk was high in the
following 3 years of the financial crisis and stock disaster
in 2015. The overall spillover effect shows a decreasing annual
trend, which shows that the degree of risk spillover is reduced
annually, and systemic risk has been well controlled. BOC
and ICBC are in the highest quartile range of the bank mean
of the total effect. The total spillover effect of the four large
state-owned banks is stable at the forefront of each year. They
are large scale and highly related and should belong to
systemically important institutions. Suppose that extreme
risk events impact large state-owned banks. In this case,
the risk will be transmitted to relevant institutions under
the action of MDMC networks, which is likely to cause
systemic risk and is the first tier of systemically important
financial institutions.

The total spillover effects of the CIB and HXBC are in the
third quartile range. The total effect of other banks is in the
lowest quartile range. According to the results of the two-
channel correlation contagion from asset and price, the
ranking of systemic importance is considered to be based
on the number of bank failures is ICBC, CCB, BOC, and the
Agricultural Bank of China [2]. The main reason BOC
surpasses ICBC under MDMC networks is that the number
of effective paths associated with the BOC’s stock price
information and holding common assets is greater than
that of ICBC. The number of effective paths for the BOC’s
jump association, the interbank lending association, the
ICBC’s jump association, and the interbank lending
association is 13, 30, 12, and 34, respectively. The number
of quadruple association paths for BOC is 112, and the
number of significant association paths for ICBC is 93.
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TABLE 10 | Total effects of risk factors.

Index 2008 2010 2012 2014 2016 2018 Mean

VOL −0.346 −0.352 −0.348 −0.348 −0.348 −0.346 −0.347
NPL −2.195 −2.193 −2.193 −2.196 −2.196 −2.195 −2.195
ROA 0.347 0.350 0.348 0.348 0.348 0.347 0.348
LDP 0.235 0.236 0.236 0.236 0.236 0.235 0.236
ISM 5.762 5.866 5.796 5.797 5.797 5.762 5.794
HHI −0.007 −0.008 −0.008 −0.008 −0.008 −0.007 −0.008
MR 8.208 8.391 8.269 8.268 8.268 8.208 8.264
MV −0.937 −0.961 −0.945 −0.945 −0.945 −0.937 −0.944
ML −12.727 −13.036 −12.831 −12.828 −12.828 −12.727 −12.821
RF 118.406 121.452 119.432 119.398 119.398 118.406 119.331
CS 125.512 128.881 126.649 126.606 126.606 125.512 126.535
CPI 1.237 1.270 1.248 1.247 1.247 1.237 1.247
GDP −12.476 −12.789 −12.582 −12.579 −12.579 −12.476 −12.571
SHI 0.863 0.883 0.870 0.869 0.869 0.863 0.869
Mean 16.563 16.999 16.710 16.705 16.705 16.563 16.695

TABLE 11 | Total spillover effects of banks.

Order Bank 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

1 BOC 6.19 40.56 47.89 30.57 36.82 23.49 27.80 20.85 27.31 30.44 23.07 28.63
2 ICBC 8.49 33.48 30.27 22.40 22.84 42.70 29.28 23.97 12.67 15.87 17.77 23.61
3 CCB 6.63 28.54 12.61 22.44 17.99 23.20 33.61 16.32 33.64 27.60 21.25 22.17
4 BCM 5.40 12.05 18.99 19.67 17.57 16.73 10.31 9.27 13.67 65.11 20.60 19.03
5 CIB 2.22 17.22 12.24 7.18 16.17 9.71 15.95 13.77 27.29 28.64 36.25 16.97
6 HXBC 2.47 13.33 6.95 12.45 14.05 8.63 13.82 6.63 30.53 15.70 30.57 14.10
7 SPDB 1.38 6.31 6.28 13.14 30.91 14.45 13.67 7.82 25.79 11.93 17.54 13.57
8 BOB 2.25 15.32 23.57 16.96 11.76 13.39 12.02 3.33 14.14 9.57 23.88 13.29
9 CMBC 2.05 10.15 11.29 10.05 12.89 12.82 11.43 15.61 11.63 21.13 12.77 11.98
10 CMB 5.57 12.44 13.64 16.85 10.56 10.09 16.82 15.94 10.42 8.67 9.02 11.82
11 PAB 1.07 24.37 19.03 16.74 14.97 8.87 9.61 5.13 8.43 8.91 7.73 11.35
12 CITIC 3.48 6.80 17.12 13.43 9.27 20.94 7.67 3.71 22.26 11.16 7.16 11.18
13 BNC 4.36 11.43 6.54 10.80 15.29 19.38 10.48 5.11 6.86 10.37 7.45 9.83
14 BON 3.00 12.32 11.40 6.25 7.20 10.32 21.41 4.08 8.68 12.79 8.35 9.62

Mean 3.90 17.45 16.99 15.64 17.02 16.77 16.71 10.82 18.09 19.85 17.39 15.51

TABLE 12 | Total feedback effect of banks.

Order Bank 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Mean

1 BOC −14.53 −19.98 −16.00 −11.32 −13.13 −8.40 −10.55 −18.20 −10.61 −9.50 −10.17 −12.94
2 ICBC −19.26 −16.96 −10.44 −8.12 −7.89 −15.11 −11.23 −20.78 −4.96 −4.88 −7.91 −11.59
3 CCB −13.68 −14.16 −4.27 −7.82 −6.27 −8.20 −12.91 −13.48 −13.34 −8.58 −9.38 −10.19
4 BCM −13.48 −6.01 −6.51 −7.18 −6.18 −5.60 −3.92 −7.38 −5.30 −20.36 −8.73 −8.24
5 CIB −5.19 −8.63 −4.00 −2.53 −5.62 −3.32 −6.15 −11.78 −10.65 −9.02 −15.37 −7.48
6 CMB −13.35 −6.30 −4.67 −6.02 −3.81 −3.50 −6.65 −14.41 −4.09 −2.65 −4.01 −6.31
7 HXBC −5.10 −6.51 −2.32 −4.39 −4.94 −3.02 −5.37 −5.73 −12.06 −4.84 −13.19 −6.13
8 SPDB −2.96 −3.05 −2.06 −4.71 −10.89 −5.06 −5.45 −7.54 −9.96 −3.72 −8.03 −5.77
9 BOB −4.78 −7.87 −8.31 −6.33 −4.07 −4.78 −4.60 −3.05 −5.44 −2.95 −10.09 −5.66
10 CMBC −4.48 −5.37 −3.86 −3.69 −4.43 −4.66 −4.43 −13.76 −4.57 −6.73 −5.53 −5.59
11 CITIC −6.97 −3.42 −5.69 −4.71 −3.14 −7.28 −2.92 −3.07 −8.78 −3.39 −3.08 −4.77
12 PAB −2.14 −11.85 −6.50 −6.07 −5.16 −2.93 −3.85 −4.33 −3.22 −2.75 −3.45 −4.75
13 BNC −9.59 −5.67 −2.22 −3.99 −5.42 −6.71 −4.04 −4.19 −2.70 −3.21 −3.13 −4.62
14 BON −5.66 −6.08 −3.88 −2.29 −2.54 −3.61 −8.38 −3.25 −3.35 −4.02 −3.58 −4.24

Mean −8.66 −8.70 −5.77 −5.65 −5.96 −5.87 −6.46 −9.35 −7.07 −6.19 −7.55 −7.02

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 89560318

Wang et al. Multiple Network Contagion and CoVaR

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


5.5 Identification Results and Analysis of
System Vulnerability Mechanism From the
Perspective of Total Feedback Effect
The total feedback effect reflects the institution’s risk factors and
extreme-risk events. After the negative impact infects affiliated
institutions, it reacts to the institution, resulting in the secondary
effect of the risk. The total feedback effect of each organization in
each year is calculated using Eq. 38 and ranked. The results are
shown in Table 12.

It can be seen from Table 12 that the total feedback effect of
the banking industry during the financial crisis in 2008 and the
stock market disaster in 2015 is high and then shows a decreasing
annual trend, which shows that under the action of crisis
management measures, the feedback effect of risk spillover is
declining annually. The acceleration momentum of the risk
contagion is well controlled.

Large banks are still at the forefront of each year from the mean
of banks, with a total feedback effect. BOC, ICBC, CCB, and BCM
are among the top four banks with a total feedback effect, which
shows that the total spillover effect and total feedback effect are also
large. The four state-owned banks are the key nodes with high
centrality in the four related networks. These are the contagion
path of risk spillover and the feedback contagion path of risk
spillover. Without considering the banks’ risk mitigation ability,
the four state-owned banks have the characteristics of systemically
important institutions and systemic vulnerability, which reflects
the characteristics of “both the stability and vulnerability” of
China’s financial institutions. This conclusion is similar to that
of research on the dual-channel contagion [53]. The total feedback
effect of the Industrial Bank, China Merchants Bank, and Huaxia
Bank is large, and the total spillover and feedback effects of the
Industrial Bank and Huaxia Bank are large, mainly due to the
relatively large correlation paths of significant spillover and
feedback absorption of the two banks. The total feedback effect
of China Merchants Bank exceeds that of Shanghai Pudong
Development Bank, which has a large total spillover effect. This
is mainly because the number of significant paths of the China
Merchants Bank’s MDMC networks is 104. The number of
significant paths of Shanghai Pudong Development Bank’s
MDMC network is 91, and its interbank lending correlation
and jump correlation ratio are large.

6 CONCLUSION

The existing literature mainly uses the simulation experimental
calculation method to study the evolution process of the bank risk
double correlation contagion and performs parameter sensitivity
analysis. The effectiveness of the results largely depends on the
rationality of the parameter value selection and algorithm design,
which can only describe the evolution mechanism of contagion
diffusion and cannot accurately measure the effectiveness of risk
infection. The existing literature rarely studies the problem of
bank multi-channel contagion completely based on actual data.
However, many studies have shown four correlation paths in the
bank risk contagion mechanism. Multiple correlation paths

coexist simultaneously, and the superposition effect produced
by the interaction produces a stronger contagion destructive
power. Therefore, this study integrates the contagion effects of
four paths—jump correlation, interbank lending correlation,
stock price information correlation, and holding common
assets correlation—constructs a MDMC network matrix, and
uses the quantile estimation of the spatial Dubin panel model
to estimate the comprehensive risk value of banks, including
individual risk and contagion risk. We decompose the spillover
feedback contagion effect, summarize it according to factors,
banks, and time, and analyze systemically important factors,
systemically important financial institutions, and systemically
vulnerable institutions.

The conclusions of this study are as follows. First, the
cumulative superposition effect of the four channel-related
infections is very significant. Second, the banks’ conditional
volatility has a significant direct negative effect on the VaR of
the target bank. Investor sentiment, stock price returns, stock
price volatility, and the national housing boom index have a
significant direct positive impact on the VaR of the target bank.
The deposit loan ratio of affiliated banks and market investor
sentiment also affect the risk of affiliated banks, which has a
significant positive spillover effect on the risk of target banks. The
market share price return and national housing boom index have
a significant negative spillover effect on the target bank risk by
affecting the related bank risk. The total effect of default risk,
interest rate risk, and liquidity risk in industry factors and the
GDP growth rate of macro-factors are the top four systemically
important risk factors, followed by the change in stock price
returns of market factors and investor sentiment. Third, the
MDMC network of the four major state-owned banks is
significantly higher than that of joint-stock banks and urban
development banks. The four major state-owned banks have the
characteristics of systemically important institutions and strong
characteristics of system vulnerability. The total spillover effect of
the CIB, HXBC, and SPDB is large, while the total feedback effect
of the CIB, CMB, and HXBC is large.

Based on the aforementioned conclusions, we accurately prevent
and control risks. First, we should design a market circuit breaker,
marketmaker, and counter-cyclical dynamic adjustment of themargin
ratio of credit financing transactions and other stock-market-related
contagion suppression mechanisms. Improve the monitoring index
system and information disclosure system for the interbank lending
ratio and industry risk.We focus on the four paths ofmonitoring jump
correlation, interbank lending correlation, stock price information
correlation, and holding common assets correlation to resolve the
superposition effect of MDMC network infections. Second, we focus
on banks’ comprehensive risk, including individual and infectious
risks. Build a counter-cyclical dynamic regulatory system to mitigate
the common impact of macroeconomic factors, such as the GDP
growth rate and the national housing boom index, on systemic
financial risks. Finally, we set additional capital requirements for
liquidity and residual risks. Then, we build the expected deficit (ES)
model to improve attention to risk events with low frequency and high
destructive power. We improve the supervision of additional capital of
systemically important financial institutions. We refine the asset
classification scheme to prevent regulatory arbitrage. We improve
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and optimize the exposure weight structure and credit conversion
coefficient to improve risk sensitivity. We will optimize the
implementation plan of the internal rating method and improve
the microprudential supervision of financial institutions with
systemic vulnerabilities.

In addition, our research focuses solely on the banking
industry. We believe that the systemic importance of banks
not only comes from their internal risks but also receives the
extreme risk impact of other external banks, which has certain
limitations. As an important part of the financial market, banking
industry risk is not only caused by internal factors but also closely
related to external industries and macroeconomic situations.
Future research will further extend the linkage perspective of
financial system risk, expand the industry network into the
financial system network, investigate the extreme risk of banks
again, and determine its systemic importance.
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