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In this study, we aim to investigate the fault prediction for watercraft equipment by using
grey relational analysis. At first, the healthy degree model of watercraft equipment is
proposed, and then two main theorems are derived to determine the health condition
criteria for equipment. Lastly, the relevant simulation results are provided to verify the
validity and accuracy of the healthy degree model. Current results can be helpful to
effectively design the supporting mode of watercraft equipment and realize the
transformation of watercraft equipment support from planned maintenance to
predictive maintenance.
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1 INTRODUCTION

Maintenance task affects the reliability and availability of equipment, which is the key factor to
minimize failure time and reduce operation cost in the lifecycle of equipment [1]. Currently, the
majority of methods of equipment maintenance are planned maintenance [2–10]. Among them,
AKYUZ and CELIK designed an enhanced plannedmaintenance system (E-PMS) for a ship by using
A’WOT, and their study had made a great contribution to improving the performance of equipment
[2]. In practice, however, the planned maintenance is greatly influenced by the external environment
and heavily depends on human effort, which leads to low efficiency and poor accuracy in the
following two aspects: one is excessive maintenance, which means the unnecessary maintenance of
better equipment, and the other one is insufficient maintenance, and the equipment has broken
down before the maintenance period due to various reasons, but restricted by the maintenance plan,
it has to operate with faults.

Therefore, fault prediction is the key to realizing the transformation of support mode from
planned maintenance to predictive maintenance, which can perform the warning before the
failure of equipment occurs. Also, more and more attention has been focused on fault
prediction for equipment [11–22], such as fault prediction for the vehicle [11, 12], the
watercraft [13–15], the aircraft engine [16–18], the power supply system [19, 20], and the
track circuit [21–23]. Due to the complexity of watercraft structure and the diversity of the
marine environment, it is challenging and difficult to study the fault prediction for watercraft
equipment.

Over the past few years, a large number of methods were explored to predict the failure, such
as the grey model [24, 25], the BP neural network [26, 27], the RBF neural network [28, 29], the
data-driven model [30–33], deep learning [34], and the grey relational analysis method [35].
Although the grey models in [24, 25] were effective to a certain extent, they only considered the
development of a single or several characteristic parameters independently. There were also
some results that focused on theoretical research and had made some contributions [36, 37]. But
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their experimental data was generated from the simulation,
which cannot represent the data characteristics of a real
physical system. Meanwhile, a data-driven prediction
method was introduced into the failure prognosis of marine
diesel engines, and a discrete wavelet transform was applied to
process the data based on the data characteristics [30]. In order
to take multiple characteristic parameters into account
comprehensively, the grey neural network model was first
introduced into fault prediction for ship machinery in [38].
However, most of the existing works [30] only analyze whether
the watercraft equipment will break down; they cannot explain
the type of the fault and when the fault will occur. In response
to the aforementioned problems, the healthy degree model
based on grey relational analysis of watercraft equipment is
proposed in this study, and it has been applied to a certain type
of watercraft and the improvement of performance has been
approved. The highlights of this study are summarized as
follows.

p A novel healthy degree model is put forward by using grey
relational analysis. The healthy state of watercraft
equipment can be predicted by the value of the healthy
degree. If the healthy degree is greater than 1, then the
watercraft equipment will be healthy. If the healthy degree
is less than 1, then the watercraft equipment will break
down, the fault mode will be identified, and the fault
occurrence time will be predicted.

p The implementation of the support mode transformation
from planned maintenance to predictive maintenance can
solve the three major problems: whether the watercraft
equipment needs to be repaired, what kind of fault it is,
and when the fault will occur.

The rest of this article is arranged as follows: at first, we
describe the problem to be resolved in Section 2, which consists
of the necessary notations and the data generation method. Then,
the healthy degree model is introduced in Section 3 to predict
whether the watercraft equipment needs to be repaired, what kind
of equipment fault it is, and when the fault will occur. In Section
4, an example of fault prediction is provided for the engine
equipment in a certain type of watercraft, and the simulation
results are obtained to verify the validity and accuracy of the fault
prediction. Finally, some concluding remarks are made to end
this study.

2 PROBLEM DESCRIPTIONS

2.1 Notations
The dataset to be tested is expressed as X � x1, x2, . . . , xn{ },
where xi (i � 1, 2, . . . , n) is an m-dimensional column vector.
yj(j � 0, 1, 2, . . . , g) is defined as the normalized vector which
consists of the average values of every parameter in the healthy or
fault state. j = 0 denotes that yj is a normalized vector of healthy
state. If j ≠ 0, then yj is a normalized vector of jth failure mode.
Hj(j � 1, 2, . . . , g) represents the fault prediction curve of jth
failure.

2.2 The Data Generation Method of Grey
Relational Analysis
Since the range of watercraft equipment character parameters are
different, and the values of them are not in one order of
magnitude, it is very important to process the values into a
comparability sequence. In fact, this processing is similar to
normalization which is called data generation of grey
relational analysis.

The method in [39] is used in this section since the data
generation is obtained according to the attributes of character
parameters.

If we wish to maximize the value of character parameter, then
the value generated can be described as follows:

xij �
yij −min yij, i � 1, 2, . . . , m{ }

max yij, i � 1, 2, . . . , m{ } −min yij, i � 1, 2, . . . , m{ } j � 1, 2, . . . , n( ),
(1)

which is provided in [39].
If we wish to minimize the value of character parameter, then

the value generated can be denoted as follows:

xij �
max yij, i � 1, 2, . . . , m{ } − yij

max yij, i � 1, 2, . . . , m{ } −min yij, i � 1, 2, . . . , m{ } j � 1, 2, . . . , n( ),
(2)

which is exhibited in [39].
If we wish that the value be close to the desired value y*, then

the value generated can be expressed as follows:

xij � 1

− yij − yp
j

∣∣∣∣∣
∣∣∣∣∣

max max yij, i � 1, 2, . . . , m{ } − yp
ij, y

p
ij −min yij, i � 1, 2, . . . , m{ }{ },

(3)
which is represented in [39].

It is obvious that the values of character parameters are
transformed into the same interval [0, 1]. Then the healthy
degree model based on grey relational analysis will be
proposed in the next section.

3 HEALTHY DEGREE MODEL BASED ON
GREY RELATIONAL ANALYSIS

The traditional grey relational coefficient used in [39] is
calculated merely depending on the difference between two
sequences. Actually, the area can represent the grey relational
coefficient between two sequences; more obviously, the larger the
area is, the smaller the grey relational coefficient will be. Then the
area between the two sequences labeled xi and yj is described as
follows:

Sij � ∫
0

t1
xi − yj

∣∣∣∣ ∣∣∣∣dt + ∫
t1

t2
xi − yj

∣∣∣∣ ∣∣∣∣dt +/ +∫
tl−1

tl
xi − yj

∣∣∣∣ ∣∣∣∣dt, (4)

where l is the number of intersections between the two sequences,
and intersections are expressed as tk (k � 1, 2, . . . , l). The
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similarity whose monotonicity is opposite to the area between
two sequences is structured as follows:

δij � 1
n − 1

∫
2

n 1

1 + xi − yj

∣∣∣∣ ∣∣∣∣dt. (5)

After that, the grey relational coefficient is represented as
follows:

rij � r xi, yj( ) � 1

1 + Sij 1 − δij( ), (6)

where Sij and δij are the area and similarity between the two
sequences, respectively. Clearly, the grey relational coefficient
increases with the increase of similarity, while it decreases when
the area is increased.

Finally, the healthy degree is expressed as follows:

hij � e− rij−ri0( ). (7)
If all of hij is greater than 1 for any i ∈ 1, 2, . . . , n{ } and

j ∈ 1, 2, . . . , g{ }, then the watercraft equipment is in a healthy
state. If there exists any hij smaller than 1 for i ∈ 1, 2, . . . , n{ }
and j ∈ 1, 2, . . . , g{ }, then the watercraft equipment will break
down, and the failure mode can be identified as the jth
failure mode.

Theorem 1. : For ∀ i ∈ 1, 2, . . . , n{ }, jk(k � 1, 2, 3) ∈ 1, 2, . . . , g{ },
if hij1 ≤ hij2 and hij2 ≤ hij3, then hij1 ≤ hij3.
Proof: According to Eq.(7), the following equations can be
obtained:

hijk � e− rijk−ri0( ), k � 1, 2, 3. (8)
From the known condition hij1 ≤ hij2, we have

e−(rij1−ri0) ≤ e−(rij2−ri0). On account of which the function f(x) �
e−x is a decreasing function, then Eq.(9) can be obtained:

rij1 ≥ rij2. (9)
Based on Eq.(6), Eq.(9) can be transformed into
1

1+Sij1(1−δij1)≥
1

1+Sij2(1−δij2). Because the function f(x) � 1
x is a

decreasing function, Eq.(10) can be acquired:

Sij1 1 − δij1( )≤ Sij2 1 − δij2( ). (10)
In the same way, Eq.(11) can be deduced:

Sij2 1 − δij2( )≤ Sij3 1 − δij3( ). (11)
On the basis of Eq.(10) and Eq.(11), we can obtain

Sij1 1 − δij1( )≤ Sij3 1 − δij3( ). (12)
Then, we have 1

1+Sij1(1−δij1)≥
1

1+Sij3(1−δij3), that is,

rij1 ≥ rij3. (13)
By virtue of which the function f(x) � e−x is a decreasing

function, then Eq.(14) can be described as follows:

e−rij1 ≤ e−rij3 . (14)

Multiplying both sides of Eq.(14) by the same positive number
eri0 , we have e−(rij1−ri0) ≤ e−(rij3−ri0), that is, hij1 ≤ hij3. Henceforth,
Theorem 1 can be proved.

Theorem 2. : If rij < ri0 for ∀ i ∈ 1, 2, . . . , n{ } and j ∈ 1, 2, . . . , g{ },
then the equipment will be healthy (hij > 1). If there exists rij > ri0
for i ∈ 1, 2, . . . , n{ } and j ∈ 1, 2, . . . , g{ }, then the equipment will
break down (hij < 1).
Proof: Due to rij < ri0 for ∀ i ∈ 1, 2, . . . , n{ } and j ∈ 1, 2, . . . , g{ },
then we can get

rij − ri0 < 0. (15)
On account of which the function f(x) � e−x is a decreasing

function, then Eq.(15) can be changed as follows:

e− rij−ri0( ) > 1. (16)
Based on Eq.(7), we can obtain hij > 1, that is, the equipment

will be healthy.
With the same method, if there exists rij > ri0 for

i ∈ 1, 2, . . . , n{ } and j ∈ 1, 2, . . . , g{ }, then the equipment
will be judged to break down. Thus, Theorem 2 can be
proved.

4 SIMULATION RESULTS

A fault prediction example is given for the engine equipment
in a certain type of watercraft. Three kinds of common faults
are chosen to establish the healthy degree model. Fault 1 is
excessive clearance of the crankpin bearing or main bearing,
fault 2 is cooling water leakage, and fault 3 is propeller
overload. Parameters of cylinder temperature (labeled CT),
oil pressure (labeled OP), oil temperature (labeled OT),
freshwater pressure (labeled FWP), freshwater temperature
(labeled FWT), and exhaust temperature (labeled ET) are
selected as the character parameters. According to their
values of them in the states of health and three failure
modes, the average value of them in each state is
considered as the normalized vector which is described in
Table 1 where P is the parameter and NV is the normalized
vector.

Taking time as the horizontal axis and healthy degree as
the vertical axis, three kinds of fault prediction curves are
represented to analyze the trend of the curve and predict the

TABLE 1 | Normalized vector table in the states of health and three failure modes.

P NV

Normal Fault 1 Fault 2 Fault 3

CT/(°C) 450.20 448.50 435.40 495.20
OP/(MPa) 0.24 0.15 0.22 0.25
OT/(°C) 58.50 45.60 72.30 75.80
FWP/(MPa) 0.083 0.082 0.074 0.080
FWT/(°C) 67.50 65.00 82.40 85.60
ET/(°C) 426.30 430.20 419.70 500.00
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occurrence time of the fault included. In this case, the time
period is 100 s with a failure point included. The
corresponding historical failure record is exhibited in
Table 2. If the predicted results obtained by the healthy
degree model are consistent with Table 2, then the
effectiveness of the healthy degree model can be verified.

In the process of the engine equipment from normal operation
to the failure of excessive clearance of the crankpin bearing or
main bearing, the time period 100 s including the failure point is
studied, and the data are collected every 10 s. The collected data
are shown in Table 3, where P and T mean the parameter
and time.

The generated data aforementioned are brought into the
healthy degree model to calculate the healthy degree
exhibited in Table 4, where HD is healthy degree and T is
time, and the graph of fault prediction curves is displayed in
Figure 1.

It is obvious that only the healthy degree of fault 1 starts to
be less than 1 in the time period from 60 to 70 s, and it
decreases with time. In other words, the failure of excessive

TABLE 2 | Historical failure record of which the time period is 100 s with the failure
point included.

Fault mode Fault occurrence time/s

Fault 1 64.23
Fault 2 58.93
Fault 3 89.96

TABLE 3 | Collected data of engine equipment from normal operation to fault 1.

T/s P

CT OP OT FWP FWT ET

10 457.28 0.22 62.51 0.089 64.37 420.43
20 459.05 0.25 63.84 0.083 65.46 425.45
30 454.10 0.27 65.39 0.088 67.82 424.10
40 455.82 0.14 48.46 0.089 68.43 440.04
50 448.69 0.20 45.87 0.085 67.693 430.54
60 453.31 0.21 42.96 0.079 64.20 439.48
70 443.95 0.12 44.30 0.082 69.95 431.71
80 444.03 0.14 44.62 0.081 64.03 413.44
90 440.44 0.16 48.76 0.081 61.50 432.52
100 455.38 0.15 43.23 0.083 65.45 430.16

TABLE 4 | Healthy degree of engine equipment from normal operation to fault 1.

T/s HD

H1 H2 H3

10 1.0627 1.0524 1.0847
20 1.0986 1.1010 1.1236
30 1.1515 1.1381 1.1706
40 1.0270 1.0433 1.0535
50 1.0151 1.1004 1.1181
60 1.0036 1.0311 1.0407
70 0.9944 1.0368 1.0550
80 0.9928 1.0201 1.0400
90 0.9880 1.0285 1.0465
100 0.9645 1.0498 1.0624

FIGURE 1 | Fault prediction curves of engine equipment from normal
operation to fault 1. It is obvious that only the healthy degree of fault prediction
curve of fault 1 starts to be less than 1 in the time period from 60 to 70 s, and it
decreases with time.

TABLE 5 | Collected data of engine equipment from normal operation to fault 2.

T/s P

CT OP OT FWP FWT ET

10 461.44 0.22 59.92 0.091 67.74 418.83
20 465.80 0.28 55.65 0.081 67.36 437.16
30 458.57 0.25 61.26 0.084 69.93 436.04
40 452.73 0.28 61.84 0.082 70.13 412.68
50 427.16 0.22 60.08 0.092 66.05 411.70
60 435.81 0.24 71.46 0.065 68.08 428.93
70 448.64 0.29 72.35 0.072 83.40 449.87
80 468.27 0.28 72.60 0.064 84.70 421.75
90 446.62 0.30 74.84 0.052 85.60 422.67
100 432.84 0.22 82.26 0.072 88.60 423.46

TABLE 6 | Healthy degree of engine equipment from normal operation to fault 2.

T/s HD

H1 H2 H3

10 1.1063 1.0927 1.1222
20 1.0590 1.0661 1.0750
30 1.0580 1.0576 1.0727
40 1.0622 1.0482 1.0758
50 1.0085 1.0151 1.0458
60 1.0325 0.9945 1.0646
70 1.0134 0.9649 1.0113
80 1.0167 0.9594 1.0128
90 1.0225 0.9461 1.0170
100 1.0052 0.9325 1.0093
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clearance of the crankpin bearing or main bearing will occur
in the time period from 60 to 70 s, which is consistent with
Table 2.

In the process of engine equipment from normal operation to
fault 2, in this case, the time period is 100 s with a failure point
included, and the data are collected every 10 s which is described
in Table 5.

Based on the collected data and the healthy degree model, the
healthy degree is obtained in Table 6, and the graph of fault
prediction curves is shown in Figure 2.

According to Figure 2, only the fault prediction curve of the
leakage of cooling water whose healthy degree starts to be less
than 1 in the time period from 50 to 60 s, and the healthy degree
decreases with time. Therefore, the fault of the leakage of cooling
water will happen in the time period from 50 to 60 s, which is in
line with Table 2.

The time period of 100 s with the failure point included is
discussed in the process of engine equipment from normal

operation to fault 3. The data are collected every 10 s, as
shown in Table 7.

The collected data are used to calculate the healthy degree in
Table 8, and the graph of fault prediction curves is displayed in
Figure 3.

It is evident that only the fault prediction curve of the
propeller overload whose healthy degree starts to be less than
1 when the time is close to 90 s, and the healthy degree decreases
with time. In short, the occurrence time of the propeller
overload failure will be close to 90 s, which matches the data
shown in Table 2.

5 CONCLUSION

In summary, the healthy degree model of watercraft equipment is
proposed in this article. On the basis of grey relational analysis,
the healthy degree model can solve three major problems:

FIGURE 2 | Fault prediction curves of engine equipment from normal
operation to fault 2. It is evident that only the fault prediction curve of fault 2
whose healthy degree starts to be less than 1 in the time period from 50
to 60 s.

TABLE 7 | Collected data of engine equipment from normal operation to fault 3.

T/s P

CT OP OT FWP FWT ET

10 459.49 0.27 53.55 0.088 75.40 427.18
20 453.80 0.29 64.92 0.081 67.10 446.90
30 442.14 0.30 55.29 0.087 67.13 426.98
40 445.92 0.26 53.76 0.084 65.94 421.26
50 465.42 0.25 63.57 0.083 70.44 438.60
60 465.79 0.24 60.26 0.080 70.50 452.26
70 476.66 0.22 61.60 0.083 65.51 463.03
80 467.84 0.29 62.53 0.084 69.79 474.96
90 477.45 0.22 66.69 0.088 67.64 482.24
100 466.68 0.24 59.45 0.083 74.81 496.52

TABLE 8 | Healthy degree of engine equipment from normal operation to fault 3.

T/s HD

H1 H2 H3

10 1.0616 1.0602 1.0798
20 1.0459 1.0455 1.0573
30 1.1771 1.1923 1.2240
40 1.0815 1.0860 1.1190
50 1.0311 1.0284 1.0391
60 1.0248 1.0243 1.0283
70 1.0098 1.0141 1.0106
80 1.0118 1.0111 1.0056
90 1.0130 1.0122 0.9989
100 1.0097 1.0084 0.9910

FIGURE 3 | Fault prediction curves of engine equipment from normal
operation to fault 3. It is obvious that only the fault prediction curve of fault 3
whose healthy degree starts to be less than 1 when the time is close to 90 s,
and the healthy degree decreases with time.
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whether watercraft equipment needs to be repaired, what kind of
fault it is, and when the fault will occur. After that, we analytically
derive two theorems related to the healthy degree model, which
are conducive to comprehending and applying the healthy degree
model. Finally, the real data of the engine equipment in a certain
type of watercraft are utilized and the relevant simulation results
are provided to verify the effectiveness of the healthy degree
model, and there are failure data of three types of common faults
which are excessive clearance of the crankpin bearing or main
bearing, the leakage of cooling water, and the propeller overload.
Obviously, the predicted results of the healthy degree model are
consistent with reality. The current analysis of fault prediction
will be beneficial to change the support mode of watercraft
equipment and realize the transformation of watercraft
equipment support from planned maintenance to predictive
maintenance.

In addition, there still remains a disadvantage due to the lack
of failure data in this study. We will further study the generation
of failure data via establishing the simulation model of watercraft
equipment, carrying out the fault simulation experiment, and
fully utilizing the data science in [40, 41].
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