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The ability to extract generative parameters from high-dimensional fields of data in an
unsupervised manner is a highly desirable yet unrealized goal in computational physics.
This work explores the use of variational autoencoders for non-linear dimension reduction
with the specific aim of disentangling the low-dimensional latent variables to identify
independent physical parameters that generated the data. A disentangled decomposition
is interpretable, and can be transferred to a variety of tasks including generative modeling,
design optimization, and probabilistic reduced order modelling. A major emphasis of this
work is to characterize disentanglement using VAEs while minimally modifying the classic
VAE loss function (i.e., the Evidence Lower Bound) to maintain high reconstruction
accuracy. The loss landscape is characterized by over-regularized local minima which
surround desirable solutions. We illustrate comparisons between disentangled and
entangled representations by juxtaposing learned latent distributions and the true
generative factors in a model porous flow problem. Hierarchical priors are shown to
facilitate the learning of disentangled representations. The regularization loss is unaffected
by latent rotation when training with rotationally-invariant priors, and thus learning non-
rotationally-invariant priors aids in capturing the properties of generative factors, improving
disentanglement. Finally, it is shown that semi-supervised learning - accomplished by
labeling a small number of samples (O (1%))–results in accurate disentangled latent
representations that can be consistently learned.

Keywords: generative modeling, unsupervised learning, variational autoencoders, scientific machine learning,
disentangling

1 INTRODUCTION

Unsupervised representation learning is a popular area of research because of the need for low-
dimensional representations in unlabeled data. Low-dimensional latent representations of high-
dimensional data have many applications ranging from facial image generation [1] and music
generation [2] to autonomous controls [3] among many others. Generative adversarial networks
(GANs) [4], variational autoencoders (VAEs) [5] and their variants [6–9], among other methods,
aim to approximate an underlying distribution p(y) of high-dimensional data through a two-step
process. Compressed representations z are sampled from a low-dimensional–yet
unknown–distribution p(z). In the case of VAEs, which is the focus of this work, an encoding
distribution p(z|y) and a decoding distribution are learned simultaneously bymaximizing a bound on
the likelihood of the data (i.e., the evidence lower bound (ELBO) [5]). Thus, a mapping from the
high-dimensional space to a low-dimensional space and the corresponding inverse mapping is
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learned simultaneously, allowing approximations of both p(y)
and p(z). Learning the lower-dimensional representation, or
latent space, can facilitate computationally-efficient data
generation and extract only the information necessary to
reconstruct the data [10]. Modifications to the ELBO objective
have been suggested in the literature, primarily with improved
disentanglement in mind. The β-VAE [6] was introduced to
improve disentanglement by adjusting the weight of
regularization loss. FactorVAE [8] introduces a total
correlation term (TC) to encourage learning a factorized latent
representation. InfoVAE [9] augments the ELBO with a term to
promote maximization of the mutual information between the
data and the learned representation. Many other developments
based on the VAE objective have been introduced in the
literature. VAEs have been implemented in many applications
including inverse problems [11], extracting physical parameters
from spatio-temporal data [12], and constructing probabilistic
reduced order models [13, 14], among others.

To illustrate the idea of disentanglement and its implications,
consider a dataset consisting of images of teapots [15]. Each
image is generated from 3 parameters indicating the color of the
teapot (RGB) and 2 parameters corresponding to the angle the
teapot is viewed from. Thus, even though the RGB image may be
very high dimensional, the intrinsic dimensionality is just 5.
Representation learning can be used to extract a low-
dimensional latent model containing useful and meaningful
representations of the high-dimensional images. Learned latent
representations need not be disentangled to be useful in some
sense, but disentanglement enhances interpretability of the
representation. Disentanglement references a structure of the
latent distribution in which changes in each parameter in the
learned representation correspond directly to changes in a single
yet different generative parameter. Humans tend to naturally and
easily identify independent factors of variation, and thus a
disentangled representation often corresponds to one which
would be naturally identified by a human. A representation
which is more naturally explained by a human observer is
therefore one characterized by greater interpretability. In an
unsupervised setting, one cannot guarantee that a disentangled
representation can be learned.

The requirement for disentanglement depends on the task at
hand, but a disentangled representation may be used in many
tasks containing different objectives. Indeed, [10] state that “the
most robust approach to feature learning is to disentangle as
many factors as possible, discarding as little information about
the data as is practical.” In the teapot example, changes in one of
the learned latent dimensions may correspond to changes in the
color red and one of the viewing angles, which would indicate an
entangled representation. Another example, more relevant to our
work, is that of fluid flow over an airfoil. Learning a disentangled
representation of the flow conditions along with the shape
parameters using VAEs can allow rapid prediction of the flow
field with enhanced interpretability of the latent representation,
facilitating efficient computation of the task at hand. The
disentangled representation can be transferred to a variety of
tasks easily such as design optimization, developing reduced
order models in the latent space or parameter inference from

flow fields. It is the ability of disentangled representations to
transfer across tasks with ease and interpretability which makes
them so useful. In many practical physics problems, full
knowledge regarding the underlying generative parameters of
high-dimensional data may not exist, thus making it challenging
to ascertain the quality of disentanglement.

Disentanglement using VAEs was first addressed in the
literature [6]; [8] by modifying the strength of regularization
in the ELBO loss, with the penalty of sub-optimal compression
and reconstruction. FactorVAEs [6] encourage a factorized
representation, which can be useful for disentanglement in the
case of independent generative parameters, but undesirable when
parameters are correlated. [16] suggest that the ability of the VAE
to learn disentangled representations is not inherent to the
framework itself, but an “accidental” byproduct of the typically
assumed factorized form of the encoder. The prior distribution is
of particular importance as the standard normal prior often
assumed allows for rotation of the latent space with no effect
on the ELBO loss. Disentangled representations are still often
learned due to a factorized form of the encoding distribution with
sufficiently large weight on regularization. Additional
interpretations and insight into the disentanglement ability of
VAEs are found in [17].

Our work on unsupervised representation learning is
motivated from a computational-physics perspective. We focus
on the application of VAEs for use with data generated by partial
differential equations (PDEs). The central questions we seek to
answer in this work are: 1) can we reliably disentangle parameters
from data obtained from PDEs governing physical problems
using VAEs, and 2) what are the characteristics of
disentangled representations? Learning disentangled
representations can be useful in many capacities: developing
probabilistic reduced order models, design optimization,
parameter extraction, and data interpolation, among others.
Many of the applications of such representations, and the
ability to transfer between them, rely heavily on the
disentanglement of the latent space. Differences in
disentangled and entangled representations are identified, and
conclusions are drawn regarding the inconsistencies in learning
such representations. Our goals are not to compare the available
methods to promote disentanglement, as in [18], but rather to
illustrate the use of VAEs without modifying the ELBO and to
understand the phenomenon of disentanglement itself in this
capacity. The use of hierarchical priors is shown to greatly
improve the prospect of learning a disentangled representation
in some cases without altering the standard VAE loss through the
learning of non-rotationally-invariant priors. Along the way, we
provide intuition on the objective of VAEs through connections
to rate-distortion theory, illustrate some of the challenges of
implementing and training VAEs, and provide potential
methods to overcome some of these issues such as “vanishing
KL” [19].

The outline of this paper is as follows: In Section 2, we
introduce the VAE, connect it to rate-distortion (RD) theory,
discuss disentanglement, and derive a bound on the classic VAE
loss (the ELBO) using hierarchical priors (HP). In Section 3, we
introduce a sample application of Darcy flow as the main
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illustrative example of this work. In Section 4, we present
challenges in training VAEs and include possible solutions,
and investigate the ELBO loss landscape. We illustrate
disentanglement of parameters on the Darcy flow problem,
and provide insight into the phenomenon of disentanglement
in Section 5. The use of a small amount of labeled data (semi-
supervised learning) is considered in Section 6. In Section 7,
conclusions and insights are drawn on the results of our work,
and future directions are discussed.

The numerical experiments in this paper can be recreated
using our code provided in https://github.com/christian-
jacobsen/Disentangling-Physical-Fields.

2 VARIATIONAL AUTOENCODER
FORMULATION

In many applications of representation learning, it is generally
desirable that the latent representation be maximally
compressed. In other words, the low dimensional
representation contains only the information required to
reconstruct the original data, discarding irrelevant
information. The VAE framework used extensively in this
work is a method of data compression with many ties to
information theory [20]. In applications with little to no
knowledge regarding the nature of obtained data, the latent
factors extracted using VAEs can act as a set of features
describing the generative parameters underlying the data. A
direct correlation between the generative parameters and the
compressed representation, or a disentangled representation,
is sought such that the representation can be applied to a
multitude of downstream tasks. Some example tasks include
performing predictions on new generative parameters,
interpreting the data in the case of unknown generative
parameters, and computationally efficient design
optimization.

Data snapshots obtained from some physical system or a
model of that system is represented here by random variable
Y: Ω → Y whereΩ is a sample space and Y is a measurable space
(Y � Rm will be assumed for the remainder of this work). Each
realization of Y is generated from a function of Θ such that
Θ: Ω → Rs is a random variable representing generative
parameters with distribution p(θ). With no prior knowledge of
Θ, the random variable Z: Ω → Rn represents the latent
parameters to be inferred from the data. A probabilistic
relationship between Θ and Y is sought in an unsupervised
manner using only samples from p(y).

The VAE framework infers a latent-variable model by
replacing the posterior p (z|y) with a parameterized
approximating posterior qϕ(z|y) [5], known as the encoding
distribution. A parameterized decoding distribution pψ(y|z) is
also constructed to predict data samples given samples from the
latent space. Only the encoding distribution and the decoding
distribution are learned in the VAE framework, but the
aggregated posterior qϕ(z) (to the best of our knowledge, first
referred to in this way by [21]), is of particular importance in

disentanglement. It is defined as the marginal latent distribution
induced by the encoder

qϕ z( ) ≜ ∫
Y
p y( )qϕ z|y( )dy, (1)

where the true data distribution is denoted by p(y). The induced
data distribution is the marginal output distribution induced by
the decoder

pψ y( ) ≜ ∫
Rn
p z( )pψ y|z( )dz. (2)

It is noted that the true data distribution is typically unknown;
only samples of data {y(i)}Ni�1 are available. The empirical data
distribution is thus denoted p̂(y), and any expectation with
respect to the empirical distribution is simply computed as an
empirical average Ep̂(y)[f(y)] ≜ 1

N∑N
i�1f(y(i)).

Learning the latent model is accomplished by simultaneously
learning the encoding and decoding distributions through
maximizing the evidence lower bound (ELBO), which is a
lower bound on the log-likelihood [22]. To derive the ELBO
loss, we begin by expanding the relative entropy between the data
distribution and the induced data distribution

DKL p y( )||pψ y( )[ ] � EY~p y( ) logp y( )[ ] − EY~p y( ) logpψ y( )[ ]
where the first term on the right hand side is the negative
differential entropy − H(Y). Noting that relative entropy
DKL—also often called the Kullback–Leibler divergence, which
is a measure of the distance between two probability
distributions—is always greater than or equal to zero and
introducing Bayes’ rule as

pψ y( ) � pψ y|z( )p z( )pϕ z|y( )
p z|y( )pϕ z|y( ) ,

we arrive at the following inequality

H Y( ) + EY~p y( ) DKL pϕ z|y( )||p z|y( )[ ][ ]≤Ep y( ) Eqϕ z|y( ) logpψ y|z( )[ ][ ]
− Ep y( )DKL qϕ z|y( )||p z( )[ ].

Thus,

Ep y( ) log p y( )( )[ ]≥Ep y( ) Eqϕ z|y( ) logpψ y|z( )[ ][ ]
− Ep y( )DKL qϕ z|y( )||p z( )[ ], (3)

where p(z) is a prior distribution. The prior is specified by the user
in the classic VAE framework. The right-hand side in Eq. 3 is the
well-known ELBO. Maximizing this lower bound on the log-
likelihood of the data is done by minimizing the negative ELBO.
The optimization is performed by learning the encoder and
decoder parameterized as neural networks. The negative ELBO
is defined as

−ELBO � Ep y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ], (4)

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8909103

Jacobsen and Duraisamy Disentangling Generative Factors

https://github.com/christian-jacobsen/Disentangling-Physical-Fields
https://github.com/christian-jacobsen/Disentangling-Physical-Fields
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


and we assume LVAE ≈ − ELBO, where the difference results in
the expectation being evaluated over the empirical data
distribution in LVAE. The VAE loss function is defined as

LVAE � Ep̂ y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep̂ y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ], (5)

where the first term on the right-hand side is the regularization
lossLREG and drives the encoding distribution closer (in the sense
of minimizing KL divergence) to the prior distribution. The
second term on the right-hand side is the reconstruction error
LREC and encourages accurate reconstruction of the data.

Selecting the prior distribution as well as the parametric form of
the encoding and decoding distribution can allow closed form
solutions to compute LVAE. The prior distribution is often
conveniently chosen as a standard normal distribution
p(z) � N (z; 0, In×n). The encoding and decoding
distributions are also often chosen as factorized normal
distributions qϕ(z|y) � N (z; μϕ(y), diag(σϕ(y))) and
pψ(y|z) � N (y; μψ(z), diag(σψ(y))), where the mean and log-
variance of each distribution are functions parameterized by neural
networks. Selecting the parameterized form of these distributions
facilitates the reparameterization trick [5], allowing backpropagation
through sampling operations during training. This selection of the
prior, encoding, and decoding distributions allows a closed form
solution to compute LVAE.

2.1 Disentanglement
Disentanglement is realized when variations in a single latent
dimension correspond to variations in a single generative
parameter. This allows the latent space to be interpretable by
the user and improves transferability of representations between
tasks. Disentanglement may not be required for some tasks which
may not require knowledge on each parameter individually or
perhaps only a subset of the generative parameters. Nevertheless,
a disentangled representation can be leveraged across many tasks.
[10] note that a disentangled representation captures each of the
relevant features of the data, but downstream applications may
only require a subset of these factors. We therefore hypothesize
that disentangled representations lead to a more comprehensive
range of downstream applications over non disentangled
representations.

Many metrics of disentanglement exist in the literature [18],
few of which take into account the generative parameter data.
Often knowledge on the generative parameters is lacking, and
these metrics can be used to evaluate disentanglement in that case
(although there is no consensus on which metric is appropriate).
In controlled experiments, however, knowledge on generative
parameters is available, and correlation between the latent space
and the generative parameter space can be directly determined.
To evaluate disentanglement in a computationally efficient
manner, we propose a disentanglement score

SD � 1
n
∑
i

max
j

|cov zi, θj( )|
∑j|cov zi, θj( )| , (6)

where zi indicates the ith component of the latent vector ∀i ∈ {1,
. . . , n} and θj indicates the jth component of the generative
parameter vector ∀j ∈ {1, . . . , s}. Noting that

max
j

|cov zi, θj( )|
∑j|cov zi, θj( )| ∈ 1/s, 1[ ],

it is clear that SD ∈ [1/s, 1]. It is noted that this score is not used
during the training process. This score is created from the
intuition that each latent parameter should be correlated to
only a single generative parameter. One might note some
issues with this disentanglement score. For instance, if
multiple latent dimensions are correlated to the same
generative parameter dimension, the score will be inaccurate.
Similarly, if the latent dimension is greater than the generative
parameter dimension, some latent dimensions may contain no
information about the data and be uncorrelated to all dimensions,
inaccurately reducing the score. For the cases presented here (we
will use the score only when n = s), Eq. 6 suffices as a reasonable
measure of disentanglement. This score is used as an efficient
means of scoring disentanglement when efficiency is important,
but we propose another score based on comparisons between
disentangled and entangled representations.

We observed empirically that disentanglement is highly
correlated to a match in shape between the generative
parameter distribution p(θ) and the aggregated posterior qϕ(z)
(Section 5). A match in the scaled-and-translated shapes results
in good disentanglement but an aggregated posterior which does
not match the shape of the generative parameter distribution or
contains incorrect correlations (“rotated”) relative to the
generative parameter distribution does not. Using this
knowledge, another disentanglement metric is postulated to
compare these shapes by leveraging the KL Divergence (Eq. 7)
where ◦ denotes the Hadamard product. The disentanglement
score is given by

SKL � min
a,b

DKL p θ( )||qϕ a◦ z − b( )( )[ ]. (7)

This metric compares the shapes of the two distributions by
finding the minimum KL divergence between the generative
parameter distribution and a scaled and translated version of
the aggregated posterior. When qϕ(a◦(z − b)) is close to p(θ) for
some vectors a, b ∈ Rn, disentanglement is observed.

It is noted in [16] that rotation of the latent space certainly has
a large effect on disentanglement, which is precisely what we
observe (Section 5). Additionally, the ELBO loss is unaffected by
rotations of the latent space when using rotationally-invariant
priors such as standard normal (Appendix A).

2.1.1 β-VAE
The β-VAE objective gives greater weighting to the regularization
loss,

Lβ−VAE � βEp̂ y( )DKL qϕ z|y( )||p z( )[ ]
+ Ep̂ y( ) Eqϕ z|y( ) −logpψ y|z( )[ ][ ] .
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This encourages greater regularization, often leading to improved
disentanglement over the standard VAE loss [6]. It is worth
noting that when β = 1, with a perfect encoder and decoder, the
VAE loss reduces to the Bayes rule [23]; [24]. More details on the
β-VAE are provided in Section 2.2.

2.2 Connections to Rate-Distortion Theory
Rate-distortion theory [25, 26, 27] aids in a deeper understanding in the
trade off and balance between the regularization and reconstruction
losses. The general rate distortion problem is formulated beforemaking
these connections. Consider two random variables: data Y: Ω → Rm

and a compressed representation of the data Z: Ω → Rn. An encoder
p(z|y) is sought such that the compressed representation contains a
minimal amount of information about the data subject to a bounded
error in reconstructing the data. Amodel ~y(z) is used to reconstruct Y
from samples ofZ, and a distortionmetricd(y, ~y) is used as ameasure
of error in the reconstruction of Y with respect to the original data.

A rate-distortion problem thus takes the general form

R D( ) � min
p z|y( ) I Y;Z( ) s.t. EY,Z d y, ~y z( )( )[ ]≤D, (8)

where D ∈ R is an upper bound on the distortion. Solutions to
Eq. 8 consist of an encoder p(z|y) which extracts as little
information as possible from Y while maintaining a bounded
distortion on the reconstruction of Y from Z through the model
~y(z). Mutual information is minimized to obtain a maximally
compressed representation of the data. Learning unnecessary
information leads to “memorization” of some aspects of the
data rather than extracting only the information relevant to
the task at hand.This optimization problem formulated as the
rate-distortion Lagrangian is

minJ β( ) � min
p z|y( ) I Y;Z( ) + βEY,Zdy, ~y z( ) −D. (9)

Given an encoder and decoder, solutions to the rate-distortion
problem lie on a convex curve referred to as the rate-distortion
curve [20]. Points above this curve correspond to realizable yet
sub-optimal solutions. Points below the RD curve correspond to
solutions which are not realizable; no possible compression exists
with distortion below the RD curve. As the RD curve is convex,
optimal solutions found by varying β lie along the curve.
Increasing β increases the tolerable distortion, decreasing the
mutual information between the compressed representation and
data, providing a more compressed representation. Conversely,
decreasing β requires a more accurate reconstruction of the data,
increasing the mutual information between compressed
representation and data.

The β-VAE loss is tied to a rate-distortion problem.
Rearranging the VAE regularization loss (LREG), we obtain

LREG � Ep̂ y( )DKL qϕ z|y( )||p z( )[ ] � Iϕ Y;Z( )
which is equal to the mutual information between Y and Z
according to the data and encoding distributions. Minimizing
the β-VAE loss gives the optimization problem

min
ϕ,ψ

Lβ−VAE � min
ϕ,ψ

Iϕ Y;Z( ) + βEp̂ y( )pψ z|y( ) −logpϕ y|z( )[ ].

This optimization problem is similar to a rate-distortion problem
with d(y, ~y) � −logpϕ(y|z) and the mutual information Iϕ(Y; Z)
just an approximation to the true mutual information I(Y; Z).
Depending on β, solutions can be found at any location along the
RD curve with each containing differing properties. RD curve for
VAEs is simply an analogy: LREG is considered the rate R and
LREC is considered the distortion D.

With increased β, the β-VAE minimizes the mutual information
between the data and the latent parameters, limiting reconstruction
accuracy. In [16], disentanglement is illustrated to be caused
inadvertently through the assumed factored form of the encoding
distribution even though rotations of the latent space have no effect
on the ELBO. However, their proof relies on training in the
“polarized” regime characterized by loss of information or
“posterior collapse” [28]. Training in this regime often requires
increasing the weight of the regularization loss, necessarily
decreasing reconstruction performance in the process. In our
work, we illustrate disentanglement through training VAEs with
the ELBO loss (β = 1), keeping reconstruction accuracy high. [16]
presents good insights into disentanglement.

2.3 Hierarchical Priors
Often the prior (in the case of classic VAEs, specified by the user)
and generative parameter distributions (data dependent) may not
be highly correlated. Hierarchical priors [7] (HP) can be
implemented within the VAE network such that the prior is
learned as a function of additional random variables, potentially
leading to more expressive priors and aggregated posteriors.
Hierarchical random variables ξi are introduced such that
“sub-priors” can be assumed on each ξi (typically standard
normal). In the case of a single hierarchical random variable

p z( ) � ∫
Ξ
p z|ξ( )p ξ( )dξ � ∫

Ξ

p ξ|z( )
p ξ|z( )p z|ξ( )p ξ( )dξ

� EΞ~p ξ|z( )
p z|ξ( )p ξ( )
p ξ|z( )[ ].

The conditional distributions p(ξ|z) and p(z|ξ) are the prior
encoder and prior decoder, respectively. These distributions can
be approximated by parameterizing them with neural networks.
The parameterized distributions are noted as qγ(ξ|z) and pπ(z|ξ)
where γ are the trainable parameters of the approximating prior
encoder and π are the trainable parameters of the prior decoder.
Thus, the VAE prior can be approximated through the prior
encoding and decoding distributions

p z( ) ≈ EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ]. (10)

Rearranging the VAE regularization loss

LREG � ∫
Y,Z

p̂ y( )qϕ z|y( )log qϕ z|y( )
p z( ) dydz

� EY,Z~p̂ y( )qϕ z|y( ) logqϕ z|y( )[ ]
− ∫

Y,Z
p̂ y( )qϕ z|y( )logp z( )dydz, (11)
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and substituting the approximating hierarchical prior Eq. 10 into
Eq. 11, the final term on the right-hand side becomes

−∫
Y,Z

p̂ y( )qϕ z|y( )logp z( )dydz � −∫
Y,Z

p̂ y( )qϕ z|y( )log

EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ][ ]dydz.
The logarithm function is strictly concave; therefore, by Jensen’s
inequality the right-hand side is upper bounded by

−∫
Y,Z

p̂ y( )qϕ z|y( )log EΞ~qγ ξ|z( )
pπ z|ξ( )p ξ( )

qγ ξ|z( )[ ][ ]dydz
≤ − ∫

Y,Z
p̂ y( )qϕ z|y( )EΞ~qγ ξ|z( ) log

pπ z|ξ( )p ξ( )
qγ ξ|z( )[ ]dydz.

This bound is rearranged to the form

EY,Z~p̂ y( )qϕ z|y( )DKL qγ ξ|z( )||p ξ( )[ ]
− EY,Z~p̂ y( )qϕ z|y( ) Eqγ ξ|z( ) logpπ z|ξ( )[ ][ ]. (12)

Equation 12 takes the same form as the overall VAE loss, but
applied to the prior network itself. Thus, the hierarchical prior
can be thought of as a system of sub-VAEs within the main VAE.
In summary, the VAE loss is upper bounded by

LVAE ≤EY,Z~p̂ y( )qϕ z|y( ) logqϕ z|y( )[ ]
+ EY,Z~p̂ y( )qϕ z|y( ) DKL qγ ξ|z( )||p ξ( )[ ][ (13)
−EY,Z~p̂ y( )qϕ z|y( ) Eqγ ξ|z( ) logpπ z|ξ( )[ ][ ] (14)

−EY,Z~p̂ y( )qϕ z|y( ) logpψ y|z( )[ ]]. (15)

Implementing hierarchical priors can aid in learning non-
rotationally-invariant priors, frequently inducing a learned
disentangled representation, as shown below.

3 APPLICATION TO DARCY FLOW

To characterize the training process of the VAEs and to study
disentanglement, we employ an application of flow through porous
media. A two-dimensional steady-state Darcy flow problem in c spatial
dimensions (our experiments employ c = 2) is governed by [29].

u x( ) � −K x( )∇p x( ), x ∈ X
∇ · u x( ) � f x( ), x ∈ X

u x( ) · n̂ x( ) � 0, x ∈ zX
∫

X
p x( )dx � 0.

(16)

Darcy’s law is an empirical law describing flow through porous
media in which the permeability field is a function of the spatial
coordinate K(x): Rc → R. The pressure p(x): Rc → R and
velocity u(x): Rc → Rc are found given the source term
f(x): Rc → R, permeability, and boundary conditions. The
integral constraint is given to ensure a unique solution.

A no-flux boundary condition is specified, and the source term
models an injection well in one corner of the domain and a
production well in the other

f x( ) �
r, |xi − 1

2
w|≤ 1

2
w, i � 1, 2

−r, |xi − 1 + 1
2
w|≤ 1

2
w, i � 1, 2

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (17)

where w � 1
8 and r = 10. The computational domain considered is

the unit square X � [0, 1]2.

3.1 Karhunen-Loeve Expansion Dataset
The dataset investigated uses a log-permeability field modeled by
a Gaussian random field with covariance function k

K x( ) � exp G x( )( ), G ·( ) ~ N �μ, k ·, ·( )( ). (18)
Generating the data first requires sampling from the permeability
field (Eq. 18). We take the covariance function as

k x, x′( ) � exp −||x − x′||2/l( ) (19)
in our experiments, as in [29]. After sampling the permeability
field, solving Eq. 16 for the pressure and velocity fields
produces data samples. We discretize the spatial domain on
a 65 × 65 grid and use a second-order finite difference scheme
to solve the system.

The intrinsic dimensionality of the data will be the total
number of nodes in system (4,225 for our system) [29]. For
dimensionality reduction, the intrinsic dimensionality s of the
data is specified by leveraging the Karhunen-Loeve Expansion
(KLE), retaining only the first s terms in

G x( ) � �μ +∑s
i�1

��
λi

√
θiϕi x( ), (20)

where λi and ϕi(x) are eigenvalues and eigenfunctions of the
covariance function (Eq. 19) sorted by decreasing λi, and each θi
are sampled according to some distribution p(θ), denoted the
generative parameter distribution.

Each dataset contains some intrinsic dimensionality s, and
we denote each dataset using the permeability field (Eq. 18) as
KLEs. For example, a dataset with s = 100 is referred to as
KLE100. Samples from datasets of various intrinsic dimension
are illustrated in Figure 1. Variations on the KLE2 dataset are
employed for our explorations in this work. The differences
explored are related to varying the generative parameter
distribution p(θ) in each set.

Each snapshot y(i) from a single dataset {y(i)}Ni�1 contains the
pressure p(x) and velocity fields u(x) at each node in the
computational domain. These are used as a 3-channel input to
the VAE; the permeability field and KLE expansion coefficients
(generative parameters) are saved and used only for evaluation
purposes.
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4 TRAINING SETUP AND LOSS
LANDSCAPE

The process of training a VAE involves a number of challenges.
For example, convergence of the optimizer to local minima can
greatly hinder reconstruction accuracy and failure to converge
altogether remains a possibility. A recurrent issue with VAE
training in our experiments is that of over-regularization. Over-
regularized solutions are characterized by disproportionately
small regularization loss (LREG ≪ 1). More information on this
issue is detailed in Section 4.2.

To mitigate some of the issues inherent to training VAEs, we
employ a training method tailored to avoid over-regularization.
All experiments are performed using the Adam optimizer in
Pytorch. We use Lβ−VAE to train the models. The β value is varied
with epochs, but at the end of training the model is converged
with β = 1. The model is trained initially with β0 ≪ 1, typically
around β0 = 10–7, for some number of epochs r0 (depending on
learning rates) until reconstruction accuracy is well below that of
an over-regularized solution (Section 3 illustrates this necessity).
When β0 is too small, the regularization loss can become too
large, preventing convergence altogether. Training is continued
by implementing a β scheduler [7] to slowly increase the weight of
the regularization loss. The learning rate is then decreased to lr1 =
c (lr0) after some number of epochs r1 to enhance reconstruction
accuracy. This training method—in particular the heavily

weighted reconstruction phase and the β scheduler—result in
much more stable training which avoids the local minima
characterized by over-regularization and improves convergence
consistency. Similar methods have been employed to avoid this
issue. In particular, [30] refers to this issue as “KL vanishing” and
uses a cyclical β schedule to avoid the issue. However, this can
take far more training epochs and cycle iterations to converge
than the method employed here.

4.1 Architecture
The primary architecture for the VAE is adapted from [29] and a
more detailed description including architecture optimization is
given in the included Supplementary Material. This architecture
consists of a series of encoding blocks to form the encoder, and a
series of decoding blocks to form the decoder. Each encoding/
decoding block consists of a dense block followed by and
encoding/decoding layer. Contrary to the name, dense blocks
do not contain any dense layers, but rather a series of skip
connections and convolutional layers. Encoding and decoding
layers consist of convolutions. The architecture is called
DenseVAE and is used for all VAEs trained in this work. The
latent and output distributions are assumed to be Gaussian. We
use the dense block based architecture to parameterize the
encoder mean and log-variance separately, as well as the
decoder mean. The decoding distribution log-variance is
learned but constant as introducing a learned output log-

FIGURE 1 | Samples from datasets (top left) KLE2 (top right) KLE10 (bottom left) KLE100 (bottom right) KLE1000.
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variance did not aid in reconstruction or improving
disentanglement properties in our experiments but increased
training time.

4.2 Over-Regularization
Over-regularization has been identified as a challenge in the
training of VAEs [30]. This phenomenon is characterized by
the latent space containing no information about the data;
i.e., the regularization loss becomes zero. The output of the
decoder becomes identical accross all inputs. Thus, the output
of the decoder is a constant distribution which does not depend on
the latent representation. The constant distribution it learns
becomes a normal distribution with mean and variance of the
data. With zero regularization loss, the learned decoding
distribution becomes pψ(y|z) � N (y; μ̂y, diag(σ̂2y)) ∀ z where
μ̂y � 1

N∑N
i�1y(i) and σ̂2y � 1

N∑N
i�1(y(i) − μ̂y)2. This is proven to

minimize LVAE in Theorem 1. The solution is not shown to be
unique, but our experiments indicate that this is the over-
regularized solution found during training. As Theorem 1
illustrates validity for any encoder q(z|y), this is the most robust
solution for the VAE to converge to when over-regularization
occurs. The decoder learns to predict as accurately as possible given
nearly zero mutual information between the latent and data
random variables. As the encoder and decoder are trained
simultaneously, predicting a constant output regardless of z
prevents the necessity of the decoder to adjust as the encoder
changes. An empirical comparison between good reconstruction
and over-regularization is shown in Figure 2.

Theorem 1 requires that the output variance is constant.
Parameterizing the output variance with an additional network
may aid in avoiding over-regularization.

THEOREM 1. : Given data {y(i)}Ni�1 and the VAE framework
defined in Section 2, and assuming a decoding distribution of the
form p(y|z) � N (y; μ(z), diag(σ2)), if LREG � 0, then
arg minμ(z),σ2 LVAE � {μ̂y, σ̂2y}, where μ̂y � 1

N∑N
i�1y(i) and σ̂2y �

1
N∑N

i�1(y(i) − μ̂y)2.
Proof: For any q (z|y) s.t. LREG � 0:

LVAE � LREC � Ep̂ y( )q z|y( ) −log p y|z( )( )[ ]
� Eq z|y( )

1
N

∑N
i�1

∑m
j�1

1
2
log 2π( ) + log σj( ) + 1

2σ2j
y i( )
j − μj z( )( )2⎡⎢⎢⎣ ⎤⎥⎥⎦.

To minimizeLVAE, take derivatives
zLVAE
zμj(z) and

zLVAE
zσj

(assuming

derivative and expectation can be interchanged), where j ∈ {1, . . .
, m}:

zLVAE

zμj z( ) � Eq z|y( ) − 1
N

∑N
i�1

1
σ2
j

y i( )
j − μj z( )( )⎡⎣ ⎤⎦ � 0.

Thus, Eq(z|y)[∑N
i�1y

(i)
j − μj(z)] � 0 and

Eq z|y( ) μj z( )[ ] � 1
N

∑N
i�1

y i( )
j . (21)

Eq. 21 holds ∀z, j if

μj z( ) � μ̂j �
1
N

∑N
i�1

y i( )
j . (22)

Taking the derivative w.r.t. variance, we have
zLVAE
zσj

� Eq(z|y)[ 1N∑N
i�1

1
σj
− 1

σ3j
(y(i) − μj(z))2] � 0, and

rearranging, we have

FIGURE 2 | (upper) Good reconstruction. (lower) Over-regularization.
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σ2
j �

1
N

∑N
i�1

y i( )
j − μj z( )( )2 ∀ z, j. (23)

Substituting Eq. 21 into Eq. 23 results in:

σ̂2j �
1
N

∑N
i�1

y i( )
j − μ̂j( )2 ∀ z, j. (24)

With Eqs 21, 24 valid for all z and j, we can combine them into
vector form and note that Eq. 25 minimizes LVAE as required.

μ̂y �
μ̂1
..
.

μ̂m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, σ̂2
y �

σ̂21
..
.

σ̂2m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (25)

There exists a region in the trainable parameter loss
landscape characterized by over-regularized local minimum
solutions which partially surrounds the “desirable” solutions
characterized by better reconstruction accuracy and latent
properties. This local minima region is often avoided by
employing the training method discussed previously, but
random initialization of network parameters and changes in
hyperparameters between training can render it difficult to
avoid convergence to this region.

We illustrate the problem of over-regularization by
training VAEs using the architecture described in Section
4.1 on the KLE2 Darcy flow dataset with p(θ) being standard
normal.

A VAE is trained with 512 training samples (each sample is
65 × 65 × 3), converging to a desirable solution with low
reconstruction error and nearly perfect disentanglement. The
parameters of this trained network are denoted PT. After the VAE
is trained and a “desirable” solution obtained, 10 additional VAEs
with identical setup to the desirable solution are initialized
randomly using the Xavier uniform weight initialization on all
layers. Each of the 10 initializations contain parameters Pi. A line
in the parameter space is constructed between the converged
“desirable” solution and the initialized solutions as a function
of α:

P α( ) � 1 − α( )Pi + αPT. (26)
Losses are recorded along each of the 10 interpolated lines and

plotted in Figure 3. Between the random initializations and
“desirable” converged solutions there exists a region of local
minima in the loss landscape, and these local minima are
characterized by over-regularization. Losses illustrated are
computed as an expectation over all training data and a
Monte Carlo estimate of the reconstruction loss with 10 latent
samples to limit errors due to randomness.

We include an illustration of the avoidance of the avoidance of
these over-regularized local minima using our training method in
the Supplementary Material.

Of interest is that this over-regularized local minima region
does not fully surround the “desirable” region. Instead of
interpolating in parameter space between random
initializations and a converged solution, lines emanating away
from the converged solution along 1,000 random directions in
parameter space are created and the loss plotted along each.
Figure 3 illustrates that indeed no local minima are found around
the converged solution. We note that there are around 800,000
training parameters in this case, so 1,000 random directions may
not completely encapsulate the loss landscape around this
solution.

The Xavier uniform weight initialization scheme, and most
other initialization schemes, limit the norm of the parameters in
parameter space to near the origin. The local minima region exists
only between the converged solution region and points in
parameter space near the origin. In this case, there may be
alternative initialization schemes which can greatly aid in the
convergence of VAEs. This has been observed in [31] where the
initialization scheme proposed greatly accelerates the speed of
convergence and accuracy of reconstruction.

Over-regularized local minima follow a similar path during
training as desirable solutions. A region of attraction exists in the
loss landscape, and falling too close to this region will result in an
over-regularized solution, illustrated in Figure 4. One VAE which
obtains a desirable solution shares a similar initial path with an
over-regularized solution. Plotted are the VAE losses computed

FIGURE 3 | (left) Loss along interpolated lines between 10 random weight initializations and a desirable converged solution. (right) Loss along 100 (of 1,000)
random lines emanating from a desirable solution of the DenseVAE architecture. The parameter α indicates the distance along each random direction in parameter space
and does not necessarily correspond to the same parameter α in the left figure. Note that the loss is limited to 1,000 for illustration purposes.
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during training, not the training losses. The over-regularized
solution breaks from the desired path too early, indicating a
necessity for a longer reconstruction-heavy phase.

Training many VAEs with various β values facilitates a
visualization of over-regularization in the RD plane. Each
point in Figure 4 shows the loss values of converged VAEs
trained with different values of β. The over-regularized region of
attraction prevents convergence to desirable solutions for many
values of β. Interpolating in parameter space between each of
these points (corresponding to a VAE with its own converged
parameters) using the base VAE loss (β = 1), no other points on
the RD curve are local minima of the VAE loss. In Figure 4, we
observe that during training, the desirable solution reaches the
RD curve but continues toward the final solution.

4.3 Properties of Desirable Solutions
Avoiding over-regularization aids in convergence to solutions
characterized by low reconstruction error. Among solutions with
similar final loss values, inconsistencies remain in latent
properties. Two identical VAEs initialized separately often
converge to similar loss values, but one may exhibit
disentanglement while the other does not. This phenomenon
is also explored in [18] and [16]. Two VAEs are trained with
identical architectures, hyperparameters, and training method;

they differ only in the random initialization of network
parameters P. We denote the optimal network parameters
found from one initialization as P1 and optimal network
parameters found from a separate initialization P2. The losses
for each converged solution are quite similar
(LVAE1 ≈ − 9.50, LVAE2 ≈ − 9.42); however, disentanglement
properties of each are dramatically different. We interpolate
between these two solutions in parameter space (Eq. 26) and
record losses and disentanglement scores along the line
(Figure 5). The first network contains a nearly perfectly
disentangled latent representation while the second network
does not produce a disentangled representation. It is evident
that multiple local minima exist in parameter space which
converge to similar values in the loss landscape, but contain
very different latent correlations. Local minima exist throughout
the loss landscape, and with each initialization, a different local
minimummay be found. Many such differing solutions are found
throughout our experiments. This phenomenon is partially due to
invariance of the ELBO to rotations of the latent space when using
rotationally invariant priors. Disentanglement is heavily
dependent on a factorized representation of the latent
representation. With rotations not affecting the training loss,
learning a disentangled representation seems to be somewhat
random in this case.

FIGURE 4 | RD plane illustrating training convergence of both desirable and over-regularized solutions to the RD curve (β = 1). (right) Scale adjusted. (lower) RD
plane with points corresponding (from left to right) to β = [100, 10, 5, 2, 1, 0.1, 0.01, 0.001]. Many values of β between 5 and 100 fall into the over-regularized solution.
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This phenomenon exhibits the difficulties in disentangling
generative parameters in an unsupervised manner; without prior
knowledge of the factors of variation, conclusions cannot be
drawn regarding disentanglement by observing loss values
alone. In controlled experiments, knowledge of the underlying
factors of variation is available, but when only data is available,
full knowledge of such factors is often not. It is encouraging that
the VAE does have the power to disentangle generative
parameters in an unsupervised setting, but the nature of
disentanglement must first be understood better to create
identifying criterion.

5 CHARACTERIZING DISENTANGLEMENT

In this section, we explore the relationship between
disentanglement, the aggregated posterior (qϕ(z)), and the
generative parameter distribution (p(θ)) by incrementally
increasing the complexity of p(θ). Disentanglement is first
illustrated to be achievable but difficult using the classic VAE
assumptions and loss due to a lack of enforcement of the rotation
of the latent space caused by rotationally-invariant priors.
Hierarchical priors are shown to aid greatly in disentangling
the latent space by learning non-rotationally-invariant priors
which enforce a particular rotation of the latent space through
the regularization loss.

5.1 Standard Normal Generative
Distributions
The intrinsic dimensionality of the data is set to p= 2with a generative
parameter distribution p(θ) � N (θ; 0, I2×2), the standard normal
distribution. Limiting p to 2 aids greatly in the visualization of the
latent space and understanding of the ideas investigated. The standard
latent prior is identical to the generative parameter in this case,
creating a relatively simple problem for the VAE.

Using the architecture described in Section 4.1, the
relationship between regularization, reconstruction, and
disentanglement and the number of training samples is
illustrated in the included Supplementary Material. A similar

study is performed in [18] with a greater sample size.
Reconstruction losses continue to fall with the number of
training data, indicating improved reconstruction of the data
with increased number of samples; however, the regularization
loss increases slightly with the number of training data. With too
few samples, reconstruction performance is very poor and over-
regularization (near zero regularization loss) seems unavoidable.
Clear and consistent correlations exist among the loss values and
number of training data, but disentanglement properties vary
greatly among converged VAEs (Section 4.3). The compressed
representations range from nearly perfect disentanglement to
nearly completely entangled.

Although disentanglement properties are inconsistent between
experiments, desirable properties of disentanglement are often
observed. Training is performed using the maximum amount of
available data (512 snapshots), and analysis included for 512 testing
samples on the KLE2 dataset (regardless of p(θ)). Regularization loss
is large during the reconstruction phase in which β0 = 10–7, and the
y-axis is truncated for clarity. A comparison between a test data
sample and the reconstructed mean using the trained VAE is
depicted in Figure 6, showing little error between the mean μψ(z)
of the decoding distribution and the input data sample. With small
reconstruction error, a disentangled latent representation is learned.
Figure 6 also illustrates the aggregated posterior matching the prior
distribution in shape. This is unsurprising with a generative
parameter and prior distribution match and an expressive
network architecture. Finally, Figure 7 shows the correlation
between the generative parameters of the training and testing
data against the latent distribution as a qualitative measure of
disentanglement. Each latent dimension is tightly correlated to a
single but different generative parameter. Figure 7 also illustrates the
uncertainty in the latent parameters, effectively qϕ(z|θ). The latent
representation is fully disentangled; each latent parameter contains
only information about a single generative factor.

5.2 Non Standard Gaussian Generative
Distributions
The generative parameter distribution and the prior are identical
(independent standard normal) in the previous example. Most

FIGURE 5 | (left) Loss variation along a line in parameter space between two converged solutions containing identical hyperparameters and training method but
different network parameter initializations. (right) Disentanglement score along the same line.
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often, however, knowledge of the generative parameters is not
possessed. The specified prior in this case is unlikely to match the
generative parameter distribution. The next example illustrates
the application of a VAE in which the generative parameter
distribution and prior do not match. Another KLE2 dataset is
generated with a non standard Gaussian generative parameter
distribution. The generative parameter distribution is Gaussian,
but scaled and translated relative to the previous example p(θ) �
N (θ; [1; 1], [0.5, 0; 0, 0.5]).

Training a standard VAE on this dataset results in high
reconstruction accuracy, but undesirable disentanglement after
many trials. With the use of an additional hierarchical prior
network, good disentanglement can be achieved even with a
mismatch in the prior and generative parameter distributions.
The sub-prior (see Section 2.3) is the standard normal
distribution, but the hierarchical network learns a non-
standard normal prior. Still, the learned prior and generative
parameter distributions do not match. Figures 8, 9 illustrate
comparisons in results obtain from the VAE with and without the
hierarchical prior network. When using hierarchical priors, the
learned prior and aggregated posterior match reasonably well but
do not match the generative parameter distribution. However,
this does not matter as long as the latent representation is not
rotated relative to the generative parameter distribution, as
illustrated in the next example. Low reconstruction error and

disentanglement are observed using hierarchical priors, but
disentanglement was never observed using the standard VAE
after many experiments. This may be because β is not large
enough to enforce a regularization loss large enough to produced
an aggregated posterior aligned with the axes of the generative
parameter distribution. Therefore, the rotation of the learned
latent representation will be random and disentanglement is
unlikely to be observed, even in two dimensions. The
hierarchical network consistently enforces a factorized
aggregated posterior, which is essential for disentanglement
when generative parameters are independent. One potential
cause of this is the learning of non-rotationally-invariant
priors, such as a factorized Gaussian with independent scaling
in each dimension. The ELBO loss in this case is affected by
rotations of the latent space, aligning the latent representations to
the axes of the generative parameters.

A latent rotation can be introduced such that the
reconstruction loss is unaffected, but regularization loss
changes with rotation. Introducing a rotation matrix A
with angle of rotation ω to rotate the latent
distribution, the encoding distribution becomes
qϕ(z|y) � N (z;Aμϕ(y), Adiag(σϕ(y))AT). Reversing this
rotation when computing the decoding distribution
(i.e., pψ(y|z) � N (y; μϕ(ATz), diag(σψ(ATz)))) preserves the
reconstruction loss. However, the regularization loss can be

FIGURE 6 | (left) Data sample from unseen testing dataset. (center) Reconstructed data sample from trained VAE. (right) Error in the reconstruction mean. (lower)
Comparison of aggregated posterior (pϕ(z)) and prior (p(z)) distributions.
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plotted as a function of the rotation angle (included in the
Supplementary Material). When a rotationally-invariant prior
is used to train the VAE, regularization loss is unaffected by latent
rotation. However, when the prior is non-rotationally-invariant,
the regularization loss is affected by latent rotation. Thus, rotation
of the latent space is enforced by the prior during training.

Although the hierarchical prior adds some trainable
parameters to the overall architecture, the increase is only
0.048%. This is negligible, and it is assumed that this is not
the root cause of improved disentanglement. Rather, it is the
ability of the additional hierarchical network to consistently

express a factorized aggregated posterior and learn non-
rotationally-invariant priors which improves disentanglement.
More insights are offered in the next example and Section 7.

5.3 Multimodal Generative Distributions
In this setup, disentanglement not only depends on a factorized
qϕ(z), but the correlations in p(θ) must be preserved as well,
i.e., rotations matter. The previous example illustrates a case in
which the standard VAE fails in disentanglement but succeeds
with the addition of hierarchical priors due to improved
enforcement of a factorized qϕ(z) through learning non-

FIGURE 7 | (upper) Correlations between dimensions of generative parameters andmean of latent parameters. Also shown are the empirical marginal distributions
of each parameter. (lower) Correlations between generative parameters and latent parameters with uncertainty for test data only.
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rotationally-invariant priors. The generative parameter
distribution is radially symmetric, thus visualization of
rotations in qϕ(z) relative to p(θ) is difficult. To illustrate the
benefits of using hierarchical priors for disentanglement, the final
example uses data generated from a more complex generative
parameter distribution with four lines of symmetry for better
visualization. The generative parameter distribution is
multimodal (a Gaussian mixture) and is more difficult to
capture than a Gaussian distribution, but allows for better
rotational visualization:

p θ( ) � 1
4
N θ; −1;−1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; 1; 1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; −1; 1[ ], 0.25, 0; 0, 0.25[ ]( )

+ 1
4
N θ; 1;−1[ ], 0.25, 0; 0, 0.25[ ]( ).

Training VAEs without hierarchical priors results in over-
regularization more often than with the implementation of
HP. Out of 50 trials, 10% trained without HP were unable to
avoid over-regularization while all trials with HP successfully
avoided over-regularization. More epochs are required in the
reconstruction only phase (with and without HP) to avoid
over-regularization than in previous examples.
Disentanglement was never observed without the use of
hierarchical priors. This again is due to rotation of the
latent space relative to the generative parameter
distribution due to rotationally invariant priors. To
illustrate this concept, Figure 10 illustrates the effects of
rotation of the latent space on disentanglement. Clearly,
rotation dramatically impacts disentanglement, and the

standard normal prior does not enforce any particular
rotation of the latent space.

Implementing hierarchical priors, consistent observation of
not only better reconstruction (avoiding over-regularization) but
also reasonable disentanglement of the latent space in roughly
half of all trained VAEs (out of 50) exemplifies the improved
ability of hierarchical priors to produce a disentangled latent
representation. Reconstruction of test samples is more accurate
when implementing the hierarchical prior network, as illustrated
in Figure 11. We hypothesize that disentanglement is observed in
roughly half of our experiments due to local minima in the
regularization loss corresponding to 45° rotations of the latent
space, illustrated in the Supplementary Material. The learned
priors using HP are often non-rotationally-invariant and aligned
with the axes. However, the posterior is often rotated 45-degrees
relative to this distribution, creating a non-factorized and
therefore non-disentangled representation.

Comparing p(θ), p(z), and qϕ(z) with and without HP
(Figure 12), stark differences are noticeable. Without the HP
network, the aggregated posterior often captures the
multimodality of the generative parameter distribution, but it
is rotated relative to p(θ), creating a non-factorized qϕ(z).
Training the VAE with hierarchical priors, the learned prior
becomes non-rotationally invariant. The rotation of the
aggregated posterior is therefore controlled by the orientation
of the prior through the regularization loss, but mimics the shape
of the generative parameter distribution. It is clear that the prior
plays a significant role in terms of disentanglement: it controls the
rotational orientation of the aggregated posterior.

A qualitative measure of disentanglement is compared in
Figure 12. Without HP, the latent parameters are entangled;
they are each weakly correlated to both of the generative
parameters. Adding HP to the VAE results in disentanglement

FIGURE 8 | (top) Reconstruction accuracy of a test sample on trained VAE without hierarchical network, (bottom) with hierarchical network.
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in nearly half of our trials. When disentanglement does occur,
each latent factor contains information on mostly a single but
different generative factor. Through the course of our
experiments, a relationship between disentanglement and the
degree to which the aggregated posterior matches the generative
parameter distribution is recognized. When disentanglement
does not occur with the use of HP, the aggregated posterior is
rotated relative to p(θ), or non-factorized (it has always been
observed at around a 45-degree rotation). Only when qϕ(z) can be
translated and scaled to better match p(θ), maintaining the
correlations, does disentanglement occur. Thus, a quantitative
measure of disentanglement (Eq. 7) is created from this idea. The

KL divergence is estimated through sampling using the k-nearest
neighbors (k-NN) approach (version ϵ1) found in [19]. The
optimization is performed using the gradient-free Nelder-
Mead optimization algorithm [32].

In low-dimensional problems, humans are adept at
determining disentanglement from qualitative
measurements of disentanglement such as Figure 12. It
is, however, more difficult to obtain quantitative
measurements of these properties. Figure 13 shows the
relationship between Eq. 7 and a qualitative measurement
of disentanglement. Lower values of SKL indicate better
disentanglement. This measure of disentanglement and

FIGURE 9 | (upper left) Aggregated poster, prior, and generative parameter distribution comparison on VAE without hierarchical network, (upper right) with
hierarchical network. (lower left) Qualitative disentanglement in VAE trained without hierarchical network, (lower right) with hierarchical network.
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the intuition behind it is discussed further in the conclusions
section.

6 SEMI-SUPERVISED TRAINING

Difficulties with consistently disentangling generative
parameters have been illustrated up to this point with an
unsupervised VAE framework. In some cases, however,
generative parameters may be known for some number of
samples, suggesting the possibility of a semi-supervised
approach. These labeled samples can be leveraged to further

improve the consistency of learning a disentangled
representation. Consider data consisting of two partitions:
labeled data {y(i), θ(i)}li�1 and unlabeled data {y(i)}u+li�l+1. A
one-to-one mapping between the generative parameters θ
and the learned latent representation z is sought when
disentanglement is desired. Thus, enforcing the latent
representation to match the generative parameters for
labeled data in a semi-supervised approach should aid in
achieving our desired objective more consistently.

We begin the intuition behind a semi-supervised loss function
by illustrating its connection to the standard ELBO VAE loss.
One method of deriving the ELBO loss is to first expand the

FIGURE 10 | (top) aggregated posterior comparison showing rotation of the latent space, (bottom) worse disentanglement when latent space is rotated.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 89091016

Jacobsen and Duraisamy Disentangling Generative Factors

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


relative entropy between the data distribution and the induced
data distribution to obtain

DKL p y( )||pψ y( )[ ] � −H Y( ) + Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
−Ep y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
−Ep y( )qϕ z|y( ) logpψ y|z( )[ ]

where − H(Y) is constant and the “true” encoder p(z|y) is
unknown. Therefore, the term

Ep y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
is usually ignored and we arrive at the ELBO, which upper bounds
the left hand side. However, a relationship between z and y is
known for labeled samples. This relationship can be used to
assign p (z(i)|y(i)) on the labeled partition. For unlabeled data, the
standard ELBO loss is still used for training and the semi-
supervised loss to be minimized becomes

LVAE−SS ϕ,ψ( ) � Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
−Epl y( ) DKL qϕ z|y( )||p z|y( )[ ][ ]
−Ep y( )qϕ z|y( ) logpψ y|z( )[ ]

(27)

where pl(y) is the distribution of inputs with corresponding labels,
p(y) is the distribution of all inputs (labeled and unlabeled), and
Epl(y)[DKL[qϕ(z|y)||p(z|y)]] is denoted LSS.

Note that the term Ep(y)[DKL[qϕ(z|y)||p(z)] −
DKL[qϕ(z|y)||p(z|y)]] is minimized by qϕ(z|y) = p(z|y) at I
(Z; Y), the mutual information between the generative
parameters and high dimensional data. In unsupervised VAEs,
the regularization term Ep(y)[DKL[qϕ(z|y)||p(y)]] is minimized

when qϕ(z|y) = p(y). As observed in previous sections,
disentanglement is observed when the aggregated posterior is
“close” to the generative parameter distribution. With the semi-
supervised loss being minimized when they are equivalent, the
learned latent representations should be more easily and
consistently disentangled.

However, empirically it is found that this loss is very sensitive
to changes in network parameters and unreasonably small
learning rates are required for stability. Additionally, there is
no obvious way to determine the variance of p (z(i)|y(i)) for each
sample, only the mean is easily identifiable. We therefore propose
to train with LSS � Epl(y)[−logqϕ(z|y)] instead such that the loss
function becomes

LVAE−SS ϕ,ψ( ) � Ep y( ) DKL qϕ z|y( )||p z( )[ ][ ]
− Epl y( ) logqϕ z|y( )[ ]
− Ep y( )qϕ z|y( ) logpψ y|z( )[ ]. (28)

Training with this loss achieves the desired outcome of
consistently learning disentangled representations while being
simple and efficient to implement.

Incorporating some labeled samples into training the VAE, a
disentangled latent representation can be consistently learned.
Figure 14 illustrates the relationship between increasing the
number of labeled samples and the disentanglement score of
the learned latent representation. In each case, there are 512
unlabeled samples. Each trial varies in the number of labeled
samples, and VAEs trained with the same number of labeled
samples are trained with a different set of labeled samples. Ten
VAEs are trained at each point, and the range illustrated

FIGURE 11 | (top) Reconstruction accuracy of a test sample using VAE trained on multimodal generative parameter distribution without hierarchical network,
(bottom) with hierarchical network.
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represents the maximum and minimum disentanglement score
across the 10 trials.

The training losses do not seem to be effected by the number of
labeled samples, only the disentanglement score is effected. With
a low number of labeled samples, the semi-supervised VAE trains
very similarly to the unsupervised VAE. That is, disentanglement
is observed rather randomly, and the learned latent
representation varies dramatically between trials. Labeling
around 1% of the samples begins to result in consistently good
disentanglement. Labeling between 3% and 8% results in learning

disentangled latent representations which are nearly identical
between trials. It follows from these results that disentangled
representations can be consistently learned when training with
Eq. 28 when using a sufficient number of labeled samples
(assuming a sufficiently expressive architecture).

Using a semi-supervised method also improves the ability of
the VAE to predict data in regions of lower density. In Figure 15,
we observe that the aggregated posterior matches the generative
parameter distribution much better than the unsupervised case
with just over 1% of the samples labeled. Additionally, regions of

FIGURE 12 | (upper left) Aggregated posterior, prior, and generative parameter distribution comparison using VAE trained on multimodal generative parameter
distribution without hierarchical network, (upper right) with hierarchical network. (lower left) Qualitative disentanglement using VAE trained on multimodal generative
parameter distribution without hierarchical network, (lower right) with hierarchical network.

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 89091018

Jacobsen and Duraisamy Disentangling Generative Factors

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


low density in the generative parameter distribution are better
represented in the semi-supervised case over the unsupervised
case; in other words, multimodality is better preserved (compare
to Figure 12).

7 CONCLUDING REMARKS AND
PERSPECTIVES

Learning representations such that each latent dimension
corresponds to a single physical generative factor of variation
is useful in many applications, particularly when learned in an
unsupervised manner. Learning such disentangled
representations using VAEs is dependent on many factors
including network architecture, assumed form of distributions,
prior selection, hyperparameters, and random seeding. The goal

of our work is to develop 1) a consistent unsupervised framework
to learn disentangled representations of data obtained through
physical experiments or PDE simulations, and 2) to
comprehensively characterize the underlying training process,
and to recommend strategies to avoid sub-optimal
representations.

Accurate reconstruction is desirable from a variety of
perspectives, including being necessary for consistent
disentanglement. Given two samples near one another in data
space, and an accurate decoder, those two samples will be
encourage to be near one another in latent space. This is a
result of the sampling operation when computing the
reconstruction loss. The reconstruction loss is minimized if
samples near one another in latent space correspond to
samples near one another in data space. Thus, finding an
architecture suitable for accurate prediction from latent

FIGURE 13 | A quantitative measure of disentanglement compared to a qualitative measure. As SKL increases, the latent space becomes more entangled.

FIGURE 14 | (left) Disentanglement score mean increases with ratio of labeled to unlabeled samples when training with a semi-supervised loss. Disentanglement
also becomes more consistently observed. (right) Training losses are unaffected by the number of labeled samples.
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representations is of great importance to learn disentangled
representations. In our experiments, different architectures
were implemented before arriving at and refining the dense
architecture (Section 4.1), which was found to accurately
reconstruct the data from latent codes. Even with a suitable
architecture, however, significant obstacles need to be
overcome to arrive at a consistent framework for achieving
disentangled representations. Over-regularization can often be
difficult to avoid, especially when the variation among data
samples is minor. This again emphasizes the necessity to
accurately reconstruct the data first before attempting to learn
meaningful representations. We have illustrated methods of
avoiding over-regularization when training VAEs, but
rotationally invariant priors can still create additional
difficulties in the ability to disentangle parameters. We
illustrated in Section 5 that the standard normal prior
typically assumed (which is rotationally-invariant) does not
enforce any particular rotation of the latent space, often
leading to entangled representations. Rotation of the latent
space matters greatly, and without rotational enforcement on
the encoder, disentanglement is rarely, or rather randomly,
achieved when training with the ELBO loss. We have also
shown that the implementation of hierarchical priors allows
one to learn non-rotationally-invariant priors such that the
regularization loss enforces a rotational constraint on the
encoding distribution. However, the regularization loss can
contain local minima as the latent space rotates, enforcing a
non-factorized and thus incorrectly rotated aggregated posterior.
This indicates the need for better prior selection, especially in
higher latent dimensions when rotations create more complex
effects.

Matching the aggregated posterior to the generative parameter
distribution can also be enforce by including labeled samples
during training. Including some number of labeled samples in the

dataset and training with a semi-supervised loss, the aggregated
posterior consistently matches the shape and orientation of the
generative parameter distribution, effectively learning a
disentangled representation. The multimodality of the data
distribution is also better represented when using labeled data,
indicating that the VAE can better predict data in regions of low
density over the unsupervised version.

In reference to Section 5, the total correlation (TC)
DKL[qϕ(z)‖∏n

i�1qϕ(zi)] appears to be a useful and simpler
measurement of disentanglement. When the generative
parameters are completely independent
(i.e., p(θ) � ∏p

i�1p(θi)) and disentanglement occurs when a
factorized qϕ(z) is learned (aligning the latent space axes with
the generative parameter axes). This is the objective of the
FactorVAE framework [8], which can successfully encourage a
factorized qϕ(z) through the introduction of TC into the loss
function, modifying to ELBO. However, considering a case in
which the generative parameters are correlated, a factorized qϕ(z)
is not necessarily desirable. It is in anticipation of a more
correlated p(θ) that we use Eq. 7 as a measure of
disentanglement. Additionally, in our work we do not modify
the standard VAE objective to produce more accurate
reconstruction of the data.

Complete disentanglement has not been observed when
generative parameters are correlated in our experiments, but
after many trials the same conclusions have been drawn as
the uncorrelated case: for disentanglement to occur, the
aggregated posterior must contain the same “shape” as the
generative parameter distribution - this includes
correlations up to permutations of the axes. The
Supplementary Material further illustrates these ideas.
Future work will include disentangling correlated
generative parameters, which may be facilitated through
learning correlated priors using HP.

FIGURE 15 | (left) Aggregated posterior matches the generative parameter distribution with semi-supervised training. (right) Multi-modality is well preserved.
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In addition to disentangling correlated generative parameters,
our broader aim is to extend our work to more complex problems
to create a general framework for consistent unsupervised or
semi-supervised representation learning. Through our
observations here regarding non-rotationally invariant priors
along with insights gained from [16], we hypothesize that such
a framework will be largely focused on both prior selection and
the structural form of the encoding and decoding distributions.
Additionally, in a completely unsupervised setting, one must find
an encoder and decoder which disentangle the generative
parameters, but the dimension of the generative parameters
may be unknown. The dimension of the latent space is always
user-specified; if the dimension of the latent space is too small or
too large, how does this effect the learned representation? Can
one successfully and consistently disentangle generative
parameters in higher dimensions? These are some of the open
questions to be addressed in the future.

The issue of over-regularization often greatly hinders our
ability to train VAEs (Section 4.2). Different initialization
strategies may be investigated to increase training performance
and avoid the issue altogether. It has been shown that principled
selection of activation functions, architecture, and initialization
can greatly improve not only the efficiency of training, but also
facilitate greater performance in terms of reconstruction [31].

The greater scope of this work is to develop an unsupervised
and interpretable representation learning framework to generate
probabilistic reduced order models for physical problems and use
learned representations for efficient design optimization.
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APPENDIX A: ROTATIONALLY-INVARIANT
DISTRIBUTIONS

A matrix R ∈ Rn×n is a rotation matrix if for all z ∈ Rn, ‖Rz‖2
= ‖z‖2.

A probability distribution p(z) is said to be rotationally-invariant
if p(z) = p (Rz) for all z ∈ Rn and for all rotation matrices R ∈ Rn×n.

The ELBO loss is unaffected by rotations of the latent space
when training with a rotationally-invariant prior. This is shown
in detail in [16].
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