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Benefiting from the superiority of tensor Singular Value Decomposition (t-SVD) in
excavating low-rankness in the spectral domain over other tensor decompositions (like
Tucker decomposition), t-SVD-based tensor learning has shown promising performance
and become an emerging research topic in computer vision and machine learning very
recently. However, focusing on modeling spectral low-rankness, the t-SVD-based models
may be insufficient to exploit low-rankness in the original domain, leading to limited
performance while learning from tensor data (like videos) that are low-rank in both
original and spectral domains. To this point, we define a hybrid tensor norm dubbed
the “Tubal + Tucker” Nuclear Norm (T2NN) as the sum of two tensor norms, respectively,
induced by t-SVD and Tucker decomposition to simultaneously impose low-rankness in
both spectral and original domains. We further utilize the new norm for tensor recovery
from linear observations by formulating a penalized least squares estimator. The statistical
performance of the proposed estimator is then analyzed by establishing upper bounds on
the estimation error in both deterministic and non-asymptotic manners. We also develop
an efficient algorithm within the framework of Alternating Direction Method of Multipliers
(ADMM). Experimental results on both synthetic and real datasets show the effectiveness
of the proposed model.
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1 INTRODUCTION

Thanks to the rapid progress of computer technology, data in tensor format (i.e., multi-dimensional
array) are emerging in computer vision, machine learning, remote sensing, quantum physics, and
many other fields, triggering an increasing need for tensor-based learning theory and algorithms
[1–6]. In this paper, we carry out both theoretic and algorithmic research studies on tensor recovery
from linear observations, which is a typical problem in tensor learning aiming to learn an unknown
tensor when only a limited number of its noisy linear observations are available [7]. Tensor recovery
finds applications in many industrial circumstances where the sensed or collected tensor data are
polluted by unpredictable factors such as sensor failures, communication losses, occlusion by objects,
shortage of instruments, and electromagnetic interferences [7–9], and is thus of both theoretical and
empirical significance.

In general, reconstructing an unknown tensor from only a small number of its linear observations
is hopeless, unless some assumptions on the underlying tensor are made [9]. The most commonly
used assumption is that the underlying tensor possesses some kind of low-rankness which can
significantly limit its degree of freedom, such that the signal can be estimated from a small but
sufficient number of observations [7]. However, as a higher-order extension of matrix low-rankness,
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the tensor low-rankness has many different characterizations due
to the multiple definitions of tensor rank, e.g., the
CANDECOMP/PARAFAC (CP) rank [10], Tucker rank [11],
Tensor Train (TT) rank [12], and Tensor Ring (TR) rank [13]. As
has been discussed in [7] from a signal processing standpoint, the
above exampled rank functions are defined in the original domain
of the tensor signal and may thus be insufficient to model low-
rankness in the spectral domain. The recently proposed tensor
low-tubal-rankness [14] within the algebraic framework of tensor
Singular Value Decomposition (t-SVD) [15] gives a kind of
complement to it by exploiting low-rankness in the spectral
domain defined via Discrete Fourier Transform (DFT), and
has witnessed significant performance improvements in
comparison with the original domain-based low-rankness for
tensor recovery [6, 16, 17].

Despite the popularity of low-tubal-rankness, the fact that it is
defined solely in the spectral domain also naturally poses a
potential limitation on its usability to some tensor data that
are low-rank in both spectral and original domains. To address
this issue, we propose a hybrid tensor norm to encourage low-
rankness in both spectral and original domains at the same time
for tensor recovery in this paper. Specifically, the contributions of
this work are four-fold:

• To simultaneously exploit low-rankness in both spectral and
original domains, we define a new norm named T2NN as
the sum of two tensor nuclear norms induced, respectively,
by the t-SVD for spectral low-rankness and Tucker
decomposition for original domain low-rankness.

• Then, we apply the proposed norm to tensor recovery by
formulating a new tensor least squares estimator penalized
by T2NN.

• Statistically, the statistical performance of the proposed
estimator is analyzed by establishing upper bounds on
the estimation error in both deterministic and non-
asymptotic manners.

• Algorithmically, we propose an algorithm based on ADMM
to compute the estimator and evaluate its effectiveness on
three different types of real data.

The rest of this paper proceeds as follows. First, the notations
and preliminaries of low-tubal-rankness and low-Tucker-
rankness are introduced in Section 2. Then, we define the new
norm and apply it to tensor recovery in Section 3. To understand
the statistical behavior of the estimator, we establish an upper
bound on the estimation error in Section 4. To compute the
proposed estimator, we design an ADMM-based algorithm in
Section 5 with empirical performance reported in Section 6.

2 NOTATIONS AND PRELIMINARIES

Notations. We use lowercase boldface, uppercase boldface, and
calligraphy letters to denote vectors (e.g., v), matrices (e.g., M),
and tensors (e.g., T ), respectively. For any real numbers a, b, let
a ∨ b =max{a, b} and a ∧ b =min{a, b}. If the size of a tensor is not
given explicitly, then it is in Rd1×d2×d3 . We use c, c′, c1, etc., to

denote constants whose values can vary from line to line. For
notational simplicity, let ~d � (d1 + d2)d3 and d\k = d1d2d3/dk for
k = 1, 2, 3.

Given a matrix M ∈ Cd1×d2 , its nuclear norm and spectral
norm are defined as ‖M‖p≔∑iσi and ‖M‖≔max

i
σ i, respectively,

where {σi |i = 1, 2, . . . , d1 ∧ d2} are its singular values. Given a
tensor T ∈ Rd1×d2×d3 , define its l1-norm and F-norm as
‖T ‖1 ≔‖vec(T )‖1, ‖T ‖F ≔‖vec(T )‖2, respectively, where vec
(·) denotes the vectorization operation of a tensor [18]. Given
T ∈ Rd1×d2×d3 , let T(i) ≔ T (: , : , i) denote its ith frontal slice.
For any two (real or complex) tensors A,B of the same size,
define their inner product as the inner product of their
vectorizations 〈A,B〉 ≔ 〈vec(A), vec(B)〉. Other notations
are introduced at their first appearance.

2.1 Spectral Rankness Modeled by t-SVD
The low-tubal-rankness defined within the algebraic framework
of t-SVD is a typical example to characterize low-rankness in the
spectral domain. We give some basic notions about t-SVD in this
section.
Definition 1 (t-product [15]). Given T 1 ∈ Rd1×d2×d3 and
T 2 ∈ Rd2×d4×d3 , their t-product T � T 1pT 2 ∈ Rd1×d4×d3 is a
tensor whose (i, j)-th tube T (i, j, : ) � ∑d2

k�1T 1(i, k, : )•
T 2(k, j, : ), where • is the circular convolution [15].
Definition 2 (tensor transpose [15]). Let T be a tensor of size d1 ×
d2 × d3, then T ⊤ is the d2 × d1 × d3 tensor obtained by transposing
each of the frontal slices and then reversing the order of transposed
frontal slices 2 through d3.
Definition 3 (identity tensor [15]). The identity tensor
I ∈ Rd×d×d3 is a tensor whose first frontal slice is the d × d
identity matrix and all other frontal slices are zero.
Definition 4 (f-diagonal tensor [15]). A tensor is called f-diagonal
if each frontal slice of the tensor is a diagonal matrix.
Definition 5 (Orthogonal tensor [15]). A tensor Q ∈ Rd×d×d3 is
orthogonal if Q⊤ pQ � Q pQ⊤ � I .

Then, t-SVD can be defined as follows.
Definition 6 (t-SVD, tubal rank [15]). Any tensor T ∈ Rd1×d2×d3

has a tensor singular value decomposition as

T � U pS pV⊤, (1)

where U ∈ Rd1×d1×d3 , V ∈ Rd2×d2×d3 are orthogonal tensors and
S ∈ Rd1×d2×d3 is an f-diagonal tensor. The tubal rank of T is
defined as the number of non-zero tubes of T ,

ranktb(T ) ≔ # i |S(i, i, : ) ≠ 0{ }, (2)

where # counts the number of elements in a set.

For convenience of analysis, the block diagonal matrix of 3-
way tensors is also defined.
Definition 7 (block-diagonal matrix [15]). Let �T denote the block-
diagonal matrix of the tensor ~T in the Fourier domain1, i.e.,

1The Fourier version ~T is obtained by performing 1D-DFT on all tubes of T ,
i.e., ~T � fft(T , [], 3) ∈ Cd1×d2×d3 in MATLAB.
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�T ≔
~T

1( )

1
~T

d3( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ C

d1d3×d2d3 . (3)

Definition 8 (tubal nuclear norm, tensor spectral norm [17]).
Given T ∈ Rd1×d2×d3 , let ~T be its Fourier version in Cd1×d2×d3 . The
Tubal Nuclear Norm (TNN) ‖·‖tnn of T is defined as the averaged
nuclear norm of frontal slices of ~T ,

‖T ‖tnn ≔ 1
d3

∑d3
i�1

‖~T(i)‖p,

whereas the tensor spectral norm ‖·‖ is the largest spectral norm of
the frontal slices,

‖T ‖≔max
i∈[d3]

{‖~T(i)‖}.

We can see fromDefinition 8 that TNN captures low-rankness
in the spectral domain and is thus more suitable for tensors with
spectral low-rankness. As visual data (like images and videos)
often process strong spectral low-rankness, it has achieved
superior performance over many original domain-based
nuclear norms in visual data restoration [6, 17].

2.2 Original Domain Low-Rankness
Modeled by Tucker Decomposition
The low-Tucker-rankness is a classical higher-order extension of
matrix low-rankness in the original domain and has been widely
applied in computer vision and machine learning [19–21]. Given
any K-way tensor T ∈ Rd1×d2×d3 , its Tucker rank is defined as the
following vector:

�rTucker(T ) ≔ (rank(T(1)),/ , rank(T(K)))⊤ ∈ RK, (4)
where T(k) ∈ R

dk×∏i≠k
di denotes the mode-k unfolding (matrix)

of T [18] obtained by concatenating all the mode-k fibers of T as
column vectors. We can see that the Tucker rank measures the low-
rankness of all the mode-k unfoldings T(k) in the original domain.

Through relaxing the matrix rank in Eq. 4 to its convex
envelope, i.e., the matrix nuclear norm, we get a convex
relaxation of the Tucker rank, called Sum of Nuclear Norms
(SNN) [20], which is defined as follows:

‖T ‖snn ≔ ∑K
k�1

αk‖T(k)‖p, (5)

where αk’s are positive constants satisfying ∑kak = 1. As a typical
tensor low-rankness penalty in the original domain, SNN has
found many applications in tensor recovery [19, 20, 22].

3 A HYBRID NORM FOR TENSOR
RECOVERY

In this section, we first define a new norm to exploit low-rankness
in both spectral and original domains and then use it to formulate
a penalized tensor least squares estimator.

3.1 The Proposed Norm
Although TNN has shown superior performance in many tensor
learning tasks, it may still be insufficient for tensors which are
low-rank in both spectral and original domains due to its
definition solely in the spectral domain. Moreover, it is also
unsuitable for tensors which have less significant spectral low-
rankness than the original domain low-rankness. Thus, it is
necessary to extend the vanilla TNN such that the original
domain low-rankness can also be exploited for sounder low-
rank modeling.

Under the inspiration of SNN’s impressive low-rank modeling
capability in the original domain, our idea is quite simple: to
combine the advantages of both TNN and SNN through their
weighted sum. In this line of thinking, we come up with the
following hybrid tensor norm.
Definition 9 (T2NN). The hybrid norm called “Tubal + Tucker”
Nuclear Norm (T2NN) of any 3-way tensor T ∈ Rd1×d2×d3 is
defined as the weighted sum of its TNN and SNN as follows:

‖T ‖t2nn ≔ γ‖T ‖tnn + (1 − γ)‖T ‖snn, (6)
where γ ∈ (0, 1) is a constant balancing the low-rank modeling in
the spectral and original domains.

As can be seen from its definition, T2NN approximates TNN
when γ→ 1, and it degenerates to SNN as γ→ 0. Thus, it can
be viewed as an interpolation between TNN and SNN,
which provides with more flexibility in low-rank tensor
modeling. We also define the dual norm of T2NN (named
the dual T2NN norm) which are frequently used in
analyzing the statistical performance of the T2NN-based
tensor estimator.
Lemma 1. The dual norm of the proposed T2NN defined as

‖T ‖pt2nn ≔ sup
T

〈X ,T 〉, s.t. ‖X‖t2nn ≤ 1, (7)
can be equivalently formulated as follows:

‖T ‖pt2nn � inf
A,B,C,D

max
1
γ
‖A‖, 1

α1(1 − γ)‖B(1)‖,{
1

α2(1 − γ)‖C(2)‖, 1
α3(1 − γ)‖D(3)‖},

s.t. A +B + C +D � T .

(8)

Proof of Lemma 1. Using the definition of T2NN, the
supremum in Problem (7) can be equivalently converted to
the opposite number of infimum as follows:

−‖T ‖pt2nn � infT − 〈X ,T 〉,
s.t. γ‖X‖tnn + α1(1 − γ)‖X (1)‖p + α2(1 − γ)

× ‖X (2)‖p + α3(1 − γ)‖X (3)‖p ≤ 1.
(9)

By introducing a multiplier λ ≥ 0, we obtain the Lagrangian
function of Problem (9),

L(X , λ)
≔ − 〈X ,T 〉 + λ γ‖X‖tnn + α1(1 − γ)‖X (1)‖p(

+ α2(1 − γ)‖X (2)‖p + α3(1 − γ)‖X (3)‖p − 1).
Since Slatter’s condition [23] is satisfied in Problem (9), strong

duality holds, which means
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−‖T ‖t2nn � inf
X

sup
λ

L(X , λ) � sup
λ

inf
X

L(X , λ).

Thus, we proceed by computing supλinfX L(X , λ) as follows:
sup

λ

inf
X

−〈X ,T 〉 + λ γ‖X‖tnn + α1(1 − γ)‖X (1)‖p(
+ α2(1 − γ)‖X (2)‖p + α3(1 − γ)‖X (3)‖p − 1)

�(i) sup
λ

inf
X

−〈X ,A +B + C +D〉

+ λ γ‖X‖tnn + α1(1 − γ)‖X (1)‖p + α2(1 − γ)‖X (2)‖p(
+ α3(1 − γ)‖X (3)‖p − 1) − λ, where

A +B + C +D � T ,

� sup
λ

inf
X

−λ + λγ‖X‖tnn − 〈X ,A〉( ) + λα1(1 − γ)(
× ‖X(1)‖p − 〈X ,B〉) + λα2(1 − γ)‖X(2)‖p − 〈X ,C〉( )
+ λα3(1 − γ)‖X(3)‖p − 〈X ,D〉( ), where

A +B + C +D � T ,

�(ii) sup
λ

−λ +
0 if λ≥

1
γ
‖A‖

−∞ otherwise

⎧⎪⎪⎨⎪⎪⎩
+

0 if λ≥
1

α1(1 − γ)‖B(1)‖

−∞ otherwise

⎧⎪⎪⎨⎪⎪⎩
+

0 if λ≥
1

α2(1 − γ)‖C(2)‖

−∞ otherwise

⎧⎪⎪⎨⎪⎪⎩
+

0 if λ≥
1

α3(1 − γ)‖D(3)‖

−∞ otherwise

⎧⎪⎪⎨⎪⎪⎩
where A + B + C +D � T ,

� − inf
A+B+C+D�T

max
1
γ
‖A‖, 1

α1(1 − γ){
× ‖B(1)‖, 1

α2(1 − γ)‖C(2)‖, 1
α3(1 − γ)‖D(3)‖},

where (i) is obtained by the trick of splitting T into four auxiliary
tensorsA,B,C,D for simpler analysis and (ii) holds because for
any positive constant α, any norm f (·) with dual norm f*(·), we
have the following relationship:

inf
X

λαf(X ) − 〈X ,A〉≥ inf
X

λαf(X ) − γf(X ) · 1
α
fp(A),

� inf
X

αf(X) λ − 1
α
fp(A)( ),

� 0, if λ≥
1
γ
fp(A),

−∞, otherwise.

⎧⎪⎪⎨⎪⎪⎩
This completes the proof.
Although an expression of the dual T2NNnorm is given in Lemma

1, it is still an optimization problem whose optimal value cannot be
straightforwardly computed from the variable tensorT . Following the

tricks in [22], we instead give an upper bound on the dual T2NN
norm which is directly in terms of T in the following lemma:
Lemma 2. The dual T2NN norm can be upper bounded as follows:

‖T ‖pt2nn ≤
1
16

1
γ
‖T ‖ + 1

α1(1 − γ)‖T(1)‖ + 1
α2(1 − γ)‖T(2)‖(

+ 1
α3(1 − γ)‖T(3)‖). (10)

Proof of Lemma 2. The proof is a direct application of the basic
equality “harmonic mean ≤ arithmetic mean” with careful
construction of auxiliary tensors A,B,C,D in Eq. 8 as follows:

A0 � γ‖T ‖−1
M

,B0 � α1(1 − γ)‖T(1)‖−1
M

,

C0 � α2(1 − γ)‖T(2)‖−1
M

,D0 � α3(1 − γ)‖T(3)‖−1
M

,

where the denominator M is given by

M � γ‖T ‖−1 + α1(1 − γ)‖T(1)‖−1 + α2(1 − γ)‖T(2)‖−1
+ α3(1 − γ)‖T(3)‖−1.

It is obvious thatA0 + B0 + C0 +D0 � T . By substituting the
particular setting (A0,B0,C0,D0) of (A,B,C,D) into Eq. 8, we
obtain

‖T ‖pt2nn ≤
1

γ‖T ‖−1 + α1(1 − γ)‖T(1)‖−1 + α2(1 − γ)
‖T(2)‖−1 + α3(1 − γ)‖T(3)‖−1

.
(11)

Then, by using “harmonic mean ≤ arithmetic mean” on the
right-hand side of Eq. 11, we obtain

4

γ‖T ‖−1 + α1(1 − γ)‖T(1)‖−1 + α2(1 − γ)
‖T(2)‖−1 + α3(1 − γ)‖T(3)‖−1

≤
1
4

1
γ
‖T ‖ + 1

α1(1 − γ)‖T(1)‖ + 1
α2(1 − γ)‖T(2)‖(

+ 1
α3(1 − γ)‖T(3)‖),

(12)

which directly leads to Eq. 10.

3.2 T2NN-Based Tensor Recovery
3.2.1 The observation Model
We use Lp ∈ Rd1×d2×d3 to denote the underlying tensor which is
unknown. Suppose one observes N ≪ d1d2d3 scalars,

yi � 〈Lp,X i〉 + σξ i, ∀i ∈ [N], (13)
where X i’s are known (deterministic or random) design tensors,
ξi’s are i. i.d. standard Gaussian noises, and σ is a known standard
deviation constant measuring the noise level.

Let y � (y1, . . . , yN)⊤ and ξ � (ξ1, . . . , ξN)⊤ denote the
collection of observations and noises. Define the design
operator X(·) with adjoint operator Xp(·) as follows:

∀T ∈ Rd1×d2×d3 , X(T ) ≔ 〈T ,X 1〉,/ , 〈T ,XN〉( )⊤ ∈ RN,

∀z ∈ RN, Xp(z)≔ ∑N
i�1

ziX i ∈ Rd1×d2×d3 . (14)
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Then, the observation model (13) can be rewritten in the
following compact form:

y � X(Lp) + ξ.

3.2.2 Two Typical Settings
With different settings of the design tensors {X i}, we consider
two classical examples in this paper:

• Tensor completion. In tensor completion, the design tensors
{X i} are i. i.d. random tensor bases drawn from uniform
distribution on the canonical basis in the space of d1 × d2 × d3
tensors ei◦ej◦ek,∀(i, j, k) ∈ [d1] × [d2] × [d3]{ }, where ei
denotes the vector whose ith entry is 1 with all the other entries
0 and ◦ denotes the tensor outer product [18].

• Tensor compressive sensing. When X is a random Gaussian
design, Model (13) is the tensor compressive sensing model
with Gaussian measurements [24]. X is named a random
Gaussian design when {X i} are random tensors with i. i.d.
standard Gaussian entries [22].

3.2.3 The Proposed Estimator
The goal of this paper is to recover the unknown low-rank tensor
Lp from noisy linear observations y satisfying the observation
model (13).

Inspired by the capability of the newly defined T2NN in
simultaneously modeling low-rankness in both spectral and
original domains, we define the T2NN penalized least squares
estimator L̂ to estimate the unknown truth Lp,

L̂ ∈ argmin
L

1
2
‖y −X(L)‖22 + λ‖L‖t2nn, (15)

where the squared l2-norm is adopted as the fidelity term for
Gaussian noises, the proposed T2NN is used to impose both
spectral and original low-rankness in the solution, and λ is a
penalization parameter which balances the residual fitting
accuracy and the parameter complicity (characterized by low-
rankness) of the model.

Given the estimator L̂ in Eq. 15, one may naturally ask how
well it can estimate the truth Lp and how to compute it. In the
following two sections, we first study the estimation
performance of L̂ by upper bounding its estimation error
and then develop an ADMM-based algorithm to efficiently
compute it.

4 STATISTICAL GUARANTEE

In this section, we first come up with a deterministic upper
bound of the estimation error and then establish non-
asymptotic error bounds for the special cases of tensor
compressive sensing with random Gaussian design and noisy
tensor completion.

First, to describe the low-rankness of Lp, we consider both its
low-tubal-rank and low-Tucker-rank structures as follows:

• `Low-tubal-rank structure: Let rptb denote the tubal rank ofLp.
Suppose it has reduced t-SVD Lp � U p S p V⊤, where
U ∈ Rd1×rptb×d3 ,V⊤ ∈ Rd2×rptb×d3 are orthogonal tensors and
S ∈ Rrptb×r

p
tb×d3 is f-diagonal. Then, following [25], we define

the following projections of any tensor T ∈ Rd1×d2×d3 :

P⊥(T ) ≔ (I − U p U⊤) p T p (I − V p V⊤) and

P(T ) � T − P⊥(T ) (16)
where I denotes the identity tensor of appropriate
dimensionality.

• Low-Tucker-rank structure: Let rptk � (rp1 , rp2, rp3)⊤ denote the
Tucker rank of Lp, i.e., rpk � rank(Lp(k)). Then, we have the
reduced SVD factorization T(k) � UkSkVk

⊤, where
Uk ∈ Rdk×rpk and Vk ∈ R(d\k)×rpk are orthogonal and
Sk ∈ Rrpk×r

p
k is diagonal. Let T ∈ Rd1×d2×d3 be an arbitrary

tensor. Similar to [22], we define the following two
projections for any mode k = 1, 2, 3:

P⊥
k (T ) � (I − UkUk

⊤)T(k)(I − VkVk
⊤) and

Pk(T ) � T(k) − P⊥
k (T ), (17)

where I denotes the identity matrix of appropriate dimensionality.

4.1 A Deterministic Bound on the Estimation
Error
Before bounding the Frobenius-norm error ‖L̂ −Lp‖F, the
particularity of the error tensor Δ ≔ L̂ −Lp is first
characterized by a certain choice of regularization parameter λ
involving the dual T2NN norm in the following proposition.
Proposition 1. By setting the regularization parameter
λ≥ 2σ‖Xp(ξ)‖pt2nn, we have

(I) rank inequality:

ranktb(P(Δ))≤ 2rptb, and
rank(Pk(Δ))≤ 2rpk, k � 1, 2, 3,

(18)

(II) sum of norms inequality:

γ‖P⊥(Δ)‖tnn + (1 − γ)∑3
k�1

αk‖P⊥
k (Δ)‖p

≤ 3 γ‖P(Δ)‖tnn + (1 − γ)∑3
k�1

αk‖Pk(Δ)‖p⎛⎝ ⎞⎠,

(19)

(III) an upper bound on the “observed” error:

‖X(Δ)‖22 ≤ 3 γ
���
2rptb

√
+ (1 − γ)∑3

k�1
αk

���
2rpk

√⎛⎝ ⎞⎠‖Δ‖F. (20)
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Proof of Proposition 1. The proof is given as follows:
Proof of Part (I): According to the definition of P(T ) in

Eq. 16, we have

P(T ) � T − P⊥(T ) � U p U⊤ p T + T p V p V⊤

−U p U⊤ p T p V p V⊤,
� U p U⊤ p T + (I − U p U⊤)

p T p V p V⊤.

Due to the facts that ranktb(A p B)≤max
{ranktb(A), ranktb(B)}, ranktb(A + B)≤ ranktb(A) +
ranktb(B) [26], and ranktb(U) � ranktb(V) � rptb, we have

ranktb(P(T ))≤ ranktb(U p U⊤ p T )
+ ranktb((I − U p U⊤) p T p V p V⊤)≤ 2rptb.

Also, according to the definition of P(T ) in Eq. 17, we have

Pk(T ) � T(k) − P⊥
k (T ) � UkU

⊤
kT(k) + T(k)VkV

⊤
k

−UkU
⊤
kT(k)VkV

⊤
k

� UkU
⊤
kT(k) + (I − UkU

⊤
k )

× T(k)VkV
⊤
k .

Due to the facts that rank(AB)≤max{rank(A), rank(B)},
rank(A + B)≤ rank(A) + rank(B) [26], and
rank(Uk) � rank(Vk) � rpk, we have

rank(Pk(T ))≤ rank(UkU
⊤
k p T(k))

+ rank((I − UkU
⊤
k )T(k)VkV

⊤
k )≤ 2rpk.

Proof of Part (II) and Part (III): The optimality of L̂ to
Problem Eq. 15 indicates

1
2
‖y −X(L̂)‖22 + λ‖L̂‖t2nn ≤ 1

2
‖y −X(Lp)‖22 + λ‖Lp‖t2nn.

By the definition of the error tensor Δ ≔ L̂ −Lp, we can get
X(L̂) � X(Lp) +X(Δ), which leads to

1
2
‖y −X(Lp) −X(Δ)‖22 −

1
2
‖y −X(Lp)‖22

≤ λ‖Lp‖t2nn − λ‖L̂‖t2nn.
The definition that σξ � y −X(Lp) yields

1
2
‖X(Δ)‖22 ≤ 〈X(Δ), σξ〉 + λ(‖Lp‖t2nn − ‖L̂‖t2nn)
≤ 〈Xp(ξ),Δ〉 + λ(‖Lp‖t2nn − ‖L̂‖t2nn),

where the last inequality holds due to the definition of the adjoint
operator Xp(·).

According to the definition and upper bound of the dual
T2NN norm in Lemma 1 and Lemma 2, we obtain

1
2
‖X(Δ)‖22 ≤ σ‖Xp(ξ)‖pt2nn‖Δ‖t2nn + λ(‖Lp‖pt2nn − ‖L̂‖t2nn). (21)

According to the decomposibility of TNN (see the
supplementray material of [25]) and the decomposibility of
matrix nuclear norm [27], one has

‖Lp‖tnn − ‖L̂‖tnn � ‖Lp‖tnn − ‖Lp + Δ‖tnn
� ‖Lp‖tnn − Lp + P⊥(Δ)( )���� +P(Δ)‖
≤ ‖Lp‖tnn − ‖Lp + P⊥(Δ)‖tnn( − ‖P(Δ)‖tnn)
� ‖Lp‖tnn − ‖Lp‖tnn + ‖P⊥(Δ)‖tnn( − ‖P(Δ)‖tnn)
� ‖P(Δ)‖tnn − ‖P⊥(Δ)‖tnn

and

‖Lp
(k)‖p − ‖L̂(k)‖p � ‖Lp

(k)‖p − ‖Lp
(k) + Δ̂p

(k)‖p
� ‖Lp

(k)‖p − ‖ Lp
(k) + P⊥

k (Δ)( ) + Pk(Δ)‖p
≤ ‖Lp

(k)‖p − ‖Lp
(k) + P⊥

k (Δ)‖p( − ‖Pk(Δ)‖p)
� ‖Lp

(k)‖p − ‖Lp
(k)‖p + ‖P⊥

k (Δ)‖p( − ‖Pk(Δ)‖p)
� ‖Pk(Δ)‖p − ‖P⊥

k (Δ)‖p.
Then, we obtain

‖Lp‖t2nn − ‖L̂‖t2nn
≤ γ‖P(Δ)‖tnn + (1 − γ)∑3

k�1
αk‖Pk(Δ)‖p⎛⎝ ⎞⎠

− γ‖P⊥(Δ)‖tnn + (1 − γ)∑3
k�1

αk‖P⊥
k (Δ)‖p⎛⎝ ⎞⎠.

(22)

Using the definition of T2NN and triangular inequality yields

‖Δ‖t2nn
≤ γ‖P(Δ)‖tnn + (1 − γ)∑3

k�1
αk‖Pk(Δ)‖p⎛⎝ ⎞⎠

+ γ‖P⊥(Δ)‖tnn + (1 − γ)∑3
k�1

αk‖P⊥
k (Δ)‖p⎛⎝ ⎞⎠.

(23)

Further using the setting λ≥ 2σ‖Xp(mξ)‖pt2nn yields Part (III),
1
2
‖X(Δ)‖22
≤
(i) 3λ

2
γ‖P(Δ)‖tnn + (1 − γ)∑3

k�1
αk‖Pk(Δ)‖p⎛⎝ ⎞⎠

− λ

2
γ‖P⊥(Δ)‖tnn + (1 − γ)∑3

k�1
αk‖P⊥

k (Δ)‖p⎛⎝ ⎞⎠
≤
3λ
2

γ‖P(Δ)‖tnn + (1 − γ)∑3
k�1

αk‖Pk(Δ)‖p⎛⎝ ⎞⎠
≤
(ii) 3λ

2
γ

���
2rptb

√
‖P(Δ)‖F + (1 − γ)∑3

k�1
αk

���
2rpk

√
‖Pk(Δ)‖F⎛⎝ ⎞⎠

≤
(iii) 3λ

2
γ

���
2rptb

√
‖Δ‖F + (1 − γ)∑3

k�1
αk

���
2rpk

√
‖Δ‖F⎛⎝ ⎞⎠

� 3λ
2

γ
���
2rptb

√
+ (1 − γ)∑3

k�1
αk

���
2rpk

√⎛⎝ ⎞⎠‖Δ‖F,
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where by combing (i) and ‖X(Δ)‖22 ≥ 0, Part (II) can be directly
proved; inequality (ii) holds due to the compatible inequality of
TNN and matrix nuclear norm, i.e., ‖T ‖tnn ≤

���������
ranktb(T )√ ‖T ‖F

[25] and ‖T‖p ≤
��������
rank(T)√ ‖T‖F [27], and Iiequality (iii)

holds because one can easily verify the facts that ‖P(Δ)‖2F �
‖Δ‖2F − ‖P⊥(Δ)‖2F ≤ ‖Δ‖2F [25] and ‖Pk(Δ)‖2F � ‖Δ(k)‖2F −
‖ P⊥

k (Δ)‖2F ≤ ‖Δ(k)‖2F � ‖Δ‖2F [27].
Note that inequality (20) gives an upper bound on the

‖X(Δ)‖2, which can be seen as the “observed” error.
However, we are more concerned about upper bounds on
the error itself ‖Δ‖F rather than its observed version. The
following assumption builds a bridge between ‖X(Δ)‖2
and ‖Δ‖F.
Assumption 1 (RSC condition). The observation operator X(·) is
said to satisfy the Restricted Strong Convexity (RSC) condition
with parameter κ if the following inequality holds:

‖X(T )‖22 ≥ κ‖T ‖2F, (24)

for any T ∈ Rd1×d2×d3 belong to the restricted direction set,

C ≔ T | γ‖P⊥(T )‖tnn + (1 − γ)∑3
k�1

αk‖P⊥
k (T )‖p

⎧⎨⎩
≤ 3 γ‖P(T )‖tnn + (1 − γ)∑3

k�1
αk‖Pk(T )‖p⎛⎝ ⎞⎠⎫⎬⎭.

(25)

Then, a straightforward combination of Proposition 1 and
Assumption 1 leads to an deterministic bound on the
estimation error.
Theorem 1. By setting the regularization parameter
λ≥ 2σ‖Xp(ξ)‖pt2nn, we have the following error bound for any
solution L̂ to Problem (15):

‖Lp − L̂‖F ≤ 3
�
2

√
κ

λ γ
���
rptb

√
+ (1 − γ)∑3

k�1
αk

��
rpk

√⎛⎝ ⎞⎠. (26)

Note that we do not require information for distribution of
the noise ξ in Theorem 1, which indicates that Theorem 1
provides a deterministic bound for general noise type. The
bound on the right-hand side of Eq. 26 is in terms of the
quantity,

γ
���
rptb

√
+ (1 − γ)∑3

k�1
αk

��
rpk

√
,

which serves as a measure of structure complexity, reflecting the
natural intuition that more complex structure causes larger error.
The result is in consistent with the results for sum-of-norms-based
estimators in [5, 22, 24, 28]. A more general analysis in [24, 28]
indicates that the performance of sum-of-norms-based estimators
are determined by all the structural complexities for a simultaneously
structured signal, just as shown by the proposed bound (26).

4.2 Tensor Compressive Sensing
In this section, we consider tensor compressive sensing from
random Gaussian design where {X i}’s are random tensors with i.

i.d. standard Gaussian entries [22]. First, the RSC condition holds
in random Gaussian design as shown in the following lemma.
Lemma 3 (RSC of random Gaussian design). If
X(·): Rd1×d2×d3 → RN is a random Gaussian design, then a
version of the RSC condition is satisfied with probability at
least 1–2 exp(−N/32) as follows:

‖X(Δ)‖≥
��
N

√
4

‖Δ‖F − 1
16

����
d1d3

√ + ����
d2d3

√
γ

( +∑3
k�1

��
dk

√ + ���
d\k

√
αk(1 − γ) ⎞⎠‖Δ‖t2nn,

(27)
for any tensor Δ ∈ Rd1×d2×d3 in the restricted direction set C whose
definition is given in Eq. 25.

Proof of Lemma 3. The proof is analogous to that of Proposition
1 in [27]. The difference lies in how we lower bound the right hand
side of (H.7) in [27], i.e.,

E inf
Θ∈R(t)

sup
u∈SN−1

Yu,Θ[ ], (27a)

where SN−1 ≔ v ∈ RN | ‖v‖2 � 1{ }, R(t) � {Θ ∈ Rd1×d2×d3 |‖Θ‖F � 1, ‖Θ‖t2nn ≤ t},
and

Yu,Θ ≔ 〈g, u〉 + 〈G,Θ〉,
where random vector g ∈ RN and random tensor G ∈ Rd1×d2×d3

are independent with i. i.d. N (0, 1) entries.
We bound the quantity in Eq. 27 as follows:

E inf
Θ∈R(t)

sup
u∈SN−1

Yu,Θ[ ] � E sup
u∈SN−1

〈g,u〉[ ] + E inf
Θ∈R(t)

〈G,Θ〉[ ]
� E ‖g‖2[ ] − E sup

Θ∈R(t)
〈G,Θ〉[ ]

� 1
2

��
N

√ − tE ‖G‖pt2nn[ ],
(28)

where ‖G‖pt2nn can be bounded according to Lemma 4. The rest of
the proof follows that of Proposition 1 in [27].

The remaining bound on ‖Xp(ξ)‖pt2nn is shown in the
following Lemma.
Lemma 4 (bound on ‖Xp(ξ)‖pt2nn). Let X: Rd1×d2×d3 → RN be a
random Gaussian design. With high probability, the quantity
‖Xp(ξ)‖pt2nn is concentrated around its mean, which can be
bounded as follows:

E[‖Xp(ξ)‖pt2nn]≤ c
��
N

√ ����
d1d3

√ + ����
d2d3

√
γ

+∑3
k�1

��
dk

√ + ��
dk

√
αk(1 − γ)⎛⎝ ⎞⎠.

(29)
Proof. Since ξm’s are i. i.d. N (0, 1) variables, we have

‖ξ‖2 ≤ 2
��
N

√
(29a)

with high probability according to Proposition 8.1 in [29].
For k = 1, 2, 3, let Xp(ξ) (k) be the mode-k unfolding

of random tensor Xp(ξ). A direct use of Lemma C.1 in [27]
leads to

E ‖Xp(ξ)(k)‖[ ]≤ c0 ��
N

√ ��
dk

√ + ���
d\k

√( ) (30)
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with high probability. A similar argument of Lemma C.1 in [27]
also yields

E ‖Xp(ξ)‖[ ]≤ c1
��
N

√ ( ����
d1d3

√ + ����
d2d3

√ ) (31)
with high probability. Combining Eqs 30, 31, we can complete
the proof.

Then, the non-asymptotic error bound is obtained finally as
follows.
Theorem 2 (non-asymptotic error bound). Under the random
Gaussian design setup, there are universal constants c3, c4, and c5
such that for a sample size N greater than

c3

����
d1d3

√ + ����
d2d3

√
γ

+∑3
k�1

��
dk

√ + ���
d\k

√
αk(1 − γ)⎛⎝ ⎞⎠2

× γ
���
rptb

√
+ (1 − γ)∑3

k�1
αk

��
rpk

√⎛⎝ ⎞⎠2

and any solution to Problem (15) with regularization parameter

λ � c4σ
��
N

√ ����
d1d3

√ + ����
d2d3

√
γ

+∑3
k�1

��
dk

√ + ���
d\k

√
αk(1 − γ)⎛⎝ ⎞⎠,

then we have

‖Δ‖2F ≤ c5σ
2

����
d1d3

√ + ����
d2d3

√
γ

+∑3
k�1

��
dk

√ + ���
d\k

√
αk(1 − γ)⎛⎝ ⎞⎠2

γ
���
rptb

√
+ (1 − γ)∑3

k�1αk

��
rpk

√( )2

N
,

(32)

which holds with high probability.
To understand the proposed bound, we consider the three-

way cubical tensor Lp ∈ Rd×d×d with regularization weights γ =
(1 − γ)α1 = (1 − γ)α2 = (1 − γ)α3 = 1/4. Then, the bound in Eq. 52
is simplified to the following element-wise error:

‖L̂ −Lp‖2F
d3 ≤O σ2 · 1

N
·

���
rptb
d

√
+∑3

k�1

��
rpk
d

√⎛⎝ ⎞⎠2⎛⎝ ⎞⎠, (33)

which means the estimation error is controlled by the tubal rank
and Tucker rank of Lp simultaneously. From the right-hand side
of Eq. 33, it can be seen that the more observations (i.e., the larger
N), the smaller the error; it is also reflected that larger tensors with
more complex structures will lead to larger errors. The
interpretation is consistent with our intuition.

Equation 33 also indicates the sample size N should satisfy

N≥Ω
���
rptb

√
+∑3

k�1

��
rpk

√⎛⎝ ⎞⎠2

d2⎛⎝ ⎞⎠ (34)

for approximate tensor sensing.
Another interesting result is that by setting the noise level σ = 0

in Eq. 33, the upper bound reaches 0, which means the proposed
estimator can exactly recover the unknown truth Lp in the
noiseless setting.

4.3 Noisy Tensor Completion
For noisy tensor completion, we consider a slightly modified
estimator,

L̂ ∈ argmin
‖L‖∞ ≤ a

1
2
‖y −X(L)‖22 + λ‖L‖t2nn, (35)

where ma> 0 is a known constant constraining the magnitude
of entries in Lp. The constraint ‖L‖∞ ≤ a is very mild because
real signals are all of limited magnitude, e.g., the intensity of
pixels in visual light images cannot be greater than 255. The
constraint also provides with theoretical continence in
excluding the “spiky” tensors while controlling the
identifiability of Lp. Similar “non-spiky” constraints are also
considered in related work [6, 16, 30].

We consider noisy tensor completion under uniform sampling
in this section.
Assumption 2 (uniform sampling scheme). The design tensors {X i}
are i.i.d. random tensor bases drawn from uniform distribution Π on
the set,

ei◦ej◦ek: ∀(i, j, k) ∈ [d1] × [d2] × [d3]{ }.
Recall that Proposition 1 in Section 4.1 gives an upper bound

on the “observed part” of the estimation error ‖X(Δ)‖F. As our
goal is to establish a bound on ‖Δ‖F, we then connect ‖X(Δ)‖F
with ‖Δ‖F by quantifying the probability of the following RSC
property of the sampling operator X:

1
N
‖X(Δ)‖2F ≥

1
2d1d2d3

‖Δ‖2F − an intercept term,

when the error tensor Δ belongs to some set mC(β,mr)
defined as

C(β, r) ≔ {Δ ∈ Rd1×d2×d3
∣∣∣∣ ‖Δ‖∞ ≤ 1,

‖Δ‖2F
d1d2d3

≥ β,

‖Δ‖t2nn ≤ γ
�
r

√ + (1 − γ)∑3
k�1

αk
��
rk

√⎛⎝ ⎞⎠‖Δ‖F
⎫⎬⎭,

(36)

where β �
�������
64 log~d

N log(6/5)

√
is an F-norm tolerance parameter andmr =

(r, r1, r2, r3) is a rank parameter whose values will be specified in
the sequel.

Lemma 5 (RSC condition under uniform sampling). For any
Δ ∈ C(β, r), it holdswith probability at least 1 − (d1d3 + d2d3)−1 that

1
N
‖X(Δ)‖2F ≥

‖Δ‖2F
2d1d2d3

− 44d1d2d3

N2 E ‖Xp(ϵ)‖pt2nn[ ]2
× γ

�
r

√ + (1 − γ)∑3
k�1

αk
��
rk

√⎛⎝ ⎞⎠2

,
(37)

where e is the base of the natural logarithm, and the entries ϵi of
vector ϵ ∈ RN are i. i.d. Rademacher random variables.

Before proving Lemma 5, we first define a subset of C(β, r) by
upper bounding the F-norm of any element Δ in it,
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B(r, T) ≔ Δ: Δ ∈ C(β, r), ‖Δ‖2F
d1d2d3

≤T{ },
and a quantity

ZT ≔ sup
Δ∈B(r,T)

‖X(Δ)‖22
N

− ‖Δ‖2F
d1d2d3

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣,
which is the maximal absolute deviation of N−1‖X(Δ)‖22 from its
expectation (d1d2d3)−1‖Δ‖2F in B(r, T). Lemma 6 shows the
concentration behavior of ZT.
Lemma 6 (concentration of ZT). There exists a constant c0 such that

P ZT ≥
5
12

T − 44d1d2d3

N2 E ‖Xp(ϵ)‖[ ]2 γ
�
r

√ + (1 − γ)([
× ∑

k

αk
��
rk

√ ⎞⎠2⎤⎥⎥⎥⎦≤ exp(−c0NT2).

Proof of Lemma 6. The proof is similar to that of Lemma 10 in
[31]. The difference lies in the step of symmetrization arguments.
Note that for any Δ ∈ B(r, T), it holds that

‖Δ‖tnn ≤
�������
d1d2d3T

√
γ

�
r

√ + (1 − γ)∑
k
αk

��
rk

√( ),
which indicates

E[ZT] ≤ 8E sup
Δ∈B(r,T)

〈Xp(ϵ),Δ〉[ ]
≤ 8E sup

Δ∈B(r,T)

1
d3
‖Xp(ϵ)‖‖Δ‖tnn[ ]

≤ 8
�������
d1d2d3T

√
E[‖Xp(ϵ)‖] γ

�
r

√ + (1 − γ)∑
k
αk

��
rk

√( ).
Then, Lemma 5 can be proved by using the peeling

argument [30].
Proof of Lemma 5. For any positive integer l, we define disjoint

subsets of C(β, r) as

D(r, l) ≔ {Δ: Δ ∈ C(β, r), βρl−1 ≤ ‖Δ‖2F
d1d2d3

≤ βρl}

with constants ρ � 6
5 and β �

�����
64 log~d
N log ρ

√
. Let D = d1d2d3 for

simplicity, and define the event

E ≔ ∃Δ ∈ C(β, r), s.t. ‖X(Δ)‖22
N

− ‖Δ‖2F
D

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣≥ ‖Δ‖2F
2D

{
+ 44D

N2 E
2[‖Xp(ϵ)‖] γ

�
r

√ + (1 − γ)∑
k

αk
��
rk

√⎛⎝ ⎞⎠2⎫⎪⎬⎪⎭
and its sub-events for any l ∈ N+,

El ≔ ∃Δ ∈ D(r, l), s.t. ‖X(Δ)‖22
N

− ‖Δ‖2F
D

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣≥ 5
12

βρl{
+ 44D

N2 E
2[‖Xp(ϵ)‖] γ

�
r

√ + (1 − γ)∑
k

αk
��
rk

√⎛⎝ ⎞⎠2⎫⎪⎬⎪⎭.

Note that Lemma 6 implies that

P[El] � PΔ∈C(r,l) ZT ≥
5
12

βρl + 44D

N2 E
2[‖Xp(ϵ)‖][

× γ
�
r

√ + (1 − γ)∑
k
αk

��
rk

√( )2]
≤ exp(−c0Nβ2ρ2l).

Thus, we have

P[E]≤ ∑∞
l�1

P[El] ≤ ∑∞
l�1

exp(−c0Nβ2ρ2l)

≤ ∑∞
l�1

exp(−2c0Nβ2l log ρ)

≤
exp(−c0pβ2 log ρ)

1 − exp(−c0pβ2 log ρ).

Recall that β �
������
64 log~d

log(6/5)N

√
, then P[E]≤ 2/~d, which leads to the

result of Lemma 5.
Based on the RSC condition in Lemma 5, we are able to give an

upper bound on the estimation error ‖Δ‖F in the following proposition.
Proposition 2. With parameter λ≥ 2σ‖Xp(ξ)‖pt2nn, the estimation
error satisfies

‖Δ‖2F
d1d2d3

≤max c1
d1d3d3

N2 λ2 + a2E[‖Xp(ϵ)‖]2( ){
× γ

���
rptb

√
+ (1 − γ)( ∑

k

αk
��
rpk

√ ⎞⎠2

, c2a2

�����
log ~d

N

√ ⎫⎪⎬⎪⎭ (38)

with probability at least 1 − 2(d1d3 + d2d3)−1.
Proof of Proposition 2. A direct consequence of property (II) in

Proposition1and the triangular inequality is that theerror tensorΔ satisfies

‖Δ‖t2nn ≤ γ
����
32rptb

√
+ (1 − γ)∑3

k�1
αk

����
32rpk

√⎛⎝ ⎞⎠‖Δ‖F. (39)

Since ‖L̂‖∞ < a and ‖Lp‖∞ < a, we also have ‖Δ‖∞ ≤ ‖L̂ −
Lp‖∞ ≤ ‖L̂‖∞ + ‖Lp‖∞ < 2a.

Let rp � (rptb, rp1 , rp2, rp3)⊤ denote the rank complexity of the
underlying tensor Lp. By discussing whether tensor Δ

2a is in set
C(β, 32rp), we consider the following cases.

Case 1: If Δ
2a ∉ C(β, 32rp), then from the definition of set

C(β, r), we have

‖Δ‖2F
d1d2d3

≤ 4a2

���������
64 log ~d

log(6/5)N

√
. (40)

Case 2: If Δ
2ma ∈ C(β, 32rp), then by Proposition 1 and Lemma 5, we

have

Δ
2a

������� �������2F
2D

− 44 · 32D
N2 E2 ‖Xp(ϵ)‖[ ] × γ

���
rptb

√
+ (1 − γ)∑

k
αk

��
rpk

√( )2

≤
3

�
2

√
λ

N
γ

���
rptb

√
+ (1 − γ)∑

k
αk

��
rpk

√( ) Δ
2a

������� �������F (41)

with probability at least 1 − 2(d1d3 + d2d3)−1.
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By performing some algebra (like the proof of Theorem 3 in
[30]), we have

‖Δ‖2F
d1d2d3

≤ C
d1d2d3

N2 λ2 + a2E2[‖Xp(ϵ)‖]( )
× γ

���
rptb

√
+ (1 − γ)∑

k

αk

��
rpk

√⎛⎝ ⎞⎠2

.
(42)

Combining Case 1 and Case 2, we obtain the result of
Proposition 2.

According to Proposition 2 and Lemma 5, it remains to bound
‖Xp(ξ)‖pt2nn and E[‖Xp(ϵ)‖pt2nn]. The following lemmas give their
bounds respectively. As the noise variables {ξi} are i. i.d. standard
Gaussian, it belongs to the sub-exponential distribution [32], and
thus, there exists a constant ϱ as the smallest number satisfying [30]

max
i≤N

E e
|ξi |
ϱ[ ]≤ e. (43)

Suppose the sample complexity N in noisy tensor completion
satisfies

N ≥max{d1d3 ∨ d2d3,max
k

(dk ∨ d\k)}
N ≥ 2(d1 ∧ d2)ϱ2 log2(ϱ

������
d1 ∧ d2

√ )log(d1d3 + d2d3)
N ≥ max

k≤3
2(dk ∧ d\k)ϱ2 log2(ϱ

�������
dk ∧ d\k

√ )log(dk + d\k)
N ≥ 2(d1 ∧ d2)log2(

������
d1 ∧ d2

√ )log(d1d3 + d2d3)
N ≥ max

k≤3
2(dk ∧ d\k)log2(

�������
dk ∧ d\k

√ )log(dk + d\k).

(44)

Then, we have the following Lemma 7 and Lemma 8 to bound
‖Xp(ξ)‖pt2nn and E[‖Xp(ϵ)‖pt2nn].
Lemma 7. Under the sample complexity of noisy tensor completion
in Eq. 44, it holds with probability at least 1 − (d1d3 + d2d3)−1 −∑k(dk + d\k)−1 that

‖Xp(ξ)‖pt2nn ≤Cϱ
��
N

√ 1
γ

��������������
log(d1d3 + d2d3)

d1 ∧ d2

√
+ 1
(1 − γ)⎛⎝

× ∑3
k�1

1
αk

�����������
log(dk + d\k)
dk ∧ d\k

√ ⎞⎠,

(45)

where Cϱ is a constant dependent on the ϱ that is defined in
Eq. 43.

Proof of Lemma 7. The proof can be straightforwardly
obtained by adopting the upper bound of the dual T2NN
norm in Lemma 2 and Lemma 5 in the supplementary
material of [25], and Lemma 5 in [30] as follows:

• First, Lemma 5 in the supplementary material of [25] shows
that letting N ≥ d1d3 ∨ d2d3 and
N≥ 2(d1 ∧ d2)ϱ2 log2(ϱ

�������
d1 ∧ d2

√ )log(d1d3 + d2d3), then
it holds with probability at least 1 − (d1d3 + d2d3)−1 that

‖Xp(ξ)‖≤Cϱ

�������������������������
N(d1 ∧ d2)−1 log(d1d3 + d2d3)

√
. (46)

• For k = 1, 2, 3, let Xp(ξ) (k) be the mode-k unfolding
of random tensor Xp(ξ). Then, Lemma 5 in [30]

indicates that letting N ≥ dk ∨ (d\k) and
N≥ 2(dk ∧ (d\k))ϱ2 log2(ϱ

�������
dk ∧ d\k

√ )log(dk + d\k), then
it holds with probability at least 1 − (dk + d\k)−1 that

‖Xp(ξ)(k)‖≤Cϱ′
����������������������
N(dk ∧ d\k)−1 log(dk + d\k)

√
. (47)

Then, combining Eq. 46 and 47 and using union bound, Eq.
45 can be obtained.
Lemma 8. Under the sample complexity of noisy tensor completion
in Eq. 44, it holds that

E[‖Xp(ϵ)‖pt2nn] ≤ C
��
N

√ 1
γ

��������������
log(d1d3 + d2d3)

d1 ∧ d2

√
+ 1
(1 − γ)⎛⎝

× ∑3
k�1

1
αk

�����������
log(dk + d\k)
dk ∧ d\k

√ ⎞⎠.

(48)

Proof of Lemma 8. Similar to the proof of Lemma 7, the
proof can be straightforwardly obtained by adopting the
upper bound of the dual T2NN norm in Lemma 2 and
Lemma 6 in the supplementary material of [25], and
Lemma 6 in [30].

• First, Lemma 6 in the supplementary material of [25]
shows that letting N ≥ d1d3 ∨ d2d3 and N ≥ 2 (d1 ∧ d2)
log2 (d1 ∧ d2) log (d1d3 + d2d3), then, the following
inequality holds:

E[‖Xp(ϵ)‖]≤C2

�������������������������
N(d1 ∧ d2)−1 log(d1d3 + d2d3)

√
. (49)

• For k = 1, 2, 3, let Xp(ϵ) (k) be the mode-k unfolding of
random tensor Xp(ϵ). Then, Lemma 6 in [30]
indicates that letting N ≥ dk ∨ d\k and N ≥ 2 (dk ∧ d\k)
log2 (dk ∧ d\,k) log (dk + d\k), then, the following inequality
holds:

E[‖Xp(ϵ)(k)‖]≤C2′
����������������������
N(dk ∧ d\k)−1 log(dk + d\k)

√
. (50)

Then, Eq. 48 can be obtained by combining Eqs. 49 and 50.
Further combining Lemma 7, Lemma 8, and Proposition 2, we

arrive at an upper bound on the estimation error in the follow
theorem.
Theorem 3. Suppose Assumption 2 is satisfied and ‖Lp‖∞ ≤ a. Let
the sample size N satisfies Eq. 44. By setting

λ � Cϱσ
��
N

√ 1
γ

��������������
log(d1d3 + d2d3)

d1 ∧ d2

√⎛⎝
+ 1
(1 − γ) ∑3

k�1

1
αk

�����������
log(dk + d\k)
dk ∧ d\k

√ ⎞⎠,

(51)

the estimation error of any estimator L̂ defined in Problem (35)
can be upper bounded as follows:
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‖L̂ −Lp‖2F
d1d2d3

≤ c2 max a2

�����
log ~d

N

√
,
d1d2d3(σ2 ∨ a2)

N

⎧⎪⎨⎪⎩
× γ

��
rp

√ + (1 − γ)∑
k
αk

��
rpk

√( )2

· 1
γ

��������������
log(d1d3 + d2d3)

d1 ∧ d2

√
+ 1
(1 − γ)⎛⎝

× ∑3
k�1

1
αk

�����������
log(dk + d\k)
dk ∧ d\k

√ ⎞⎠2⎫⎪⎬⎪⎭.

(52)

with probability at least 1 − 3(d1d3 + d2d3)−1 −∑k(dk + d\k)−1.
To understand the proposed bound in Theorem 3, we consider

the three-way cubical tensor Lp ∈ Rd×d×d with regularization
weights γ = (1 − γ)α1 = (1 − γ)α2 = (1 − γ)α3 = 1/4. Then, the
bound in Eq. 52 is simplified to the following element-wise error:

‖L̂ −Lp‖2F
d3 ≤O

d3

N
· (σ ∨ a)2 ·

��
rp

d

√
+∑3

k�1

��
rpk
d

√⎛⎝ ⎞⎠2

logd⎛⎝ ⎞⎠,

(53)
which means the estimation error is controlled by the tubal rank
and Tucker rank ofLp simultaneously. Equation 53 also indicates
that the sample size N should satisfy

N≥Ω
��
rp

√ +∑3
k�1

��
rpk

√⎛⎝ ⎞⎠2

d2 logd⎛⎝ ⎞⎠ (54)

for approximate tensor completion.

5 OPTIMIZATION ALGORITHM

The ADMM framework [33] is applied to solve the proposed
model. Adding auxiliary variablesK and T 1,T 2,T 3 to Problem
(15) yields an equivalent formulation,

min
L,K,{T k}k

1
2
‖y −X(L)‖22 + λγ‖K‖tnn + λ(1 − γ)

× ∑3
k�1

αk‖Tk
(k)‖p

s.t. K � L; T k � L, k � 1, 2, 3.

(55)

To solve Problem (55), an ADMM-based algorithm is
proposed. First, the augmented Lagrangian is

Lρ(L,K, {T k}k,A, {Bk}k) � 1
2
‖y −X(L)‖22 + λγ‖K‖tnn

+ 〈A,K −L〉 + ρ

2
‖K −L‖2F

+ λ(1 − γ)∑3
k�1

αk‖Tk
(k)‖p + 〈Bk,T k −L〉( + ρ

2
‖T k −L‖2F),

(56)

where tensors A and {Bk}k are the dual variables.

The primal variables L,K, and T k can be divided into two
blocks: The first block has one tensor variable L, whereas the
second block consists of four variables K and T k’s. We use the
minimization scheme of ADMM to update the two blocks
alternatively after the tth iteration (t = 0, 1, /):

Update the first block L: We update L by solving following
L-subproblem with all the other variables fixed:

Lt+1

� argmin
L

Lρ(L,Kt, {(T k)t}k,At, {(Bk)t}k)

� argmin
L

1
2
‖y −X(L)‖22 +

ρ

2
‖Kt + ρ−1At −L‖2F

+∑3
k�1

ρ

2
‖(T k)t + ρ−1(Bk)t −L‖2F.

By taking derivative with respect to L and setting the
derivative to zero, we obtain the following equation:

Xp(X(L) − y) + ρ L −Kt − ρ−1At( )
+∑3

k�1
ρ L − (T k)t − ρ−1(Bk)t( ) � 0.

Solving the above equation yields

Lt+1 � (XpX + 4ρI)−1⎛⎝Xp(y) + ρKt +At

+∑3
k�1

ρ(T k)t + (Bk)t( )⎞⎠,

(57)

where I(·) is the identity operator.
Update the second block (K, {T k}): We updateK and {T k} in

parallel by keeping all the other variables fixed. First,K is updated
by solving the K-subproblem,

Kt+1 � argmin
K

Lρ(Lt+1,K, {(T k)t}k,At, {(Bk)t}k)
� argmin

K
λγ‖K‖tnn + 〈At,K −Lt+1〉 + ρ

2
‖K −Lt+1‖2F

� Prox‖·‖tnnρ−1 λγ(Lt+1 − ρ−1At),
(58)

whereProx‖·‖tnnτ (·) is the proximal operator ofTNNgiven inLemma9.
Then, T k is updated by solving the T k-subproblem (k = 1, 2, 3),

(T k)t+1 � argmin
T k

Lρ(Lt+1,Kt, {(T k)}k,At, {(Bk)t}k)

� argmin
T k

λαk(1 − γ)‖Tk
(k)‖p + 〈(Bk)t,T k −Lt+1〉 + ρ

2
‖T k −Lt+1‖2F

� Fk Prox
‖·‖p
ρ−1λαk(1−γ)(Lt+1

(k) − ρ−1(Bk
(k))t)( ), (59)

where Fk(·): Rdk×d\k → Rd1×d2×d3 is the folding function to
reshape a mode-k matricazation to its original tensor format
and Prox‖·‖pτ (·) is the proximal operator of matrix nuclear norm
given in Lemma 10.

Lemma 9 (proximal operator of TNN [34]). Let tensor
T 0 ∈ Rd1×d2×d3 with t-SVD T 0 � U p S p V⊤, where
U ∈ Rd1×r×d3 and V ∈ Rd2×r×d3 are orthogonal tensors and
S ∈ Rr×r×d3 is the f-diagonal tensor of singular tubes. Then, the
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proximal operator of function ‖·‖tnn at point T 0 with parameter τ
can be computed as follows:

Prox‖·‖tnnτ (T 0)≔ argmin
T

1
2
‖T 0 − T ‖2F + τ‖T ‖tnn

� U p ifft3(max(fft3(S) − τ, 0)) pV⊤,

where fft3(·) and ifft3(·) denote the operations of fast DFT and
fast inverse DFT on all the tubes of a given tensor, respectively.

Lemma 10 (proximal operator of the matrix nuclear norm
[35]). Let tensor T0 ∈ Rd1×d2 with SVD T0 = USV⊤, where
U ∈ Rd1×r and V ∈ Rd2×r are orthogonal matrices and
S ∈ Rr×r is a diagonal matrix of singular values. Then, the
proximal operator of function ‖·‖p at point T0 with parameter τ
can be computed as follows:

Prox‖·‖pτ (T0) ≔ argmin
T

1
2
‖T0 − T‖2F + τ‖T‖p

� U max(S − τ, 0)V⊤.

Update the dual variables (A, {Bk}). We use dual ascending
[33] to update (A, {Bk}) as follows:

At+1 � At + ρ(Kt+1 −Lt+1),
(Bk)t+1 � (Bk)t + ρ (T k)t+1 −Lt+1( ), k � 1, 2, 3.

(60)

Termination Condition. Given a tolerance ϵ > 0, check the
termination condition of primal variables

‖X t −X t‖∞ ≤ ϵ, ∀X ∈ L,K, {T k}{ }, (61)
and convergence of constraints

‖Kt −Lt‖∞ ≤ ϵ, and ‖(T k)t −Lt‖∞ ≤ ϵ, k � 1, 2, 3. (62)
The ADMM-based algorithm is described in Algorithm 1.

Algorithm 1. ADMM for Problem(55)

Computational complexity analysis: We analyze the
computational complexity as follows.

• By precomputing (I +XpXXpX)−1 and XpX, which costs
O(d31d32d33 +Nd21d

2
2d

2
3), the cost of updatingL isO(d21d22d23).

• Updating K and T k involves computing the proximal
operator of TNN and NN, which costsO(d1d2d3(d1 ∧ d2 +
logd3 +∑3

k�1dk ∧ d\k)).
• Updating A and {Bk} (k = 1, 2, 3) costs O (d1d2d3).

Overall, supposing the iteration number is T, the total
computational complexity will be

O(d3
1d

3
2d

3
3 + Td2

1d
2
2d

2
3 + Td1d2d3(d1 ∧ d2 + logd3 +∑3

k�1
dk ∧ d\k)),

(63)
which is very expensive for large tensors. In some special cases
(like tensor completion) where 〈X i,L〉 operates on an element
of L, (I +XpXXpX)−1 and XpX can be computed in O
(d1d2d3). Hence, the total complexity of Algorithm 1 will
drop to

O Td1d2d3(min {d1, d2} + log d3 +∑3
k�1

dk ∧ d\k)⎛⎝ ⎞⎠. (64)

Convergence analysis: We then discuss the convergence of
Algorithm 1 as follows.
Theorem 4 (convergence of Algorithm 1). For any positive
constant ρ, if the unaugmented Lagrangian function
L0(L,K, {T k},A, {Bk}) has a saddle point, then the
iterations Lρ(Lt,Kt, {(T k)t},At, {(Bk)t}) in Algorithm 1
satisfy the residual convergence, objective convergence, and
dual variable convergence (defined in [33]) of Problem (55)
as t → ∞.

Proof of Theorem 4. The key idea is to rewrite Problem(55)
into a standard two-block ADMM problem. For notational
simplicity, let

f(u) � 1
2
‖y −X(L)‖22, g(v) � λγ‖K‖tnn + λ(1 − γ)∑3

k�1
αk‖Tk

(k)‖p,

with u, v, w, and A defined as follows:

u ≔ vec(L) ∈ Rd1d2d3 , v ≔

vec(K)
vec(T 1)
vec(T 2)
vec(T 3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4d1d2d3 ,

w ≔

vec(A)
vec(B1)
vec(B2)
vec(B3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4d1d2d3 , A ≔

ID
ID
ID
ID

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ∈ R4d1d2d3×d1d2d3 ,

where vec (·) denotes the operation of tensor vectorization
(see [18]).

It can be verified that f (·) and g (·) are closed, proper
convex functions. Then, Problem(55) can be re-written as
follows:

min
u,v

f(u) + g(v)
s.t. Au − v � 0.

According to the convergence analysis in [33], we have

objective convergence : lim
t→∞

f(ut) + g(vt) � fp + gp,

dual variable convergence : lim
t→∞

wt � wp,

constraint convergence : lim
t→∞

Aut − vt � 0,

where f p, gp are the optimal values of f(u), g(v), respectively.
Variable wp is a dual optimal point defined as
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wp �
vec(Ap)
vec(B1p)
vec(B2p)
vec(B3p)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where (Ap, {Bkp}k) are the dual variables in a saddle point
(Lp,Kp, {(T k)p},Ap, {(Bk)p}) of the unaugmented
LagrangianL0(L,K, {T k},A, {Bk}).

Since there are only equality constraints in the convex
problem(55), strong duality holds naturally as a corollary of
Slater’s condition [23], which further indicates that the
unaugmented Lagrangian L0(L,K, {T k},A, {Bk}) has a
saddle point. Moreover, according to the analysis in [36], the
convergence rate of general ADMM-based algorithms is O (1/T),
where T denotes the iteration number. In this way, the convergence
behavior of Algorithm 1 is analyzed.

6 EXPERIMENTAL RESULTS

In this section, we first conduct experiments on synthetic
datasets to validate the theory for tensor compressed
sensing and then evaluate the effectiveness of the proposed
T2NN on three types of real data for noisy tensor completion.
MATLAB implementations of the algorithms are deployed on
a PC running UOS system with an AMD 3 GHz CPU and a
RAM of 40 GB.

6.1 Tensor Compressed Sensing
Our theoretical results on tensor compressed sensing are
validated on synthetic data in this subsection. Motivated by
[7], we consider a constrained T2NN minimization model that
is equivalent toModel (15) for the ease of parameter selection. For
performance evaluation, the proposed T2NN is also compared
with TNN-based tensor compressed sensing [37]. First, the
underlying tensor Lp ∈ Rd1×d2×d3 and its compressed
observations {yi} are synthesized by the following tow steps,
respectively:

• Step 1: Generate Lp that is low-rank in both spectral and
original domains. Given positive integers d1, d2, d3, and r ≤
min{d1, d2, d3}, we first generate T ∈ Rd1×d2×r by
T � G1pG2, where G1 ∈ Rd1×1×r and G2 ∈ R1×d2×r are
tensors with i. i.d. standard Gaussian entries. Then, letLp �
T ×3G where ×3 is the tensor mode-3 product [18], and
G ∈ Rr×d3 is a matrix with i. i.d standard Gaussian entries.
Our extensive numerical experimental results show that
with high probability, the tubal rank and Tucker rank of
Lp are all equal to r, that is, ranktb(Lp) � r and
rank(Lp(k)) � r, ∀k � 1, 2, 3.

• Step 2: Generate N compressed observations {yi}. Given a
positive integer N ≪ D, we first generate N design tensors
{X i} with i. i.d. standard Gaussian entries. Then, N noise
variables {ξi} are generated as i. i.d. standard Gaussian
variables. The parameter of standard deviation σ is set by
σ = cσ0, where σ0 � ‖Lp‖F/

������
d1d2d3

√
, and we use c to denote

the noise level. Finally, {yi} are formed according to the

observation model (13). The goal of tensor compressed
sensing is to reconstruct the known Lp from its noisy
compressed observations {yi}.

For simplicity, we consider cubic tensors, i.e., d1 = d2 = d3 = d,
and choose the parameter of T2NN by γ = 1/4, α1 = α2 = α3 = 1/3.
Recall that the underlying tensor Lp ∈ Rd×d×d generated by the
above Step 1 has the tubal rank and Tucker rank all equal to rwith
high probability. We consider tensors with dimensionality d ∈
{16, 20, 24} and rank proxy r ∈ {2, 3}. Then, if the proposed main
theorem for tensor compressed sensing (i.e., Theorem 2) is
correct, the following two phenomena should be observed:

(1) Phenomenon 1: In the noiseless setting, i.e., σ = 0, if the
observation number N is larger than C0rd

2 for a sufficiently
large constant C0, then the estimation error ‖L̂ −Lp‖2F can be
zero, which means exact recovery. Let N0 = rd2 as a unit
measure of the sample complexity. Then, by increasing the
observation number N gradually from 0, we will observe a
phase transition point of the estimation error in the noiseless
setting: IfN/N0 > C0, the estimation error is relatively “large”;
once N/N0 ≤ C0, the error will drop dramatically to 0.

(2) Phenomenon 2: In the noisy case, the estimation error
‖L̂ −Lp‖2F scales linearly with the variance σ2 of the
random noises once the observation number N ≥ C0N0.

To check whether Phenomenon 1 occurs, we conduct tensor
compressed sensing by setting the noise variance σ2 = 0. We
gradually increase the normalized observation number N/N0

from 0.25 to 5. For each different setting of d, r, and N/N0, we
repeat the experiments 10 times and report the averaged
estimation error ‖L̂ −Lp‖2F. For both TNN [37] and the
proposed T2NN, we plot the curves of estimation error in
logarithm versus the normalized observation number N/N0 for
Lp ∈ Rd×d×d with rank proxy r = 2 in Figure 1. It can be seen that
Phenomenon 1 occurs for the proposed T2NN: When N/N0 >
1.75, the estimation error is relatively “large”; once N/N0 ≤ 1.75,
the error will drop dramatically to 0. The same phenomenon also
occurs for TNN with a phase transition point near 3.5. Thus, the
sample complexity for exact tensor compressed sensing of T2NN

FIGURE 1 | Estimation error in logarithm vs. the normalized observation
number N/N0 for tensor compressed sensing of underlying tensors of size
16×16×16 and rank proxy r =2. The proposed T2NN is compared with
TNN [37].
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is lower than that of TNN, indicating the superiority of the
proposed T2NN. Since similar phenomena have also been
observed for tensors of other sizes and rank proxies, we
simply omit them.

For the validation of Phenomenon 2, we consider the noisy
settings with normalized sample complexity N/N0 = 3.5,
which is nearly the phase transition point of TNN and
much greater than that of T2NN. We gradually increase
the noise level c = σ/σ0 from 0.025 to 0.25. For each
different setting of d, r, and c, we repeat the experiments
10 times and report the averaged estimation error ‖L̂ −Lp‖2F.
For both TNN [37] and the proposed T2NN, we plot the
curves of estimation error in logarithm versus the (squared)
noise level σ2/σ20 for Lp ∈ Rd×d×d with rank proxy r = 2 in
Figure 2. It can be seen that Phenomenon 2 also occurs for the
proposed T2NN: The estimation error scales approximately
linearly with the (squared) noise level. The same
phenomenon can also be observed for TNN with a higher
estimation error than T2NN, indicating T2NN is more
accurate than TNN. We omit the results for tensors of
other sizes and rank proxies because the error curves are
so similar to Figure 2.

6.2 Noisy Tensor Completion
This subsection evaluates effectiveness of the proposed
T2NN through performance comparison with matrix
nuclear norms (NN) [30], SNN [22], and TNN [25] by
carrying out noisy tensor completion on three different
types of visual data including video data, hyperspectral
images, and seismic data.

6.2.1 Experimental Settings
Given the tensor data Lp ∈ Rd1×d2×d3 , the goal is to recover it
from its partial noisy observations. We consider uniform
sampling with ratio p ∈ {0.05, 0.1, 0.15} for the tensors,
that is, {95, 90, 85%} entries of a tensor are missing. The
noise follows i. i.d. GaussianN (0, σ2)where σ = 0.05σ0, where
σ0 � ‖Lp‖F/

������
d1d2d3

√
is the rescaled magnitude of tensor

Lp ∈ Rd1×d2×d3 .

6.2.2 Performance evaluation
The effectiveness of algorithms is measured by the Peak Signal
Noise Ratio (PSNR) and structural similarity (SSIM) [38].
Specifically, the PSNR of an estimator L̂ is defined as

PSNR ≔ 10 log10
d1d2d3‖Lp‖2∞
‖L̂ −Lp‖2F

( ),
for the underlying tensor Lp ∈ Rd1×d2×d3 . The SSIM is
computed via

SSIM ≔
(2μLpμL̂ + (0.01�ω)2)(2σLp ,L̂ + (0.03�ω)2)

(μ2Lp + μ2L̂ + (0.01�ω)2)(σ2Lp + σ2L̂ + (0.03�ω)2),

where μLp , μL̂, σLp , σL̂, σLp ,L̂, and �ω denote the local means,
standard deviation, cross-covariance, and dynamic range of the
magnitude of tensors Lp and L̂. Larger PSNR and SSIM values
indicate the higher quality of the estimator L̂. In each setting, we test

FIGURE 2 | Estimation error vs. the (squared) noise level σ2/σ20 for tensor
compressed sensing of underlying tensors of size 16×16×16 and rank proxy
r =2. The proposed T2NN is compared with TNN [37].

TABLE 1 | PSNR and SSIM values obtained by four norms (NN [30], SNN [22],
TNN [25], and our T2NN) for noisy tensor completion on the YUV videos.

(a) Akiyo

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 15.37 19.49 27.04 27.51
SSIM 0.1864 0.6047 0.8019 0.8302

10% PSNR 18.01 22.54 29.18 30.08
SSIM 0.2858 0.7186 0.8556 0.8828

15% PSNR 19.64 24.37 30.60 31.43
SSIM 0.3694 0.7812 0.8791 0.8968

(b) Carphone

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 13.58 17.58 23.81 24.16
SSIM 0.1378 0.5282 0.6725 0.7226

10% PSNR 16.04 20.49 25.38 25.87
SSIM 0.2352 0.6425 0.7309 0.7813

15% PSNR 17.86 22.42 26.40 26.81
SSIM 0.3242 0.7139 0.7663 0.8057

(c) Grandma

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 16.52 19.13 28.53 28.84
SSIM 0.1928 0.5503 0.8135 0.8516

10% PSNR 18.34 22.52 31.44 32.64
SSIM 0.2992 0.6755 0.8822 0.9141

15% PSNR 19.66 24.88 33.02 34.28
SSIM 0.3757 0.7525 0.9088 0.9307

(d) Mother–daughter

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 16.17 20.22 27.66 27.96
SSIM 0.1895 0.5824 0.7491 0.7816

10% PSNR 18.55 23.48 29.38 30.32
SSIM 0.2780 0.6840 0.8035 0.8412

15% PSNR 20.32 25.31 30.49 31.18
SSIM 0.3548 0.7405 0.8293 0.8526

The highest PSNS/SSIM are highlighted in bold.
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each tensor for 10 trials and report the averaged PSNR (in db) and
SSIM values.

6.2.3 Parameter Setting
For NN [30], we set the parameter
λ � λισ

�������������������
p(d1 ∨ d2)log(d1 + d2)

√
. For SNN [22], we set the

regularization parameter λ = λι and chose the weight α by α1: α2:
α3 = 1 : 1: 1. For TNN [25], we set
λ � λισ

�������������������������
pd3(d1 ∨ d2)log(d1d3 + d2d3)

√
. For the proposed

T2NN, we set the regularization parameter λ �
λισ

�������������������������
pd3(d1 ∨ d2)log(d1d3 + d2d3)

√
and choose the weights

γ = 0.5 and α with α1: α2: α3 = 1 : 1: 10. The factor λι is then
tuned in {10–3, 10–2, . . . , 103} for each norm, and we chose the one
with highest PSNRs in most cases in the parameter tuning phase.

6.2.4 Experiments on Video Data
We first conduct noisy video completion on four widely used YUV
videos:Akiyo, Carphone, Grandma, andMother-daughter. Owing to
computational limitation, we simply use the first 30 frames
of the Y components of all the videos and obtain four tensors
of size 144 × 17 × 30. We first report the averaged PSNR and
SSIM values obtained by four norms for quantitative
comparison in Table 1 and then give visual examples in
Figure 3 when 95% of the tensor entries are missing for
qualitative evaluation. A demo of the source code is available
at https://github.com/pingzaiwang/T2NN-demo.

6.2.5 Experiments on Hyperspectral Data
We then carry out noisy tensor completion on subsets of the
two representative hyperspectral datasets described as
follows:

FIGURE 3 | Visual results obtained by four norms for noisy tensor completion with 95% missing entries on the YUV-video dataset. The first to fourth rows
correspond to the video of Akiyo, Carphone, Grandman, and Mother-duaghter, respectively. The sub-plots from (A) to (F): (A) a frame of the original video, (B) the
observed frame, (C) the frame recovered by NN [30], (D) the frame recovered by SNN [22], (E) the frame recovered by the vanilla TNN [25], and (F) the frame recovered
by our T2NN.

TABLE 2 | PSNR and SSIM values obtained by four norms (NN [30], SNN [22],
TNN [25], and our T2NN) for noisy tensor completion on the hyperspectral
datasets.

(a) Indian pines

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 20.44 22.01 25.68 26.00
SSIM 0.3895 0.6359 0.6293 0.6730

10% PSNR 22.23 24.94 27.45 28.27
SSIM 0.4836 0.7171 0.7226 0.7724

15% PSNR 23.52 26.61 28.54 29.11
SSIM 0.5438 0.7668 0.7713 0.7979

(b) Salinas A

Sampling ratio Index NN SNN TNN T2NN

5% PSNR 15.21 20.79 22.55 23.68
SSIM 0.2594 0.7547 0.5667 0.7013

10% PSNR 20.62 25.56 25.72 27.93
SSIM 0.4775 0.8284 0.7027 0.8291

15% PSNR 23.09 27.99 28.06 29.67
SSIM 0.5643 0.8622 0.7804 0.8671

The highest PSNS/SSIM are highlighted in bold.
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• Indian Pines: The dataset was collected by AVIRIS sensor in
1992 over the Indian Pines test site in North-western
Indiana and consists of 145 × 145 pixels and 224 spectral
reflectance bands. We use the first 30 bands in the
experiments due to the trade-off between the limitation
of computing resources.

• Salinas A: The data were acquired by AVIRIS sensor over
the Salinas Valley, California in 1998, and consists of 224
bands over a spectrum range of 400–2500 nm. This
dataset has a spatial extent of 86 × 83 pixels with a
resolution of 3.7 m. We use the first 30 bands in the
experiments too.

The averaged PSNR and SSIM values are given in Table 2 for
quantitative comparison. We also show visual examples in
Figure 4 when 85% of the tensor entries are missing for
qualitative evaluation.

6.2.6 Experiments on Seismic Data
We use the seismic data tensor of size 512 × 512 × 3, which is
abstracted from the test data “seismic.mat” of a toolbox for
seismic data processing from Center of Geopyhsics, Harbin
Institute of Technology, China. For quantitative comparison,
we present the PSNR and SSIM values for two sampling
schemes in Table 3.

6.2.7 Summary and Analysis of Experimental Results
According to the experimental results on three types of real tensor
data shown in Table 1, Table 2, Table 3, and Figure 3, the
summary and analysis are presented as follows:

1) In all the cases, tensor norms (SNN, TNN, and T2NN)
perform better than the matrix norm (NN). It can be
explained that tensor norms can honestly preserve the
multi-way structure of tensor data such that the rich
inter-modal and intra-modal correlations of the data
can be exploited to impute the missing values, whereas
the matrix norm can only handle two-way structure and
thus fails to model the multi-way structural correlations of
the tensor data.

2) In most cases, TNN outperforms SNN, which is in consistence
with the results reported in [14, 17, 25]. One explanation is that
the used video, hyperspectral images, and seismic data all possess
stronger low-rankness in the spectral domain (than in the
original domain), which can be successfully captured by TNN.

3) In most cases, the proposed T2NN performs best among the
four norms. We owe the promising performance to the
capability of T2NN in simultaneously exploiting low-
rankness in both spectral and original domains.

7 CONCLUSION AND DISCUSSIONS

7.1 Conclusion
Due to its definition solely in the spectral domain, the popular
TNN may be incapable to exploit low-rankness in the
original domain. To remedy this weaknesses, a hybrid
tensor norm named the “Tubal + Tucker” Nuclear Norm
(T2NN) was first defined as the weighted sum of TNN and
SNN to model both spectral and original domain low-
rankness. It was further used to formulate a penalized
least squares estimator for tensor recovery from noisy
linear observations. Upper bounds on the estimation
error were established in both deterministic and non-
asymptotic senses to analyze the statistical performance of

FIGURE 4 | Visual results obtained by four norms for noisy tensor completion with 85%missing entries on the hyperspectral dataset (gray data shownwith pseudo-
color). The first and second rows correspond to Indian Pines and Salinas A, respectively. The sub-plots from (A) to (F): (A) a frame of the original data, (B) the observed
frame, (C) the frame recovered by NN [30], (D) the frame recovered by SNN [22], (E) the frame recovered by the vanilla TNN [25], and (F) the frame recovered by our
T2NN.

TABLE 3 | PSNR and SSIM values obtained by four norms (NN [30], SNN [22],
TNN [25], and our T2NN) for noisy tensor completion on the Seismic dataset.

Sampling ratio
(%)

Index NN SNN TNN T2NN

5 PSNR 22.25 22.28 22.49 22.80
SSIM 0.4369 0.4906 0.3928 0.4794

10 PSNR 23.58 23.53 23.48 24.05
SSIM 0.5462 0.5740 0.5004 0.5845

15 PSNR 24.74 24.66 24.51 25.25
SSIM 0.6266 0.6552 0.5898 0.6657

The highest PSNS/SSIM are highlighted in bold.
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the proposed estimator. An ADMM-based algorithm was also
developed to efficiently compute the estimator. The effectiveness
of the proposed model was demonstrated through experimental
results on both synthetic and real datasets.

7.2 Limitations of the Proposed Model and
Possible Solutions
Generally speaking, the proposed estimator has the following two
drawbacks due to the adoption of T2NN:

• Sample inefficiency: The analysis of [24, 28] indicates that
for tensor recovery from a small number of observations,
T2NN cannot provide essentially lower sample complexity
than TNN.

• Computational inefficiency: Compared to TNN, T2NN is
more time-consuming since it involves computing both
TNN and SNN.

We list several directions that this work can be extended to
overcome the above drawbacks.

• For sample inefficiency: First, inspired by the attempt of
adopting the “best” norm (e.g., Eq. 8 in [28]), the following
model can be considered:

min
L

max
‖L‖tnn
‖Lp‖tnn, max

k�1,2,3
‖L(k)‖p
‖Lp

(k)‖p
{ }

s.t. ‖y −X(L)‖2 ≤ ϵ
(65)

for a certain noise level ϵ ≥ 0. Although Model (65) has a
significantly higher accuracy and lower sample
complexity according to the analysis in [28], it is
impractical because it requires ‖Lp‖tnn and ‖Lp(k)‖p (k =
1, 2, 3), which are unknown in advance. Motivated by
[39], a more practical model is given as follows:

min
L

∑3
k�1

exp(αk‖L(k)‖p) + exp(β‖L‖tnn)
s.t. ‖y −X(L)‖2 ≤ ϵ,

where β > 0 is a regularization parameter.

• For computational inefficiency: To improve the efficiency of
the proposed T2NN-based models, we can use more
efficient solvers of Problem (15) by adopting the
factorization strategy [40, 41] or sampling-based
approaches [42].

7.3 Extensions to the Proposed Model
In this subsection, we discuss possible extensions of the proposed
model to general K-order (K > 3) tensors, general spectral domains,
robust tensor recovery, and multi-view learning, respectively.

• Extensions to K-order (K > 3) tensors: Currently, the
proposed T2NN is defined solely for 3-order tensors,
and it cannot be directly applied to tensors of more than

3 orders like color videos. For general K-order tensors, it
is suggested to replace the tubal nuclear norm in the
definition of T2NN with orientation invariant tubal
nuclear norm [5], which is defined to exploit multi-
orientational spectral low-rankness for general higher-
order tensors.

• Extensions to general spectral and original domains: This
paper considers the DFT-based tensor product for spectral
low-rank modeling. Recently, the DFT based t-product has
been generalized to the *L-product defined via any
invertible linear transform [43], under which the tubal
nuclear norm is also extended to *L-tubal nuclear norm
[44] and *L-Spectral k-support norm [7]. It is natural to
generalize the proposed T2NN by changing the tubal
nuclear norm to *L-tubal nuclear norm or *L-Spectral k-
support norm for further extensions. It is also interesting
to consider other tensor decompositions for original
domain low-rankness modeling such as CP, TT, and TR
as future work.

• Extensions to robust tensor recovery: In many real
applications, the tensor signal may also be corrupted by
gross sparse outliers. Motivated by [5], the proposed T2NN
can also be used in resisting sparse outliers for robust tensor
recovery as follows:

min
L,S

1
2
‖y −X(L + S)‖2 + λ‖L‖t2nn + μ‖S‖1,

where S ∈ Rd1×d2×d3 denotes the tensor of sparse outliers, the
tensor l1-norm ‖·‖1 is applied to encourage sparsity in S, and
μ > 0 is a regularization parameter.

• Extensions to multi-view learning: Due to its
superiority in modeling multi-linear correlations of
multi-modal data, TNN has been successfully
applied to multi-view self-representations for
clustering [45, 46]. Our proposed T2NN can also be
utilized for clustering by straightforwardly replacing
TNN in the formulation of multi-view learning models
(e.g., Eq. 9 in [45]).
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