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In this work, the controllable self-focusing behavior is first investigated by manipulating the
state of polarization (SoP), that is, the phase difference between two polarized
components at the initial optical field, which can be used to realize the three-
dimensional manipulation of self-focusing behavior. Furthermore, the properties of self-
focusing propagation (including intensity distribution, propagation dynamics, and Stokes
parameters) are researched in detail, which are beneficial to select the reasonable initial
SoP for further theoretical and experimental exploration. Particularly, the radially polarized
beam as a laser source not only prolongs the self-focusing length but also improves the
power density of self-focusing spots on the target. These findings may have potential in the
multidimensional optical manipulation, the optical information transmission, the high-
power long-range laser atmospheric propagation, and related applications.
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INTRODUCTION

In recent decades, filamentation propagation in the transparent medium [1], which can generate long
plasma channels with very high intensities, has sparked extensive interest, owing to its wide
application in many fields [2–5], such as lightening control, remote diagnostics, and LIDAR. In
general, the filament length of laser pulse in the air is in the order of several meters to kilometers. In
particular, the self-focusing length (SFL) plays a crucial role in high-power and long-range
propagation [6–10] because it can make the length of filament steerable. Until now, the known
methods for controlling the position of the filamentation domain are as follows: modulating the laser
pulse power [6], adjusting the divergence angle of the initial laser [7], launching negatively chirped
ultrashort pulses [8, 9], and double-lens setup [10]. Recently, the U.S. Naval Research Laboratory has
investigated the SFL in atmospheric turbulence with theoretical and numerical methods [11, 12].

The vector optical field was proposed in 1961 [13]. Since 2000, this kind of optical field has been
reappearing in sight due to its tight-focusing property [14]. The vector optical field with spatially
inhomogeneous SoP at the field cross section has attracted immense attention, which can be widely
used in nonlinear optics [15], optical tweezers [16], optical micro-manipulation [17], super-
resolution microscopy [18], optical information transmission [19], and atmospheric propagation
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[20–25]. In recent years, to conveniently control the space-variant
polarization state of a light beam, the optical arrangements
containing spatial light modulators have been widely presented
[26–38]. Due to the axial-symmetry breaking of optical field by
the designable hybrid polarization structure, i.e., azimuthally-
variant hybrid-polarized (AVHP) vector field, the controllable
self-focusing spots of the vector optical field and multiple
filamentation have been achieved [36–38], which may provide
an alternative solution to control the SFL. It is well-known that
the SFL for a Gaussian beam is relevant with the input power,
which can be described by the semi-empirical Marburger formula
[9, 39, 40]. Due to the changeable intensity profile in propagation
for a hollow beam (e.g., hollow Gaussian beam (HGB)), it is
difficult to derive a formula to characterize the relation between
the SFL and input power. As a typical kind of hollow beam, the
radially polarized beam (RPB) has been studied extensively in
both the theory and experiment, owing to its interesting and
unique focusing properties [41–44]. Thus, a new method to
achieve the controllable SFL of other common beams is
worthy of further exploration as well.

In this work, based on the SoP manipulation, the influence of
the phase difference at the initial optical field on the self-focusing
propagation is researched. It is found that self-focusing behavior
can be controlled by adjusting the phase difference, enabling a
three-dimensional (3D) manipulation of the SFL. Furthermore,
characteristics of self-focusing are investigated in detail by means
of three specific beams (HGB, RPB, and AVHP). Results show
that RPB have a predominant advantage in the controllable SFL
and high optical power density on the target, and it may have
practical application significance in the multidimensional optical
manipulation, optical information transmission, high-power
long-range laser atmospheric propagation, and related areas.

THEORY

We discussed the monochromatic (or continuous) regime for
which the intensity of the laser does not depend on time. The
propagation nonlinear dynamics of a high-power laser beam in
the Kerr medium is researched by using nonlinear Schrödinger
(NLS) equations. Under the slowly varying amplitude
approximation, the NLS equation is given as follows[45, 46].

2ik
zE
zz

+ ∇2E + 4n2k2

3n0
[2(E · Ep)E + (E · E)Ep] � 0, (1)

where E � E0 exp(ikz), the wavenumber related to the
wavelength is k � 2π/λ, ∇2 � z2/zr2 + (1/r)z/zr + (1/r2)z2/zφ2

is the transverse Laplacian, n0 (n2) is the linear (nonlinear)
refractive index, and (p) is the complex conjugate.

The azimuthally varying distribution of SoP at the initial
optical field cross section can be expressed as follows [26, 35, 37].

E(r,φ, z � 0) � A(r)(cos δ �ex + sin δ exp( − iΔθ) �ey), (2)

where A(r) � A0(r/w0) exp(−r2/2w2
0), A0 is a normalized

constant, w0 is the beam waist associated with Gaussian

beam, additional phase distribution δ is the function of the
azimuthal angle φ as δ � mφ + φ0, m is the topological charge,
and φ0 is the initial phase [35]. �ex and �ey are the unit vectors in the
Cartesian coordinate system, which describe the linearly
polarized fields with their directions of vibration along the x
and y axes [35]. Δθ is the phase difference between the x and y
polarized components in the range of Δθ ∈ [0, π] [26, 35]. It is
clear that Eq. 2 can be simplified to several specific cases as
follows:

i) when δ � 0 and Δθ � 0, the linearly polarized states are along
the x-axis (Figure 1A), and Eq. 2 is regarded as a scalar optical
field, i.e., HGB [47],

E(r,φ, z � 0) � A(r) �ex. (3)

(ii) when δ ≠ 0 and Δθ � 0, the linearly polarized states are at
any position in the cross section (Figure 1B), and the RPB is
represented as follows [36].

E(r,φ, z � 0) � A(r)(cos δ �ex + sin δ �ey). (4)

(iii) when δ ≠ 0 and Δθ � π/2, SoPs are distributed as follows,
that is, ‘linear→ elliptical→ circular→ elliptical →linear’
(Figure 1C). The AVHP vector field is presented in [36] as

E(r,φ, z � 0) � A(r)(cos δ �ex + sin δ exp( − iπ/2) �ey), (5)

The vector NLS equation can be divided into a pair of coupled
NLS equations for two orthogonal components,
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(6)

where Ex (Ey) is the x- or y-component of the optical field.
The SoP of the optical field cross section can be described by a

set of Stokes parameters. Stokes polarization parameters are
expressed as follows [48]:

S0 � |Ex|2 +
∣∣∣∣Ey

∣∣∣∣2,
S1 � |Ex|2 −

∣∣∣∣Ey

∣∣∣∣2,
S2 � ExE

p
y + EyE

p
x,

S3 � i(ExE
p
y − EyE

p
x),

(7)

where the positive and negative S1 (or S2) values represent
horizontal (or 45o) and vertical (or 135o) linear polarization
components, respectively; positive and negative S3 values
represent opposite circular components [37].

THREE-DIMENSIONAL MANIPULATION OF
SELF-FOCUSING BEHAVIOR VIA SOPS

In the numerical calculation, the initial parameters are chosen as
follows: wavelength λ � 0.532 µm, step number M = 2000, linear
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refractive index of medium n0 � 1, nonlinear refractive index
n2 � 5 × 10−23 m2/W, propagation length z � CpzR (C is a
constant, and Rayleigh length is zR � πw2

0/λ), transverse size
10w0, grid number N � 512, andPcr is the critical power of a
Gaussian beammodel for self-focusing. The numerical results are
obtained by the fast Fourier transform Runge–Kutta split-step
method [49].

It is known that adjusting the input power is a common
method to manipulate the SFL for a Gaussian beam [6]. For three
hollow beams, the numerical relation of the SFL the with input
power is shown in detail in Supplementary Material S1.
However, in the practical experimental scenario, as an
alternative or combination regimen to the input power
manipulation, the approach to achieve the controllable SFL at
the fixed input power is still a great challenge, which may greatly
extend the manipulation dimensionality. As an intrinsic nature of
light, polarization is of great importance to serve as a degree of
freedom for manipulating light. With the aid of SoPs, herein, the
manipulation of beam collapse under fixed input power is
explored, that is, input power P � 30Pcr, topological charge
m � 1, and initial phase φ0 � 0 are considered, and the
extension to other input power (topological charge, beam
waist, wavelength, etc.) is straightforward. In previous studies

[9, 40], there is an expression for the SFL where the size of the
focusing spot reaches zero. Due to the initial optical field cross
section with spatially inhomogeneous SoP, the relationship
between the SFL and the phase difference will be much more
complicated. To simplify the problem, the minimum radius of the
focusing spot is approximated to 7.5 μm in numerical calculation
(i.e., approximately 7.5% of the initial beam radiusw0 � 100 µm);
thus, the propagation length can be approximately regarded as
the SFL. The phase difference in Figure 2 is selected from 0 to π/2,
and the interval is π/64. In Figure 2A, the SFL is plotted as a
function of the phase difference. It is shown that the SFL is
continuously adjustable in the range of 2.1–5.4 times of the

FIGURE 1 | Cross-section of the initial optical field: (A) HGB, (B) RPB, and (C) AVHP.

FIGURE 2 | SFL (A) and spacing (B) of self-focusing spots versus the phase difference.

TABLE 1 | Coefficients of the fitting function versus phase difference.

i = 1 i = 2 i = 3 i = 4 i = 5

ai 5.11 × 1013 1.38 × 1011 0.62 8.40 3.56
bi −1.31 1.89 0.50 2.19 −0.38
ci 0.23 0.18 0.13 1.17 0.70
pi 2.88 1.59 1.59 0.91 0.91
qi 0.50 0.82 0.19 0.06 0.94
ti 0.29 0.16 0.16 0.08 0.08
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Rayleigh length, which may have a practical application
significance for the SFL manipulation in the axial
dimensionality. In addition, results of the SFL for
Δθ ∈ [π/2, π] and Δθ ∈ [0, π/2] are symmetric at Δθ � π/2.
Based on the numerical calculation of the SFL and a Gaussian
model for curve fitting, the numerical formula of the SFL varying
with the phase difference can be expressed as
z � zR × ∑5

i�1ai exp{−[(Δθ − bi)/ci]2}, and the corresponding
coefficients are listed in the Table 1.

Next, the spacing of symmetric self-focusing spots at the
collapse plane is investigated. Herein, the minimum value Lmin

is defined as the spacing of symmetric self-focusing spots for the
RPB case (Figure 2B). The result shows that the spacing of the
two spots increases as the phase difference increases within the
range of Δθ ∈ [0, π/2], and this spacing can be controlled
approximately from Lmin to 3Lmin, which indicates that the
radial dimensionality of self-focusing spots can be adjusted as
well. When Δθ ∈ [π/2, π], the result is axisymmetric at Δθ � π/2
that the spacing gradually decreased as phase difference
increased. Using the aforementioned method of the SFL, the
numerical formula of the spacing of self-focusing spots with the
phase difference can be expressed as
L � Lmin × ∑5

i�1pi exp{−[(Δθ − qi)/ti]2}, and the coefficients are
exhibited in Table 1.

The intensity distribution of self-focusing spots is illustrated in
Figure 3, where the phase differences are changed in two regions,
i.e., Δθ ∈ (0, π/2) and Δθ ∈ (π/2, π), and the interval of the phase
difference is 7π/64. By increasing the phase difference in (0, π/2),
spacing of self-focusing spots increases, and the number tends to
increase. When the phase difference changes from π/2 to π, the
number of spots decreases and the orientation rotates by π/2. It is
shown that the number and orientation of self-focusing spots can
be controlled by changing the phase difference so that the
azimuthal dimensionality of self-focusing can be manipulated
to some extent.

Based on the variation of the phase difference, the fine
manipulation of self-focusing spots (including the length,
spacing, number, and orientation) can be achieved. It is found
that manipulation of SoPs can be controlled not only in the axial
dimensionality (i.e., the SFL) but also in radial (i.e., the spacing of
self-focusing spots) and azimuthal (i.e., the number and

orientation of self-focusing spots) dimensionalities. To the best
of our knowledge, this is the first time to achieve three-
dimensional (3D) manipulation of self-focusing behavior
simultaneously by changing the phase difference. Meanwhile,
the extension of this concept to other initial parameters (i.e., the
input power, beam waist, wavelength, and nonlinear refractive
index) is straightforward, and the limitations will be discussed in
Conclusion and Discussion. Combining the manipulation of the
input power and phase difference, it may enrich the
multidimensional manipulation for self-focusing, which may
provide a new approach to realizing the 3D manipulation of
the optical field, enhancing the optical information transmission
capacity, improving the high-power long-range atmospheric
shooting on the target, and related areas.

CHARACTERISTICS OF SELF-FOCUSING

To analyze the physical mechanism of the self-focusing
propagation, the characteristics of the self-focusing spot for
three specific beams are investigated in detail with the help of
the intensity distribution, propagation dynamics, and Stokes
parameters. The parameters in numerical calculation are the
same as the aforementioned section.

The intensity distribution at different propagation planes and
propagation dynamics of three optical fields are shown in
Figure 4. At the source plane z � 0, the intensity distribution
for three cases is almost the same, that is, a typical symmetric ring.
However, the discrepancy of the intensity distribution in the three
cases increases gradually with the increase of the propagation
distance. For the HGB (i.e., Figure 4A), the dark center almost
disappears at Rayleigh length zR. Due to the propagation property
of the HGB and the self-focusing effect of the medium, the
Gaussian beam shrinks to a single spot at z � 1.6zR. For the
RPB (i.e., Figure 4B), the hollow beam shape remains, except that
the width of the ring decreases at zR. With the propagation
distance increased, the hollow beam collapses and converges into
four spots at z � 5.4zR. For the AVHP (i.e., Figure 4C), the
hollow shape gradually disappears, and energy converges toward
four linear polarization locations at zR. The axial symmetry of the
light-matter nonlinear interaction is broken by the designable

FIGURE 3 | Intensity distribution of self-focusing spots with various phase differences: (A) Δθ ∈ (0, π/2)and (B) Δθ ∈ (π/2, π), respectively.
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hybrid polarization structure at the initial optical field cross
section, and then, four deterministic self-focusing spots occur
at z � 2.6zR. Owing to the symmetry, a crossline (i.e., x � 0) of
the intensity distribution is chosen to demonstrate propagation
dynamics for three models. As shown in Figures 4D–F, the SFL in
three models satisfy the following relation: RPB > AVHP >HGB.
HGB forms a single spot while the vector beam generates four
spots form � 1; the power of the RPB on the target is almost four
times higher than that of the HGB [37, 50, 51]. Moreover, the
effective radius of the RPB is smaller than that of AVHP, which
indicates that the power density of the RPB is larger than that of
the AVHP. It is possible that the RPB as a laser source may be of
great advantage to achieve the long-range and high-power laser

atmospheric propagation, far-field optical engineering [52, 53],
and optical coherence encryption [54].

Stokes parameters for three models at the source plane
(Figures 5A–C) and the corresponding spot plane
(Figure 5D–F) are depicted, which benefits to analyze the
physical mechanism of the self-focusing behavior. Stokes
parameters for the HGB are shown in Figure 5A,D; it is
seen that S2 or S3 remains the same as the propagation
distance increases. Owing to the propagation property of
the HGB and the self-focusing effect of the medium, the
self-focusing spot occurs in the center. The RPB shown in
Figures 5B,E indicates that there is no circular polarization
(S3 � 0) at the source plane, while the circular polarization

FIGURE 4 | Intensity distribution located at various propagation planes for three optical fields (A)HGB, (B) RPB, and (C) AVHP and the corresponding propagation
dynamics (D–F), respectively.

FIGURE 5 | Stokes polarization parameters for three beam models at the source plane (i.e., (A) HGB, (B) RPB, and (C) AVHP) and at the corresponding focusing
spot (i.e., (D) HGB (z � 1.6zR ), (E) RPB (z � 5.4zR), and (F) AVHP (z � 2.6zR )).
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states occur on the spot plane because the Stokes parameter S3
is not equal to zero. It is clear that the hybrid polarization
spatial structure is formed during the propagation process, so
the symmetry is broken by the refractive index change; four
self-focusing spots are located at x � 0 and y � 0 lines as
expected. The AVHP shown in Figures 5C,F indicates that
spots move to the linear polarization locations because the
symmetry of the light-matter nonlinear interaction is broken
by the designable hybrid polarization structure at the cross
section of the initial optical field [55].

CONCLUSION AND DISCUSSION

Based on the phase difference between two polarized components
at the initial optical field cross section, the influence of the phase
difference on self-focusing behavior is investigated. It is found
that the length, spacing, number, and orientation of self-focusing
spots can be controlled by adjusting the phase difference. In
particular, it is of practical significance for realizing the 3D
manipulation of self-focusing behavior simultaneously by
changing the phase difference. In addition, properties of the
SFL are investigated in detail with three specific models
(i.e., HGB, RPB, and AVHP). It is revealed that the SFL of
three cases satisfies the following relation: RPB > AVHP >
HGB. In addition, two characteristics for the RPB should be
mentioned: 1) self-focusing spots appear at a relatively long-range
propagation distance; 2) the target optical power density of the
RPB is larger than that of the AVHP at the receiver plane due to
the effective beam radius focusing. Therefore, the RPB as a laser
source may not only prolong the SFL but also improve the power
density on the target. Based on the multidimensional controllable
manipulation by changing the SoPs, it may open a new window
for realizing the applications, such as 3D manipulation of the
optical field, the optical information transmission, and the high-
power long-range atmospheric propagation.

An extension of these results to other initial parameters
(i.e., the input power, beam waist, wavelength, and nonlinear
refractive index) is straightforward with reasonable limitations
on some parameters. When the input power of the laser is much
greater than the critical power, the beam may break up into
multiple spots, forming its own filament with the critical power
[37, 50, 51]. In our work, we discussed the relation of the SFL
with moderate input power and the input power, which can
generate four spots for the vector optical field that should be at
least larger than four times of critical power: P> 4PA

cr � 19.2Pcr.
When the nonlinear refractive index approaches the linear
refractive index, the aforementioned extension will be invalid
due to the large variation of the refractive index. The values of
the nonlinear refractive index are relatively small for many
media, taking air for example, the wavelength at 532 nm (or
800 nm) is corresponding to n2 � 5 × 10−23 m2/W (or
n2 � 3.0 × 10−23 m2/W [56]).

For the conventional physical mechanism of multiple
filamentation (MF), when the input peak power is far above
the critical power for self-focusing, the modulational instability
breaks up the beam into a large number of filaments [1]. These
filaments, which grow from the small fluctuations in the beam
intensity profile, can be seemingly randomly distributed in a
given transverse plane or organized into specific patterns, and the
number of filaments cannot be accurately predicted [1]. For the
multiple spots induced by SoPs, a prerequisite is that the optical
field should be axial-symmetry breaking in and of itself.
Polarization, as an intrinsic and fundamental nature of light,
plays an indispensable role in the interaction of light with matter.
The self-focusing spot formation mechanism is axial-symmetry
breaking [36, 37] due to the inhomogeneous state of polarization
at the initial optical field cross section or the induction of the
propagation process. With the input power changed, the
distribution of spots is predictable, and the number also can
be determined. Thus, these theoretical and numerical findings
may be achieved by the controllable self-focusing behavior, and it
may have practical application significance in 3D optical
manipulation, optical information transmission, high-power
long-range laser atmospheric propagation, and so on.
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