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This mini-review highlights recent advances on computational approaches that have been
used in the characterisation of the viscoelastic response of semiflexible filamentous
biomaterials. Special attention is given to the multiscale and coarse-grained
approaches that might be used to model the mechanical properties of systems which
involve biopolymer assemblies, for instance, actin, collagen, vimentin, microtubules, DNA,
viruses, silk, amyloid fibrils, and other protein-based filaments. Besides the basic features
of the most commonly used models for semiflexible filaments, I present a brief overview of
the numerical approaches that can be used to extract the viscoelasticity of dilute and
concentrated solutions, as well as systemswith cross-linked networks. Selected examples
of simulations that attempt to retrieve the complex shear moduli at experimentally relevant
time and length scales, i.e., including not only the fully formed filaments and networks but
also their self-assembly kinetics, are also considered.
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1 INTRODUCTION

Solutions of semiflexible filaments formed from the self-assembly of biomolecules are ubiquitous in
living organisms [1, 2]. Understanding how their viscoelastic properties emerge is crucial not only for
a better comprehension about the transport and structural properties of fluids and hydrogels at the
cellular level [3–6], but also because they seem to play a significant role in many disruptive processes,
like cell invasion in several types of cancer [7] and protein aggregation in tens of proteinopathies [8].

Besides being a highly interdisciplinary problem [9], the characterisation of the viscoelastic
response of self-assembled molecular systems involves time and length scales that span several orders
of magnitude [10], with the typical building blocks at length scales of a few nanometers (10−9 m)
forming structures of micrometers (10−6 m) to centimeters (10−2 m) along time scales that range
from nanoseconds (10−9 s) to hours (104 s). Experimentally, the mechanical properties of
biomolecular systems and their building constituents have been probed at different scales mostly
with aid of single-molecule [11] and microrheological techniques [12], and now, more than ever,
multiscale and coarse-grained computational simulations [13] are becoming also a valuable tool in
testing and validating modelling concepts in order to both understand and predict the viscoelastic
behaviour of solutions of semiflexible filaments.

From the practical point-of-view, one aims to understand how the molecular information can be
used to design the kind of response the biomaterial will display, e.g., liquid-like or solid-like [14], as
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well as to estimate the characteristic time scales that determine
their viscoelastic behaviour. Figure 1 illustrates the typical
viscoelastic responses that are obtained from rheology and
microrheology experiments for three different types of
solutions of semiflexible filaments. Liquid-like solutions, for
instance, are primarily characterised by the value of their
viscosity at low frequencies, i.e., η0 = limω→0η′(ω), with the
frequency-dependent viscosity η′(ω) being associated to the
loss modulus G′′(ω) as η′(ω) = G′′(ω)/ω. As shown in
Figure 1A, the loss modulus displays a characteristic linear
dependence on the frequency, i.e., G′′(ω) ≈ η0ω, while the
storage modulus displays a quadratic behaviour, i.e., G′(ω) ∝
ω2, which are the expected low-frequency behaviours that one
would obtain theoretically from the constitutive Maxwell and
Rouse models [15]. Figures 1B,C illustrate the typical viscoelastic
responses observed for solutions containing entangled and cross-
linked semiflexible filaments, respectively. In both cases the
solutions will display a semisolid/gel-like behaviour, and the
interesting quantities are the entanglement modulus Ge,
i.e., where G′(ω) displays a plateau-like regime (Figure 1B),
and the low-frequency storage modulus G0 = limω→0G′(ω)
(Figure 1C). In all cases one might want to predict both the
exponents α and the corresponding frequency ranges of the
power law regimes, i.e., where G′(ω) ∝ ωα and/or G′′(ω) ∝ ωα.

In this mini-review I will focus mainly on simulations that
have been used to study the aforementioned behaviours
illustrated in Figure 1, including the effective modelling
approaches of single semiflexible filaments, and the numerical
methods used to describe entangled and cross-linked filament
networks. Also, whenever it is pertinent, I will include
information about the related self-assembly processes.

2 MODELLING APPROACHES

2.1 Viscoelasticity and Relaxation Spectrum
As discussed in Ref. [16], polymer solutions are generally
composed of structures that span several length scales so that
they should contain many relaxation modes that can be

characterised by a distribution of characteristic times τ, which
is also known as the relaxation spectrum [17]H(τ). As extensively
discussed in Ref. [17], one can relate the different mechanical
responses illustrated in Figure 1 to different spectra H(τ) by
assuming that the system is in the linear viscoelastic (LVE)
response regime. Usually, the LVE regime is attained for small
strains γ where the integrity of the biomolecular filaments (and,
possibly, of the network structures) in the system is maintained
during the whole measurement [12]. Although this might exclude
drastic phenomena as those involved in shear banding and
fracture experiments, situations that include the self-assembly
of filaments (and networks) can be still studied if the time scales
involved in the macroscopic reorganisation of the structures are
greater than the time scales probed by the oscillatory or
microrheology experiments. In practice, this means that the
relaxation spectrum H(τ) or, equivalently, the stress relaxation
modulus [17] G(t), does not change during the observation time
[18], and one can evaluate the shear moduli in the LVE through a
one-sided Fourier-Laplace transform [15, 17] as G*(ω) �
iω∫∞

0
G(t′)e−iωt′dt′ � G′(ω) + iG′′(ω).

For solutions, one might consider to perform nonequilibrium
simulations and implement shear flow conditions through driven,
e.g., Lees-Edwards [19], boundary conditions and similar
approaches (see Figure 2A). Alternatively, in order to obtain
the response of the system in the LVE, one may avoid working
with transient behaviours by considering simulations at
equilibrium [20–22], and evaluate the relaxation modulus G(t)
from the stress-stress autocorrelation (see Figure 2B). This kind
of approach has been used not only to demonstrate the
characteristic high-frequency regime where G′ ∝ G′′ ∝ ω3/4

for dilute solutions of semiflexible filaments, but also in the
evaluation of the plateau (i.e., entanglement) modulus Ge in
entangled solutions [23–26]. Although in the highly entangled
regime it is not always easy to determine the relevant
characteristic length scales (i.e, the entanglement length Le)
and the interactions that significantly contribute to the stress
tensor [27], an alternative modelling approach based on primitive
path analysis [28] (see Figure 2B) has been successfully used to
obtain values for Ge [29, 30].

FIGURE 1 | Typical viscoelastic responses characterised by the shear moduliG′(ω) andG′′(ω) for (A) complex fluid/liquid-like, (B) entangled, and (C) semisolid/gel-
like solutions of semiflexible filaments. Inset drawings illustrate the configurations of the semiflexible filaments and their interactions in solution. Besides the identification of
the distinct viscoelastic behaviours, the frequency-dependent shear moduli are often determined by experimentalists to provide a lower bound for the stiffness of the
polymer biomaterials at different time scales [12].
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When the system present a percolating network one can, in
principle, implement simulations based on oscillatory setups
which are similar to experiments in rheology [14], and
evaluate G*(ω) by direct means. For instance, in Ref. [31] the
authors studied a network of cross-linked semiflexible filaments
placed in a finite volume V by imposing a strain γ(t) = γ0 sin (ωt)
and measuring the shear stress as1 σ ≈ (1/V)(zE/zγ), with E
being the total elastic energy of the system (see Figure 2C). More
recently, a numerical method to compute G*(ω) which avoids
transient periods have been developed in Ref. [34] for systems
with cross-linked filament networks. In this method one consider
the overdamped equations for the displacements �u of the

crosslinks so that the nonzero eigenvalues λi of the Hessian
matrix H, which elements are computed from the linearization
of the elastic energy E( �u) � Estretching( �u) + Ebending( �u), can be
associated to relaxation times τi (see Figure 2D), and the shear
moduli G′(ω) and G′′(ω) can be determined from the measured
strains at the boundaries of the system, which are given in terms
of the eigenvectors of H. Alternatively, if one is interested in
evaluating only the value G0 of the storage modulus G′(ω) of
cross-linked networks at the low-frequency regime, it might be
useful to consider optimization schemes (see Figure 2E), e.g., the
conjugate gradient algorithm [35, 36], to find the energy
difference ΔE = E(γ) − E(0) so that [37, 38] G0 = 2ΔE/Vγ2.

It is worth mentioning that one can also consider the
compliance function J(t) that is usually obtained from creep
experiments to evaluate G*(ω), since G(t) is also related to J(t)
through a convolution integral [12, 17]. In fact, since the
compliance can be related to the mean-squared displacement
(MSD) 〈Δr2(t)〉 of probe particles with radius a in d dimensions

FIGURE 2 | Examples of computational particle-based methods used to estimate the mechanical properties of biopolymer materials. (A) Shear flow conditions can
be implemented through Lees-Edwards [19] driven boundary conditions [40], and other related methods, e.g., the SLLOD algorithm [40, 41], and the reverse
perturbation method [42, 43], in order to evaluate the viscosity η0 at low shear rates _γ, i.e., η0 ≈ lim _γ→0η( _γ). (B) Bead-spring and bead-rod coarse-grained filament
models [44] used to simulate systemswith a single or multiple chains. Full simulations at isothermal conditions can be carried out either throughmolecular dynamics
(MD) simulations [45], where particles have thermostated degrees of freedom (e.g., peculiar momenta �pi ), or through stochastic simulations, which include mesoscale
approaches like [40], e.g., multi-particle collision dynamics [46] (MPCD), dissipative particle dynamics (DPD), and Langevin/brownian dynamics (BD), where solvent
effects are implemented through stochastic forces �Fs. In any case the relaxation modulus for both dilute and entangled solutions can be evaluated asG(t) = 〈σxy(t)σxy (0)〉/
kBT, where σxy(t) denote entries of the stress tensor [15] which are given in terms of relative positions �rij(t) and forces �Fij(t) between all particles in the system [47].
Alternatively, the entanglement modulus Ge can be effectively determined from the properties of primitive paths [28] defined by tubelike regions of length Le that are
obtained by considering that all the other chains are frozen [29]. (C) As discussed in Ref. [31], one can implement an oscillatory shear setup by imposing a time-
dependent strain γ(t) = γ0 sin (ωt), and, after a transient period, fit the numerically obtained stress σ(t) ≈ (1/V) (zE/zγ) to a sinusoidal function σ(t) = σ0 sin (ωt + δ), which yields
G′(ω) = (σ0/γ0) cos(δ) and G′′(ω) = (σ0/γ0) sin(δ). (D) Effective elastic network formed from self-assembled filaments with different thicknesses [38]. Displacements �u(t) of
the crosslinks in the steady-state regime are obtained from the overdamped equations so that the eigenvalues of the Hessian matrix H can be related to the relaxation
times τi = 6πaηs/λi. The different crosslinking connectivities z and the “three-particle” (ikj) bending terms in Estretching lead to wide distributions of relaxation times H(τ) [34].
(E) By considering energy minimization schemes (see, e.g., Ref. [48] and references therein) one can obtain the low-frequency value of the storage modulusG0 for either
self-assembled [38] or arbitrarily defined networks [35–37]. Network configurations of athermal filaments [33] have been obtained in several ways [49], e.g., from the
random deposition of line segments (i.e., Mikado networks), or by erasing a fraction p of bonds in a pre-established regular network. (F) In microrheology-based
approaches the compliance J(t) of a material is related to the MSD 〈Δr2(t)〉 of probe particles [18] obtained either from passive [50] or active [39], i.e., externally driven,
simulations. In both cases the complex modulus G*(ω) can be obtained from the Fourier-Laplace transform of a convolution integral involving G(t) and J(t) [12].

1It is worth noting that, in general, there should be also an entropic contribution to
the shear stress [32], i.e., −(T/V)(zS/zγ). Even so, semiflexible biopolymers are
usually described as athermal filaments [33], which mean that their shapes are
practically not affected by thermal fluctuations.
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as [18] J(t) = (3πa/dkBT)〈Δr2(t)〉, one can also use approaches
based on microrheology (see Figure 2F). In some cases it might
be even possible to speed up the simulations by considering
active, i.e., externally driven, approaches that are based on
fluctuation-dissipation relations [39], where the equilibrium
fluctuations in the position of the probe particles can be
estimated from their displacement Δz in the direction of the
external force �Fext � F0ẑ.

2.2 Coarse-Grained Models
Ideally, a full bottom-up modelling approach would have to
incorporate all information about the molecular structures of
the system, including not only the chemically specific features of
the building blocks of the filaments but also additional solvent-
specific details (Figure 2B). However, due to the intrinsic
multiscale character of the viscoelastic behaviour, such
atomistic-based approaches are only considered in a
complementary manner, and mesoscopic (i.e., coarse-grained)
modelling approaches are usually inevitable [26, 51, 52].

2.2.1 Self-Assembly of Filaments
In fact, even when simulating just the formation of filaments one
may need to resort to coarse-grained models, which generally
attempt to describe the folding and self-assembly processes of the
biomolecules in an implicit solvent using effective interactions
[53]. Unfortunately, there are not many studies in the literature
that explore coarse-grained approaches to describe the self-
assembly processes of semiflexible filaments [54, 55], and their
computational implementation correspond to a challenge itself,
as it might involve nucleation pathways that usually requires
special rare-event sampling techniques [56]. Alternatively, one
may resort to multiscale modelling approaches like the one
introduced in Ref. [38], where a lattice model with anisotropic
interactions was used to simulate the formation of the fibers, and
the resulting network structure was considered as the input
configuration for an effective elastic model (see Figure 2D).

2.2.2 Models for Single Semiflexible Filaments
Accordingly, in order to obtain the viscoelasticity of solutions at
experimentally relevant time and length scales, one has to rely on
coarse-grained models even at the single filament level. In that
case, the individual filaments are usually described by discrete
chains where N beads are connected through springs or rods (see
Figure 2B). The simplest potential for the springs is the hookean,
or harmonic, potential, Uh � (κ/2)∑N−1

j�1 ( �rj+1 − �rj)2, with κ being
the elastic constant and �rj the position vector of the jth bead. Such
potential is popular because it provides results for pure flexible
filaments that can be conveniently compared to the theoretical
predictions of the Rouse model [15]. However, if only the
hookean potential is included in the model, then the filament
will not display a definite contour length L ≈Nℓb like the bead-rod
and freely-jointed chain models [13, 47], since it allows the beads
to overlap each other and the expectation value for the bond
length is only an average value given by [47] b ≈

������
3kBT/κ

√
.

Alternatively, the springs between consecutive beads are often
modelled by the finitely extensible non-harmonic elastic (FENE)
potential [57] UFENE, which is locally equivalent to Uh for small

deformations, but yields more precise values for ℓb along the
filament. In addition, it is common to consider excluded volume
potentials between nonbonded beads such as the shifted and
truncated repulsive Lennard-Jones potential also known as the
Weeks-Chandler-Andersen (WCA) potential [58] UWCA. The
semiflexibility of the filament can be explicitly considered
through bending potentials, which can be written as [29, 30,
43, 59, 60] Ub,θ � κp∑k[1 − cos(θk)], with θk being the angle
between the bonds that connect three successive beads, and κp is
the bending modulus, or bending constant [33]. Alternatively, the
bending potential may be approximated by [23, 39, 47, 61]
Ub,r � (κb/2)∑N−1

j�2 ( �rj+1 − 2 �rj + �rj−1)2, where κb controls the
strength the bending energy which is also somewhat related to
the changes in θk. Although κb (in pN/nm) is expected to be
proportional to κp (in pN.nm2), the potential Ub,θ is sometimes
preferred because its constant can be directly related to the
persistence length of the filament, Lp ≈ κp/kBT, as it is
formally defined as the correlation length between consecutive
segments in the filament [33, 62, 63]. The persistence length Lp is
the most basic property of a filament and it can be used to
categorize it as flexible (Lp ≪ L), semiflexible (Lp ≤ L), and rod-
like (Lp ≫ L). Although the above potentials are assumed in most
of the simulations, limitations may occur especially when the
filaments approach the rod-like regime, so alternative coasening
modelling approaches have been also considered [64].

Finally, it is worth noting that, besides the already
mentioned excluded volume and bending effective
interactions, implicit effects on the bending rigidity of the
filaments may also occur due to other sources. For instance,
interactions between charged beads in the filament (and
possibly) with ions in solution can be incorporated through
bare (or screened) Coulomb potentials [65, 66]. In addition, at
the coarse-grained level, hydrodynamics effects might be also
modelled as “hydrodynamic interactions” between beads
[51, 59].

2.3 Numerical Simulations
In the following I will describe additional approaches that are
generally used in computational simulations, including a few
selected examples that illustrate how the methods and models
mentioned in the previous sections can be used to extract the
viscoelastic responses of solutions like those displayed in
Figure 1.

2.3.1 Dilute Solutions of Semiflexible Filaments
Since the intrinsic relaxation modulus [20] [G(t)] can be retrieved
from the stress-stress autocorrelation function (Figure 2B), one can
use the dynamics of a single filament to obtain the intrinsic shear
moduli [G*(ω)] for an infinitely dilute solution. In that case one
might estimate the actual modulus of dilute solutions by multiplying
the intrinsic modulus by the number density of the filaments nf [15].
Usually, the dynamics of single filaments is obtained either from
molecular dynamics [45] (MD) or from stochastic mesoscale
approaches [40] (see Figure 2B). In particular, Ref. [43] includes
results obtained for the shear-dependent viscosity η( _γ) evaluated
through the reverse perturbation method [42] (see Figure 2A),
indicating that higher the bending constant κp higher the value of η0.
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As mentioned in Section 2.1, it is also possible to obtain the shear
moduli from approaches based on microrheology (see Figure 2F),
and Ref. [39] used a relaxation method based on fluctuation-
dissipation theorem to obtain the response of dilute solutions and
showed that the range where G′ ∝ G′′ ∝ ω3/4 increased for higher
values of the bending constant κb.

2.3.2 Solutions of Entangled Semiflexible Filaments
In principle, models for entangled solutions can be obtained
simply by including a large number M of filaments in a
simulation box with volume V, so that nf = M/V. In that
case, the dynamics of a system with several entangled chains
can be also obtained from full simulations [26] (see
Figure 2B). However, as detailed in Ref. [47], this kind of
approach might face limitations as the molecular weight of the
filaments exceeds a “critical” value, and alternative methods
may be required2. As mentioned in Section 2.1, simulations
based on primitive path analysis (see Figure 2B) have been
successfully used to obtain the plateau moduli Ge of entangled
solutions which are consistent with the values that were
experimentally determined for many polymer melts [29,
30]. In that case, the semiflexible filaments are described by
the so-called Kremer-Grest model, which includes UFENE,
UWCA, and bending Ub,θ potentials (see Section 2.2.2).

2.3.3 Cross-Linked Networks
Unfortunately, without many bottom-up approaches that
incorporate the self-assembly of filaments (see, e.g.,
Figure 2D), it is sometimes difficult to generate and
equilibrate systems with disordered cross-linked networks.
Even so, a few procedures have been developed so that generic
features of fully formed networks can be systematically
studied. In this context, protocols for constructing ad hoc
configurations (Figure 2E) include, e.g., (i) erasing a fraction
p of the bonds of pre-established regular networks [37, 68,
69], and (ii) placing line segments in the system at random
until the required crosslinking density is reached [35, 36, 70].
It is worth noting that Monte Carlo-based schemes [71–73]
have been conveniently used to equilibrate networks
generated with the protocol (ii). Besides the number
density of filaments nf, the contour length L, and the
persistence length Lp, useful quantities that can be used to
characterise cross-linked networks of semiflexible filaments
are the mean distance between crosslinks ℓc (Figure 2E),
which also defines a crosslinking density ρc = 1/ℓc, and the
mean network connectivity 〈z〉 (Figure 2D). In particular,
the systematic studies presented in Refs. [36, 37] computed
the plateau modulus G0 to obtain L-vs-ρc and z-vs-Lp phase
diagrams, respectively. Interestingly, those studies indicated
the presence of nonaffine and bending-dominated viscoelastic
responses at small values of 〈z〉 and ρc, which have been also
observed for heterogeneous networks [38]. In Ref. [38], the
cross-linked networks were generated through a self-

assembly process using a lattice model (Figure 2D), and
were also explored in Ref. [34]. In the latter reference one
can find the method based on the Hessian of the elastic energy
(see Section 2.1), which allows one to assess the contributions
of both affine and nonaffine deformations (Figure 2E) to the
shear moduli G′(ω) and G′′(ω). In addition, Refs. [34, 38]
considered a generalisation of the freely-hinged model used in
Ref. [37] that incorporates the influence of heterogeneous
structures (see Figure 2D), i.e., filaments with thickness-
dependent stretching and bending constants, into the
effective elastic energy E. As discussed in Ref. [33],
semiflexible filaments are less prone to entangle than the
flexible ones, so the viscoelastic response of their networks
might rely much more on the cross-linker properties. For
instance, the role of the flexibility of cross-linkers has been
investigated in Ref. [74] in arbitrarily generated networks,
with the value G0 computed from the derivatives of the total
elastic energy of the system. In addition, the study in Ref. [75]
investigated the effects of transient cross-linkers on the
viscoelasticity of networks of stiff biopolymers, showing
that they can lead to a wide distribution H(τ) yielding the
power law behaviour observed for the shear moduli at low
frequencies.

3 OUTLOOK AND CHALLENGES

There are still many challenges to the physics-based
computational approaches involving multiscale simulations
that attempt to evaluate the viscoelastic response of solutions
of semiflexible filamentous biomaterials. Although generic
coarse-grained polymer models have been developed to
describe the self-assembly processes of filaments [54, 55],
there are only a few computational studies on the
association of fully formed semiflexible filaments [61, 76],
indicating the feasibility of large scale simulations using
mesoscopic models to compute the LVE response. Coarse-
grained models seem to be unavoidable when performing
simulations in those cases, and besides systematic
coarsening modelling approaches [26, 51, 56], one could
also explore simple heuristic models which take into
account specific details of real biomolecules [77].
Additionally, one can consider the dynamics of probe
particles obtained from simulations like the one presented
in Ref. [78] to estimate the shear moduli from
microrheological approaches [18]. While the entanglement
modulus have been successfully determined from simulations
of models based on primitive path analysis [29], it might be
interesting to verify whether this and other approaches can be
used to investigate issues related to dependence of Ge on the
persistence length Lp for solutions in the tightly entangled
regime [79]. As discussed in Ref. [27], it might be important to
assess how significant are the correlations between different
chains in entangled solutions, but only recently such large
scale simulations have been reported for semiflexible filaments
[80], even though their viscoelastic properties were not
computed. Finally, it is worth mentioning that this mini-review

2Generally, Monte Carlo (MC) methods provide the most efficient ways to
equilibrate complex polymer systems [67].
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focused on isotropic disordered biomaterials, but one can
further explore solutions of semiflexible filaments which
display nematic phases [81], and where anisotropic
viscoelastic responses are expected. Also, it should be noted
that, although configurations of filaments and their cross-
linked networks have been mostly defined in an arbitrary
manner (see, e.g., Figure 2E), experimentally-revelant
mesoscopic information about semiflexible filamentous
biomaterials are now becoming more available [82–84], and
those may provide a strong driven-force in the implementation
of novel physics-based computational simulations.
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