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Quantum error correction is a crucial step to realize large-scale universal quantum
computing, and the condition for realizing quantum error correction is that the error
probability of each operation step must below some threshold. This requires that the
qubits’ quality and the quantum gates precision can reach a certain level experimentally.
We firstly discuss the mechanism of quantum errors: the precision of quantum gates
corresponds to unitary operator errors, and the quality of qubits is attributed to
decoherence. Then, according to the threshold of the surface code error correction,
we proved theminimum of quantum gate fidelity should not be less than 1 − pwith the error
probability p, and found the natural decoherence time of qubits that can be used for error
correction. This provides some kind of theoretical supports for qubits preparation and
performing quantum operations experimentally.
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1 INTRODUCTION

As one of the Frontier fields in the post-Moore’s Law era, quantum computing has received extensive
attention from physicists, information scientists, and cryptographers. There are two main reasons.
First, The spatial scale of classical computer chips has approached the scale of quantum physics. The
classical laws are no longer applicable in such scale, which requiring the support of quantum theory.
Second, quantum algorithms based on quantum systems can reduce the computing complexity of
difficult problems, to achieve computational acceleration even exponentially, such as Shor’s
algorithm [1,2], Grover’s algorithm [3,4], etc.

However, themain difficulty in the current quantum computing experiments is that it is hard to achieve
large-scale qubits integration, because of the decoherence, noise in channels, and crosstalk between qubits,
and so on [5,6]. Since practical universal quantum algorithms require large-scale fault-tolerant quantum
computing platforms, the current stage in the field of quantum computing is to demonstrate and
practicalize the quantum superiority of Noisy Intermediate Scale Qubits quantum computing [7,8].
Quantum error correction is still the most technical step that needs to be overcome and improved. If error
correction is not carried out, quantum circuit will accumulate errors until the correct result cannot be
obtained. The commonly used error correction scheme that can be implemented at present includes
surface code (two-dimensional topological quantum error correction) [9,10]. Gidney et al. estimated that
the time to crack 2048-bit RSA by executing the Shor’s algorithm on the superconducting circuits platform
using the surface code is about 8 h [11], however the qubits overhead reaches 20 millions. Gouzien et al.
took advantage of a 3D-guage color code and the ion trap quantum computing to reduce the qubits
overhead to 13,436 at the cost of a slight increase in execution time to 177 days [12].
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It can be seen that different quantum error correction schemes
will have a certain impact on the overhead of quantum circuits,
and will also produce different error probability thresholds pth.
This threshold pth will further impose a constraint on the fidelity
of qubits and quantum operations, which is also the focus of our
work. If we want to go further in the development of quantum
error correction, we need a more accurate understanding and
deeper exploration of the error mechanism of qubits.

Although error correction schemes based on error syndrome
detection don’t require us to identify the source of errors for each
qubit, but only need the statistical probability of errors. However,
during the preparation of required qubits and quantum gates,
their fidelity and decoherence characteristic time should be used
as reference standard. Therefore, according to the error
probability threshold required by error correction schemes,
after clarifying the error generation mechanism, the theoretical
calibration of the corresponding standard is also an important
part of overcoming the bottleneck in quantum error correction
experiments.

In this work, we explore the different sources of single-qubit
errors, and calculate the fidelity of quantum operations and
decoherence respectively according to the surface code
probability threshold pth. For the single-qubit error correction
model, the probability of detecting an error should be a
comprehensive characterization of the two error sources. The
conclusions of this work provide a theoretical basis for the fidelity
criteria of the qubits preparation and quantum operations in
experiments.

2 THE SOURCE OF QUBIT ERRORS

As a quantum system existing in the environment, qubits will
inevitably interact with the surrounding environment to
exchange information. This is a loss of information for qubits,
and it will also bring errors to the result of quantum circuits.

We can use the fidelity between the initial and final states of a
quantum system to measure the degree of information retention.
But since the measurement of fidelity requires ensemble-based
measurement methods such as quantum state tomography, it is
not suitable to do the fidelity measurement in quantum circuits.
Therefore, error correction schemes usually directly use a parity-
like error characterization method to monitor errors and avoid
destroying data qubits.

Specifically, the model of the interaction between a quantum
system and the environment can be described by the operation-sum
representation. First, the total state of the quantum system and the
environment ρ = ρ0 ⊗ ρenv, ρ0 represents the initial state density
matrix of the quantum system, and ρenv represents the density matrix
of the environment. According to the Schmidt purification, the initial
state ρenv of the environment can always be written as a pure state,
which means ρenv � |e0〉〈e0|. Wherein {|ek〉} is a set of basis for the
environment, and |e0〉 is the initial state. Then after the whole system
experiences evolution U, the final state of the quantum system
ε(ρ) � Trenv[U(ρ0 ⊗ |e0〉〈e0|)U†], that is, ρ experiences the
evolution of U, and then the environment is traced to obtain the
reduced density matrix of the quantum system,

ε ρ( ) � ∑
k

ek| 〉〈ek| · U ρ0 ⊗ e0| 〉〈e0|( )U†[ ] � ∑
k

Ekρ0E
†
k, (1)

where Ek � 〈ek|U|e0〉, represents the matrix element of the U
under the environmental representation, and acts on the
quantum system [13].

For the quantum system, the fidelity F after the evolution is

F ρ0, ε ρ( )( ) � Tr2
�����������������
ε ρ( )√

ρ0

����
ε ρ( )√√( ). (2)

In fact, after the partial tracing of the environment Trenv, all we
care about is the difference between the initial and final states of
the quantum system, that is, what kind of errors will be caused.
The details of the evolution process don’t need us to care about.
The operator E has also become a reduced operator that only acts
on the quantum system.

Next, we can judge whether E is unitary or not to classify the
errors occurred from the quantum system. For the sake of
simplicity, we take one qubit as the quantum system in
quantum computing. Specifically, it is divided into two categories:

Unitary operator E. The operator E is unitary and can preserve
the trace of the quantum state density matrix. This type of error
can keep the qubit still in pure state. We know that under ideal
conditions, the quantum state required for quantum computing
should be a pure state, and the quantum operation should be a
unitary operation1. If the introduced error is also a unitary
operator, this means that the effect of the error did not
decoherent the quantum state. From the perspective of the
Bloch sphere, it’s just that the state vector produces some
unexpected rotations on the spherical surface.

Considering the actual operation, this kind of error mainly
comes from the quantum gate. Whether it’s because the
operator’s approximation can’t reach 100% accuracy, or
because of environmental influences that make the quantum
gates behave inaccurately, such kind of errors can be
translated into single-qubit rotations on the Bloch sphere.

Non-unitary operator E. The operator E evolves the qubit from
a pure state to a mixed state. This type of error can be understood
as what we usually say, decoherence. Compared to the first type of
error, the effects of decoherence are more common. The damping
of amplitude and phase is usually due to the contact of the qubit
with the environment (various types of noise). Since the qubit has
become a mixed state, part of the information contained in it has
changed from the form of quantum superposition to a classical
mixture, which has irreversibly leaked into the environment.

From the perspective of the Bloch sphere, the decayed state
vector shrinks from the surface to the inside of the sphere. The
decay of the state vector can be decomposed into transverse
relaxation and longitudinal relaxation [14,15]. For detailed
discussion and calculation, please refer to Section 3.2.

Although from the perspective of error correction, it seems that we
do not need to care about the cause of the errors, but only need to

1For the two-qubit operations, we treat the two qubits together as a quantum
system. If we consider one of them, it is in a mixed state, but the two-qubit state is
still pure.
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monitor the errors and take corresponding error correction
operations to ensure the reliability of the circuit. However, in
experiments, various quantum computing platforms using
different materials and principles may have very different
qubit properties and types of quantum operations. Our
research conclusions can provide a unified theoretical
standard for different platforms, and can obtain more precise
qubit decoherence fidelity and quantum operation fidelity
according to different error correction schemes and error
correction standards. Therefore, the research on the error
mechanism of qubits is of certain significance.

For the widely used surface code, since the error correction
circuit increases the circuit depth and the number of qubits, its
error threshold can also be divided into different classes [9].
Specifically, according to the surface code error correction circuit
(Figure 1A), Fowler et al. divides the error thresholds into pth,0,
pth,1, and pth,2. These three levels of thresholds have different
degrees of sensitivity to the logic error rate of the error correction
circuit, and we will select the appropriate class of threshold as
constraint according to the expression of fidelity.

Next, we will show the correlation between different quantum
superposition initial states, error probability and fidelity for single
qubit. And then theoretically deduce and calculate the qubit
fidelity and quantum operation fidelity of the above two error-
generating mechanisms, and find the corresponding theoretical
limit under the error probability threshold.

3 ERROR PROBABILITY AND FIDELITY OF
SINGLE QUBIT

For any single-qubit pure state, we denote an arbitrary
superposition state of |0〉 and |1〉 as |ψ〉 = α|0〉 + β|1〉, where
the normalization condition is |α|2 + |β|2 = 1. In a Bloch sphere
with the radius of 1, |ψ〉 is the radial vector on the sphere, taking
α � cos θ

2, β � eiϕ sin θ
2, and |ψ〉 is expressed as

|ψ〉 � α|0〉 + β|1〉 � cos
θ

2
|0〉 + eiϕ sin

θ

2
|1〉, (3)

where θ is the polar angle and ϕ is the azimuth angle. We usually
use the density matrix of state ρ = |ψ〉〈ψ| to calculate [13].

ρ � |α|2 αβ*
α*β |β|2( ) � 1

2
1 + cos θ e−iϕ sin θ
eiϕ sin θ 1 − cos θ

( ). (4)

For a error correction process, we need to perform error
detection and correction for the result after each step. Without
loss of generality, we assume that after each unitary operation of
quantum computing, the final state |ψf〉 = α|0〉 + β|1〉, where f
means ‘final’. But due to the error of quantum operation or
decoherence caused by noise, the final state becomes |ψe〉, where e
means ‘errors’. Compared with |ψf〉, the difference generated by
|ψe〉may originate from one or more reasons, and we will analyze
them one by one below.

3.1 The Error of Unitary Operation
The quantum gate operation in the quantum circuit is usually to
apply a specific controllable external field to the qubit to control
it. There are different type of external field according to the
different qubit systems, such as the microwave pulse [16] in the
superconducting circuit system, the laser pulse [17] in the ion
trap system, and so on. Here we consider the errors that such
quantum operations bring to qubits because they cannot be
100% accurate.

For example, a beam of Xπ-pulse can rotate the qubit by an
angle of π around the x-axis, but due to the insufficient
precision, the quantum state actually rotates around the
x-axis by π ± δ. Such an error can be understood as an
unexpected unitary operation, and equivalent to a rotation
of an unknown angle. In fact this unexpectedly angle can be a
rotation around any axis, not necessarily the same as the
operation rotation. (Figure 1B).

FIGURE 1 | (A) Single cycle logical circuit that detects X errors in the surface code. The solid circles in the circuit represent auxiliary qubits, and the open circles
represent data qubits. A single cycle contains 8 steps, including single-qubit gate, initialization, C-NOT gate, and measurement; (B) Bloch sphere representation of a
single qubit. |ψf〉 represents the quantum state after the ideal quantum operation, |ψe〉 is the final state after the error occurs. The angle between the projection of the x − y
plane and the x-axis is the phase angle ϕ, and the angle between the state vector and the z-axis is the polar angle θ.
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According to the above operations, the single-qubit state can
be written as the following process:

1. The initial state undergoes an error-free unitary operation,
|ψf〉 = U|ψ0〉;

2. The initial state undergoes an unitary operation with errors,
|ψe〉 = U′|ψ0〉 = UeU|ψ0〉 = Ue|ψf〉.

The qubit undergoes the quantum operation U′ with errors,
which is equivalent to the qubit first undergoes the precise
operation U, and then undergoes an error operation Ue, and
finally becomes the quantum state with error |ψe〉. Ue is also
essentially a rotation operation on the Bloch sphere, so it can be
decomposed into rotation around x-axis and z-axis,
corresponding to the types of X and Z errors that occur in
qubits respectively. Besides, the error probability is described
by the rotation angle ε.

3.1.1 X Errors
Ux � eiε·σx � cos ε · I + i sin ε · σx, the probability of error pUx �
sin2 ε.

After the state |ψf〉 is affected by Ux,

|ψe〉x � Ux|ψf〉 � cos ε · I + i sin ε · σx( ) α|0〉 + β|1〉( )
� α cos ε + iβ sin ε( )|0〉 + β cos ε + iα sin ε( )|1〉, (5)

Since |ψf〉 and |ψe〉x are pure states, their density matrices are
ρf = |ψf〉〈ψf|, ρe,x = |ψe〉x〈ψe| respectively. And the fidelity Fx
under the X error of probability p is

Fx ρf, ρe,x( ) � Tr2
��������������
ρe,x

√
ρf

���
ρe,x

√√( ) �| x〈ψe | ψf〉|2. (6)

Bringing in the |ψf〉 and |ψe〉, we can get

Fx ρf, ρe,x( ) � |α|2 + |β|2( )2 cos2 ε + αβ* + α*β( )2 sin2 ε

� cos2 ε + sin2 θ · cos2 ϕ · sin2 ε.
(7)

We can see that the fidelity Fx(ρf, ρe,x) is not only related to
the error rotation angle ε, but also to the θ and ϕ angles of the
quantum state |ψf〉. This means that even the same error will have
different effects on different quantum states. Figure 2A plots the
relationship between Fx(ρf, ρe,x) and ε, θ (For the convenience of
drawing, we take ϕ = 0.)

3.1.2 Z Errors
Uz � eiε·σz � cos ε · I + i sin ε · σz, the probability of error pUz �
sin2 ε.

The same process as X errors,

|ψe〉z � Uz|ψf〉 � cos ε · I + i sin ε · σz( ) α|0〉 + β|1〉( )
� cos ε + i sin ε( )α|0〉 + cos ε − i sin ε( )β|1〉. (8)

After the Z error for probability p, the density matrix becomes
ρe,z = |ψe〉z〈ψe|, and the fidelity

Fz ρf, ρe,z( ) �| z〈ψe | ψf〉|2 �
1
2

1 + cos2 θ + sin2 θ · cos 2 ε( ).
(9)

It can be found that for Z errors, the fidelity ρe,z = |ψe〉z〈ψe| is
not affected by the phase angle ϕ, but is still affected by the polar
angle θ, see Figure 2B.

3.2 Natural Decoherence
We analyzed the case where the error is a unitary operator above,
which ensures that the qubit is still pure. And because of the
unitarity of the operator, unitary errors are in principle
completely reversible. But if the error causes the qubit to
evolve from a pure state to a mixed state, its information will
be irreversibly lost, usually described as decoherence caused by
the environment.

Under the conditions of Born approximation (weak coupling
between quantum system and environment) and Markovian
approximation (each noise is temporally uncorrelated), the
decoherence problem of quantum system is usually described

FIGURE 2 | (A) For Ux errors, the qubit fidelity Fx(ρf , ρe,x) is a function of the error probability p and the polar angle θ (ϕ is set to be 0); (B) For Uz errors, the qubit
fidelity Fz(ρf , ρe,z) is a function of the error probability p and the polar angle θ.
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by the master equation of density matrix (quantum Liouville
equation) [18].

ztρ � − i

Z
H, ρ[ ] +∑

k

ΓkLk ρ[ ], (10)

whereH represents the coherent dynamic evolution Hamiltonian,
and Lk[ρ] � ([Lk, ρL†

k] + [Lkρ,L†
k])/2 represents the incoherent

evolution. Lk is the Lindblad quantum transition operator, which
is used to describe the effect of different decoherence effects on
the quantum state ρ, and Γk represents the rate (influence degree)
of the corresponding Lk.

The research on the master equation andmulti-body quantum
system is complicated, and we can refer to [19,20] for details. In
universal quantum computing, any quantum operation can be
decomposed into a combination of single-qubit gates and two-
qubit gates. So theoretically only the decoherence of at most two
bodies need to be considered in quantum computing. In this
subsection, we first consider the single-qubit decoherence
problem.

In theory, decoherence occurs in the entire process of
quantum computing, that is, the entire process from
initialization, quantum gate operation, to measurement and
memory. In the stage without quantum operations, we can set
the Hamiltonian H of the coherent evolution part to 0. It means
that in such stage the qubit will undergo natural decoherent
decay. Although such model is relatively naive, it can also
correspond to the process of qubit storage and preparation,
which is of great significance to quantum computing.

For the natural decoherence model of single qubit, we also
categorize the types of errors [15]:

Amplitude damping. The conversion between |0〉#|1〉 is
called amplitude damping. This includes the transition of |0〉
→ |1〉 and the decay of |1〉 → |0〉. However, the probability of a
spontaneous transition in a quantum system in equilibrium is
negligible compared to the probability of decay [21]. During
longitudinal relaxation, single qubit exchange energy with the
environment, resulting in irreversible information leakage.

Dephasing. The decay of the phase angle ϕ is called pure
dephasing. Pure dephasing does not exchange energy with the
environment, so it is in principle reversible. In theory, the
dynamic decoupling method can completely eliminate the
pure dephase decay [22], and in practice scientists are trying
to achieve it.

For the master equation solution of the above decoherence
model, it can be described by a simplified form of the Bloch-
Redfield density matrix [15,23,24],

ρBR � 1 + |α|2 − 1( )e−Γ1t αβ*e−Γ2t

α*βe−Γ2t |β|2e−Γ1t( ), (11)

The operator interaction strength Γk represents the decay rate,
the amplitude damping rate is Γ1, and the transverse decoherence
rate is Γ2 = Γ1/2 + Γϕ, which includes both amplitude damping
and pure dephasing effects. The probability amplitude of |1〉 is
attenuated from |β|2 to |β|2e−Γ1t, and the probability amplitude of
|0〉 is 1 + (|α|2 − 1)e−Γ1t; the decay rate of the off-diagonal term is
e−Γ2t.

In the standard Bloch-Redfield model, the off-diagonal
term also has a frequency detuning attenuation term e−iδωt,
which represents the attenuation caused by the frequency
detuning between the qubit and the control system. The
Hamiltonian H is set to 0, so the detuning term doesn’t
need to be considered.

In addition, the standard Bloch-Redfield model cannot still
accurately describe the decoherence of superconducting qubits.
The off-diagonal term in the density matrix should also normally
contain the non-exponential decay term e−χN(t), which can
describe 1/f-type noise. For the sake of simplicity, we do not
consider the non-exponential decay term here.

With the decoherent density matrix, we compute the
fidelity Fdec(ρf, ρBR)

Fdec ρf, ρBR( ) � Tr2
���������������
ρBR

√
ρf

���
ρBR

√√( )
�

�������������������
|α|2 e−Γ1t |α|2 − 1( ) + 1[ ]√

+ |β|2 ����
e−Γ1t

√( )2

,

(12)
Bring α � cos θ

2 and β � eiϕ sin θ
2 in, we can get

Fdec ρf, ρBR( ) � cos2
θ

2
− sin2θ

2
· cos θ · e−Γ1t

+2 sin2θ

2
· cos θ

2

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ ·
���������������
e−Γ1t − sin2θ

2
· e−2Γ1t

√
.

(13)

It can be found that there is no related term of e−Γ2t in the fidelity
Fdec(ρf, ρBR). Since Γ2 = Γ1/2 + Γϕ, it means thatFdec(ρf, ρBR) is not
affected by pure dephasing, which also reflects the reversibility of pure
dephasing in the decoherence process. The relationship between
Fdec(ρf, ρBR) and the polar angle θ, the amplitude damping
probability 1 − e−Γ1t is shown in Figure 3.

For different quantum states ρf, the effect of natural
decoherence on fidelity is also different. The larger the polar
angle θ, the greater the effect of amplitude damping decoherence
on fidelity, and vice versa.

FIGURE 3 | For natural decoherence, the quantum state fidelity
Fdec(ρf , ρBR) as a function of decay probability p and the polar angle θ.
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4 SURFACE CODE ERROR PROBABILITY
THRESHOLD AND THEMINIMUM FIDELITY

Surface codes have become widely used error correction
schemes in various experimental platforms due to their
neighbor interactions and the lattice structure that is easy
to expand. In the field of error correction, the threshold
theorem is the basic principle that guarantees the
effectiveness of error correction schemes. Error corrections
need additional auxiliary qubits and gates, which will
introduce new errors. If there are too many additional
errors introduced by the error correction circuits, the
errors will continue to accumulate during the error
correction cycle. Therefore, we need to require the error
probability of the qubits and operations to be lower than a
certain threshold pth, so that the error probability of the final
result of the circuit can be reduced by continuously
implementing the error correction cycle [13].

For the X error correction circuit of the surface code (see
Figure 1A), there are a total of 8 basic steps, including single-
qubit gates, two-qubit gates, measurement and other operations.
Considering these 8 steps comprehensively, error probability
threshold is pth = 0.0057 for each step [9].

The author also divided the errors into three classes, and
studied the sensitivity of each type of errors to the threshold:
Class0 represents the single-qubit error of the data qubit,
pth,0�0.043; Class1 represents the initialization of the auxiliary
qubit, H gate and measurement errors, pth,1�0.12; Class3
represents two-qubit gate errors, pth,2�0.0125. However,
since these types of error threshold are larger than the
overall threshold pth when considered separately, we take
pth = 0.0057 for calculation.

4.1 Unitary Errors
4.1.1 X Errors
Assuming that only X errors occur, the error probability
threshold pth = sin2ε, ε � arcsin

���
pth

√ � 0.0756. According to

Eq. 8, we can get the fidelity when the error probability p is
between 0 ~ 0.0057,

Fx ρf, ρe,x( ) � 1 − 1 − sin2 θ · cos ϕ( )p. (14)
Still taking ϕ = 0, the function curve is shown in Figure 4A.
It is easy to know that the minimum value of Fx(ρf, ρe,x) is

obtained at θ = 0, π. At this time, the quantum state is at the two
poles of the Bloch sphere, and the X error will completely flip the
qubit. If p = pth, then for |ψf〉 = |0〉 or |ψf〉 = |1〉, the minimum
fidelity Fx(ρf, ρe,x)min � 1 − pth � 0.9943. That is, the minimum
fidelity of unitary operation under X error is 99.43%.

4.1.2 Z Errors
On the other hand, assuming that only Z errors occur, we bring
in ε � arcsin

��
p

√
,

Fz ρf, ρe,z( ) � 1
2

1 + cos2 θ + sin2 θ · cos 2 ε( )
� 1 − sin2 θ · p,

(15)

We can also get the function curve of (ρf, ρe,z) when 0 < p ≤
0.0057, as shown in Figure 4B.

From Eq. 15, if θ = 0 or π, we have sin θ = 0, Fz(ρf, ρe,z) is
independent of p, and Z error will not affect the fidelity. In fact, θ
= 0, π corresponds to |0〉 and |1〉, and the Z error is to rotate the
quantum state around the z axis, which naturally does not change
these two quantum states. If 0 < θ < π, the minimum fidelity value
when θ = π/2 is Fz(ρf, ρe,z)min � 1 − pth, which is also 99.43%.

4.1.3 Rotation Errors Around an Arbitrary Axism by an
Angle of ε
Through the discussion of X and Z errors, we find that the
minimum values of their fidelity are the same, although the
quantum states when taking the minimum value are different.
In fact, we can show that the minimum value of fidelity is 1 − p (or
1 − sin2ε) for the error when the state is unexpectedly rotated by ε
around any axis m.

FIGURE 4 | (A) The value range of fidelity Fx(ρf , ρe,x) after limiting the error probability p to the surface code error threshold range; (B) Under the same error
probability value range, the value range and the gradient trend of Fz(ρf , ρe,z).
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Proof: From Section 3.1, it can be seen that the final state with
error |ψm〉 = Um|ψf〉, then let Um � eiε·σm , Um represents the
rotation of ε around the m-axis operation, σm is the operation of
rotating π around the m-axis. σm2 means 2π rotation around the
m-axis, so there is σm2 � I. Then the fidelity

F |ψf〉, ψm

∣∣∣∣ 〉( ) � 〈ψf Ue| |ψf〉
∣∣∣∣∣ ∣∣∣∣∣2

� 〈ψf cos ε · I + i sin ε · σm( )| |ψf〉
∣∣∣∣∣ ∣∣∣∣∣2

� cos2 ε + sin2 ε 〈ψf σm| |ψf〉
∣∣∣∣∣ ∣∣∣∣∣2

� 1 − p + p 〈ψf σm| |ψf〉
∣∣∣∣∣ ∣∣∣∣∣2.

(16)

When 〈ψf|σm|ψf〉 � 0, we have F(|ψf〉, |ψm〉)min � 1 − p;
and when 〈ψf|σm|ψf〉 � 1, F(|ψf〉, |ψm〉)max � 1. From the
perspective of the Bloch sphere, when the fidelity gets the
maximum, the qubit state vectors just falls on the m-axis and we
marked them as |0〉m and |1〉m. At this point, the operation of
rotating around them-axis cannot change the quantum state. When
the fidelity gets the minimum, the state vector falls on the normal
plane n of them-axis, and we marked them as |ψm〉max, see Figure 5.

Them-axis is also easy to determine if we know |ψf〉 and |ψm〉.
Take the two points which are the intersection of |ψf〉 and |ψm〉
with the Bloch sphere respectively and connect them. The
midpoint of the above line segment and the center of the
sphere, these two points can determine the m-axis, which is
perpendicular to the above line segment.

Moreover, Um can be decomposed into rotating ε1 around the
x-axis first, and then rotating ε2 around the z-axis, that is
eiε·σm � eiε2·σz · eiε1 ·σx . If |ψf〉 � cos θ1

2 |0〉 + eiϕ1 sin θ1
2 |1〉, and

|ψm〉 � cos θ2
2 |0〉 + eiϕ2 sin θ2

2 |1〉, we can have

|ψm〉 � eiε·σm |ψf〉 � eiε2 ·σz · eiε1 ·σx |ψf〉
� ei ϕ2−ϕ1( )·σz · ei θ2−θ1( )·σx |ψf〉.

(17)

4.2 Natural Decoherence
For the natural decoherent state ρBR, the amplitude damping
probability pdec � 1 − e−Γ1t. If the characteristic time T1 is fixed,
according to the error probability threshold pth, we can obtain the
longest lifetime τ = −T1 ln pth that the qubit can be used for
quantum computing.

According to the work of Krantz et al. [15], taking T1 = 85 μs,
we can get τ = 0.489 μs. This means that a superconducting qubit
with a amplitude damping lifetime of 85 μs has 489 ns available
for quantum operations before decoherence. This time seems
very short, but it is undoubtedly sufficient for a superconducting
system with a single operation time of 10 ~ 100 ns.

Similarly, we take the threshold pth = 0.0057 of the surface
code scheme, then there is 0.9943< e−Γ1t < 1, and the relationship
between Fdec(ρf, ρBR) and the polar angle θ and time t is shown
in Figure 6.

It can be found that the fidelity is minimized when θ = π,
Fdec(ρf, ρBR)min � e−Γ1t � 0.9943.

5 DISCUSSION

From the analysis above, we studied the fidelity of quantum unitary
operations and natural decoherence under surface code threshold
requirements. But in each case, we assumed that only this type of
error occurs, and in practice the operation errors and decoherence
would occur at the same time. Therefore, the actual error probability
p � 1 − (1 − pU)(1 − pdec) � pU + pdec − pU · pdec, since 0 < pU,
pdec< 1, so p > pU and also p> pdec. Given all this, the actual quantum
operation fidelity should be larger than the above calculated value of
99.43%, and the actual available decoherence time should be shorter
than 489 ns.

At the same time, the threshold theorem guarantees that the
circuit can correct errors by continuously increasing the number
of cycles when the error probability is lower than the threshold.
However, the closer the error probability is to the threshold, the
more cycles are required. Due to the limited quantum resources
(number of qubits, number of quantum gates), it is impossible for
us to require that the actual error probability only just reaches the
threshold, which will cause enormous amount of qubits. Therefore,
there is a recognized fidelity standard of 99.9% (the error
probability per step is 10–3), which is assumed in some articles
[9,11]. So that for the surface code, the number of physical qubits
can be controlled between 103 ~ 104 to encode a logical qubit.

For different quantum error correction codes, their error
probability thresholds are different. Therefore the quantum
gate fidelity and coherence time required for error correction
will also be different. This will further affect the number of cycles
of the error correction code, which is reflected in the required
quantum resources (the corresponding amount of qubits and
quantum operations). Based on our above processing method, the
minimum required gate fidelity and qubit coherence time can be

FIGURE 5 | For the rotation operation of any axism, its error operator is
Um. Themaximum of fidelity F(|ψf〉, |ψm〉) is obtainedwhen the quantum state
vector coincides with the m-axis, and we mark the states as |0m〉 and |1m〉;
And the minimum of F(|ψf 〉, |ψm〉) is obtained when the state falls on the
normal plane n of the m-axis, we mark it as |ψm〉max.
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calculated by just obtaining the error probability threshold of the
error correction code. Then according to the minimum standard,
we can seek the balance between the number of quantum
resources and their fidelity, which provides theoretical
standards for experiments.

Two-qubit gate errors. In the previous sections, we only
discussed the fidelity of single-qubit operations, but the set of
general quantum gates also includes two-qubit gates, such as
C-NOT gates. For a two-qubit gate, both qubit 1 and qubit 2 will
have unitary errors with probability p respectively, resulting in a
lower fidelity than single-qubit gate. We can regard the error of
two qubits as two independent and unaffected operators’ direct
productUqubit, 1 ⊗Uqubit, 2, and the research on the fidelity of two-
qubit gate is also worthy of our further study focus on.

Decoherence with driven field. In the decoherence part, we only
perform the correlation calculation of natural decoherence (let the
Hamiltonian H = 0). But decoherence occurs throughout the
computing process, including when quantum operations are
excuted. When an external field drives the quantum state
evolution, decoherence occurs. And this process can be described
by themaster equation of the densitymatrix with a time-independent
Hamiltonian H.

In quantum computing, single-qubit gate and two-qubit gate
are usually fixed rotations rather than time-dependent
continuous transformations. So for the master equation, in the
part of the Heisenberg evolution ztρ � −i/Z[H, ρ], the
Hamiltonian H is time-independent, only ρ evolves with time.
The incoherent evolution led by Lindblad operator Lk also affects
the evolution of ρ in the master equation, so the qubit
decoherence problem with driving field is relatively
complicated, but it is also more suitable for studying the
decoherence phenomenon during executing quantum operations.

6 CONCLUSION

In this work, we present a classification discussion about the
sources of quantum errors according to the unitarity of the
reduced evolutionary operators. For an unitary error, we can
understand it as the precision error of the quantum operation.
The effect of it is equivalent to the effect of an extra unitary
rotation operation, and the quantum operation fidelity can be
calculated according to the error probability threshold of the
surface code. The non-unitary error can be understood as the
decoherence process of qubits. We focus on the situation of
natural decoherence, and calculate the qubit coherence duration
that can be used for quantum error correction according to the
evolution properties of decoherence.

Decoherence time and quantum gate operation fidelity are
important parameters in the preparation of qubits and quantum
control experimentally. Our work clarifies the mechanism of
quantum error sources and provides theoretical support for
laboratory technical.
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