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Adaptive optics (AO) is a powerful tool to increase the imaging depth of multiphoton
scanning microscopes. For highly scattering tissues, sensorless wavefront correction
techniques exhibit robust performance and present a straight-forward implementation of
AO. However, for many applications such as live-tissue imaging, the speed of aberration
correction remains a critical bottleneck. Dynamic Adaptive Scattering compensation
Holography (DASH)—a fast-converging sensorless AO technique introduced recently
for scatter compensation in nonlinear scanning microscopy—addresses this issue.
DASH has been targeted at highly turbid media, but to-date it has remained an open
question how it performs for mild turbidity, where limitations imposed by phase-only
wavefront shaping are expected to impede its convergence. In this work, we study the
performance of DASH across different turbidity regimes, in simulation as well as
experiments. We further provide a direct comparison between DASH and a novel,
modified version of the Continuous Sequential Algorithm (CSA) which we call Amplified
CSA (a-CSA).
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1 INTRODUCTION

Dynamic wavefront correction is a powerful approach for extending the imaging depth of nonlinear
microscopy in scattering tissues such as the mouse brain. However, to make the benefits of this
technology accessible to an even broader range of applications, some remaining limitations need to
be overcome. A particular problem is posed by the speed at which an aberration-compensating
pattern can be retrieved, as imaging into live specimens requires to outpace the decorrelation time
imposed by the constantly changing tissue.

To this end, we have recently introduced “Dynamic Adaptive Scattering compensation
Holography” (DASH), a fast-converging indirect wavefront sensing algorithm for scatter
correction in nonlinear scanning microscopy [1]. DASH employs a programmable phase-
diffractive element to shape two beams simultaneously: a test beam, whose wavefront is varied
in each step to explore possible signal improvements, and a corrected beam, whose wavefront is
continuously improved using the information gained from interference with the test beam. DASH
employs phase-only wavefront shaping, which bears the advantage of power efficiency. On the other
hand, discarding amplitude information introduces errors in the resulting wavefronts. In this work
we investigate the impact of these errors on the correction performance of DASH for different
regimes of turbidity. Furthermore, we compare DASH to an alternative approach, which does not
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suffer from the “phase-only” restriction: a modified version of the
Continuous Sequential Algorithm (CSA) [2], which follows a
pixel-by-pixel testing approach. Our modification to CSA
consists in amplifying the intensity of the tested pixel relative
to all other pixels, which increases signal contrast. This
amplification allows the application of CSA in situations with
low signal-to-noise ratio (SNR), as often encountered in practice.
We refer to ourmodified CSA algorithm asAmplifiedContinuous
Sequential Algorithm, or a-CSA.

This work is structured as follows: In Section 2we discuss how
turbidity can be quantified, how a scattering medium of specific
turbidity can be modelled numerically, and how in a two-photon
imaging experiment a scattering volume of “tunable” mean free
path can be emulated by a phase-mask displayed on a spatial light
modulator (SLM). In Section 3, the principles behind DASH and
a-CSA are explained. In Section 4, we detail the implementation
of a-CSA and DASH in our numerical simulations (Section 4.2),
our experiment (Section 4.3), and present a comparison of
algorithm performance for two-photon excited fluorescence
(TPEF) imaging of a homogeneous “dye-slide” sample in
different regimes of turbidity (Section 4.4) as well as mouse
brain (Section 4.5). In Section 4.6, implications of a low SNR on
algorithm performance are discussed.

2 QUANTIFYING TURBIDITY

It is essential for the present work to define what we mean when
speaking of “low” or “high” turbidity. The scattering properties
of materials and tissues are often quantified using the scattering
mean free path ls, i.e., the expectation value of a photon’s free
travelling path before it is scattered. This is mirrored in the
Beer-Lambert law, |U0(L)|2 � |U0(0)|2 e−L/ls , where |U0(L)|

2

represents the intensity of the unscattered (“ballistic”) light
after travelling (under free-space propagation) to distance L,
and |U0(0)|

2 the incident light intensity. The transport mean
free path lt takes scattering anisotropy into account: lt = ls/(1 − g),
where g = 〈 cos θ〉 is the expectation value of the cosine of the
scattering angle θ. For instance, in a material which
predominantly scatters into the forward direction (causing
small scattering angles), lt is much larger than ls. Conversely,
in an isotropic scatterer lt = ls. Typical values of ls for brain tissue
range between a few tens to hundreds of micrometers [5–7].

Our goal is to model the effect of a (in general three-
dimensional, 3D) scattering medium on a light field propagating
in positive z-direction by a two-dimensional (2D) phase mask,
located at axial position z = zscat, with transmission function
exp(iΦ(ρ)). Here, Φ(ρ) denotes the scattering-related phase
shifts experienced by a field point at the 2D lateral coordinate
ρ. The field after the phase mask is denoted by Uscat(ρ). Note that
this is the full field, not just a “scattered field” amplitude. Assuming
that the phase mask is suitably chosen to describe a medium with
predominantly forward scattering and without absorption, we
choose the normalisation ∫|Uscat(ρ)|

2 dρ = 1 = ∫|U0(ρ)|
2 dρ.

The ballistic contribution at depth L inside the
medium—emulated by the phase mask on the SLM—can be
calculated using the overlap integral (OI)

OI Uscat, U0[ ] � ∫Uscat ρ( ) U0* ρ( ) dρ
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

� ∫ U0 ρ( )∣∣∣∣ ∣∣∣∣2eiΦ ρ( ) dρ
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2

,

(1)
i.e., the “projection” of the field with imprinted phase mask onto
the unscattered (incident) field. This equality (Eq. 1) is most
intuitive if the integral is evaluated in the plane of the 2D
scattering mask, but for freely propagated fields the OI in fact
stays constant in all transverse planes at z ≥ zscat. Using the
Lambert-Beer law, the OI can also be written as

OI U0 L( ), U0 0( )[ ] � e−L/ls . (2)
ls appears here, since every single scattering event reduces the
ballistic contribution. Note that this relation (Eq. 2) implicitly
assumes that cases of successive scattering events which exactly
compensate each other (thus, re-populating the forward-directed
incident field, i.e., contributing to the OI and—erroneously—to the
estimated ballistic part) are statistically unlikely and can be ignored.

Combining Eqs 1, 2 we can quantify a computed phase mask
in terms of the corresponding “thickness” expressed in units of
the scattering mean free path ls:

1

L/ls � −ln OI( ) � −ln ∫ U0 ρ( )∣∣∣∣ ∣∣∣∣2eiΦ ρ( ) dρ
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
2( ) (3)

For the case of dominant forward scattering and negligible
absorption, this relation allows us to compute a 2D phase mask
Φ(ρ) that leads to a speckle pattern in the object plane which is
in many ways similar to that of a voluminous 3D scatter
medium of the same scattering mean free path ls. In the
experiments described later in this work, we will exploit this
fact to simulate different regimes of turbidity by displaying
computed 2D scatter masks of specific ls on an SLM. Of course
the equivalence between a 3D and a 2D scatterer—even if they
exhibit the same ls—does not encompass all physical properties;
for instance, the isoplanatic patch (i.e., the “corrected field of
view”) obtained through an AO wavefront correction will be
smaller for a 3D than for a 2D scatterer. However, concerning
the aspects studied in this work (e.g., the algorithm
convergence at a single field point), a 3D and a 2D scatterer
of same ls can be regarded as equivalent.

We denote the RMS value of a scattering phase mask by ascat
(see Algorithm 4, Supplementary Material). If the phase values of
the mask are normal-distributed or, for any distribution, if ascat is
sufficiently small [2], the relation between the scatterer thickness
and ascat is simply L/ls � 





ascat
√

.

3 APPROACHES FOR SENSORLESS AO IN
NONLINEAR MICROSCOPY

Most indirect (or sensorless) AO schemes construct an aberration
compensation phase mask from measurements of the TPEF

1We note that the relation (Eq. 3) is consistent with the considerations made in
Ref. [2] (see Eq. 4 therein), which lead to the derivation of the scatteringphase
theorem.
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signal for many different test patterns or “modes” Mn displayed
on an SLM, n ∈ {1,. . ., N} denoting the mode index. These test
patterns can be pre-defined, for instance as a set of Zernike [7] or
Hadamard modes [8, 9], or directly derived from the signal of
previous test patterns, such as in genetic algorithms [10]. The
phase patterns are commonly imaged into the back focal plane
(BFP) of the objective lens, where—by the Fourier transform
property of the lens—the test patterns have a homogeneous effect
on the point-spread function (PSF) over the entire focal plane.
However, there exist also sample-conjugated schemes, where the
SLM is imaged directly into the sample space [11–14].

A particular case is the “traditional adaptive optics” regime,
where the given phase aberrationΦ(ρ) can be approximated by
a weighted sum of the available test modes,
Φ(ρ) � ∑N

n�1an Mn(ρ), and each an has a rather small phase
magnitude (up to about 1 rad RMS over the pupil). Here, ρ is
the 2D coordinate vector in the BFP. In this case, the TPEF
signal S generated in the focus has a smooth dependence on the
mode magnitudes an, allowing to approximate it by a simple
function such as a multi-dimensional Lorentzian or parabola,
e.g., S ∝ 1 − ∑n ∑m αnm an am. In many cases, the cross-talk
matrix α can be diagonalized by choice of an adequate mode
basis [15]. Then, N + 1 measurements can be sufficient to
characterize the phase aberration [16], although usually 2N + 1
or even 3N measurements are taken. It is important to note
that this particular case does not necessarily coincide with low
turbidity (i.e., a small value of L/ls), since a large number of
modes, even if their individual magnitudes are small, can still
sum up to a large total aberration.

Outside the traditional regime, in what is often called the
“scattering” regime, it is usually required to take many more
measurements to find a suitable corrective phase mask. Typically,
in the scattering regime the complexity of the aberration is
beyond the capabilities of the correction device, meaning that
the number of scattering modes is larger than the number of
correctable ones. Additional reasons which can hinder full
aberration compensation include an SNR too small to measure
the contributions of less significant modes, or simply lack of time
tomeasure all of the (many) scattering modes. Nevertheless, it has
been shown that even correcting only a limited number of
scattering modes can suffice to restore a diffraction-limited
focus, which in this context can be understood as an intensity-
enhanced speckle [17].

There exist several approaches for sensorless AO which
can operate in the scattering regime [1, 2, 10, 18–21]. Two of
them, which we have identified as fast converging in
numerical simulations, are studied in this work and
outlined in Figure 1.

The first approach, known as continuous sequential
algorithm (CSA) [2], operates on a single-pixel basis:
sequentially, each pixel’s phase is adjusted to maximize the
signal. Although a basis of single pixels appears advantageous
due to its intrinsic orthogonality, the approach is usually
impractical because the interference contrast from single-
pixel phase modulation is typically buried in noise. This
inspired alternative approaches, such as hybrid methods
using larger “superpixels”, each of them featuring an internal
spatial phase pattern [20, 22]. However, we point out that the

FIGURE 1 | Sensorless AO methods for nonlinear microscopy. a-CSA uses a superpixel basis, DASH a plane-wave basis of test modes on a fluorescent target.
Respective examples of a test mode (bottom) and the compensation pattern at the corresponding step are shown on the left and right. For a-CSA the order of tested
modes is by increasing distance to the pupil center, for DASH the order is by increasing spatial frequency. During phase-stepping, the relative phase ϕp of the test mode
with respect to the compensation pattern is varied (see main text).
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SNR problem of CSA can also be remedied by simply amplifying
the intensity in the test superpixel, as this increases the
interference contrast. This variant, which we call a-CSA
(“amplified CSA”), requires the laser power on each
superpixel to be controllable. Then, as we show in Section
4.3, a-CSA can work in experiments where only a comparably
small number of modes needs to be corrected.

The mode basis of the second approach, DASH, is a set of
plane waves which are, in a sense, Fourier-related to the single-
pixel basis. Importantly, for this approach the SNR is uncritical,
as the power fraction contained in each plane wave can be
adapted directly via the SLM hologram. This makes this
method more practical than CSA. However, to shape test
beam and corrected beam without introducing artefacts, the
SLM would be required to manipulate both, the spatial phase
and amplitude distribution of the incident laser beam, just as
for a-CSA. In DASH, the amplitude part is disregarded and
only the phase part is included in the hologram, ensuring high
power efficiency but inevitably leading to errors in the
generated wavefronts and undesired diffraction orders. An
example of the effects of phase-only shaping is given in
Figure 2. The left image shows a target arrangement of 256
spots with random phases we wish to create in the focal plane
using an SLM in the Fourier plane. Discarding the amplitude
part of the synthetic hologram (a superposition of the
corresponding 256 plane waves) leads to the image on the
right. The standard deviation of the phases at the target sites is
about 0.25 rad, corresponding to about 4% of the wavelength,
and the relative amplitude error at the target sites is about 20%.
Additionally, we see that weak “ghost spots” appear outside the
target square.

In line with our earlier works [1, 14], we will in the following
for both a-CSA and DASH denote by f the fraction of the total
pupil intensity which is contained in the test mode.

4 COMPARISON OF ALGORITHM
PERFORMANCE

In this section we compare the performance of DASH and a-CSA
over different scales of turbidity in numerical simulations and
experiment.

4.1 General Recipe
The procedure for our systematic comparison between DASH
and a-CSA is as follows.

1) Both algorithms are initialised with an empty correctionmask.
2) We calculate a scattering phase mask that emulates a

certain degree of turbidity and is kept constant
throughout each algorithm run. In the simulations, this
scattering mask is simply added to the BFP-conjugate
wavefront during image propagation; in the experiment,
it is displayed on our SLM.

3) We imprint a test mode on the excitation beam and carry out a
phase-stepping procedure, i.e., measure the TPEF signal
generated in the object plane for P different global phase
offsets ϕp = 2π p/P (with p = 1 . . . P) applied to the test mode. 2

From the phase-stepping procedure, we extract the
parameters for which the test mode maximizes the TPEF
signal.

4) We directly update our correction mask by including the
tested mode with the retrieved optimal parameters. In the
simulations, this correction mask is added to the wavefront
incident on the scatterer; in the dye-slide experiment, it is
displayed on our SLM, on top of the scattering mask.

5) We now go back to step 3, test the next mode, update the
correction mask, and so forth, until the correction mask contains
the full number of test modes with their optimal contributions.

6) Once the full set of modes has been tested, we can start again
from the first test mode for another correction run. We
typically run 3 full iterations, which has shown to ensure
algorithm convergence in most cases.

Detailed algorithm descriptions are provided in the
Supplementary Material.3

4.2 Numerical Model
In our numericalmodel, we consider aberrations defined on a square
grid of 64 × 64 pixels accounting forN2

scat � 4096 scattering modes.
The aberration phase masks are calculated by adding cosines of all
spatial frequencies supported by the grid size with uniformly
distributed random phases. The amplitudes of the cosines follow
a Gaussian weighting with standard deviation σ, such that cosines
with higher spatial frequencies are increasingly attenuated, as
expected for most scattering scenarios found in nature. By
varying σ we can hence tune the spatial frequency content of the
model scatterer. For details on our specific implementation of
calculating the scatter mask, the reader is referred to our
Supplementary Material (Supplementary Algorithm S4).

The simulated SLM for (square) correction patterns features
32 × 32 pixels. Both the scattering mask as well as the simulated
SLM are located in the BFP, in Fourier relation to the object plane,

FIGURE 2 | Artefacts related to phase-only light shaping. Field modulus
of a target pattern (left) and the simulated pattern reconstructed by phase-only
wavefront shaping in the Fourier plane (right), illustrating introduced artefacts.

2In the experiment we typically set p = 5; in the simulations, especially for the
noise-free case, we find that P can be reduced to 3 for faster computation without
loss of performance.
3This also includes a minor modification to the DASH algorithm compared to
Ref. [1].
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and have a side length measuring 2k0 NA, where k0 is the vacuum
wavevector of light and NA = 0.7 the numerical aperture. Each set
of modes is tested repeatedly for 3 iterations. In our experiments,
the SLM illumination does not feature an ideal, flat-top intensity
profile, but exhibits a (weak) Gaussian shape of e−1/2 distance
approximately equal to the pupil radius. To reflect the
experimental situation, also in our simulations we assume a
light intensity distribution across the BFP which is
symmetrically Gaussian and of corresponding width. The
fluorescent sample is assumed to be a homogeneous,
absorption-free fluorescent layer of ds = 10 μm thickness.4 We
model this sample volume by grid points on Ns distinct 2D planes
with axial interspaces of ds/(Ns − 1), and the nominal focus plane
located at its center. Normally, we setNs = 6 layers (interspaced by
2 μm), since a larger number of planes does not notably improve
the accuracy of results and we have checked that the exact choice
of Ns is uncritical for our conclusions. To simulate the PMT
counts, we simply propagate the light field into the Ns planes,
calculate the squared intensity on each grid point, and take the
sum over all points.

In Section 4.4, we show simulation results at high-SNR
conditions, for which photon shot noise can be neglected. For
scenarios with low SNR, as discussed in Section 4.6, we simulate
shot noise by varying the summed PMT counts according to
Poisson statistics.

4.3 Experimental Procedure
We compare DASH and a-CSA experimentally in a home-built
TPEF microscope featuring a phase-only SLM (Meadowlark
HSP1920-500-1200-HSP8, 1920 × 1152 pixels of side length
9.2 μm) located in a BFP-conjugate plane of the excitation
path. This SLM serves two purposes in parallel: First, by
displaying a “scattering” phase mask of defined scattering
mean free path ls (see Section 2) it allows to emulate the
effect of a scattering medium in the light path. Second, by
running our sensorless wavefront correction schemes and
displaying the retrieved phase compensation patterns on top of
the given scattering mask, we can test and compare the algorithm
performances.

A sketch of the setup is shown in Figure 3. For excitation, we
use a mode-locked Ti:sapphire laser (MaiTai DeepSee, Spectra
Physics) with emission maximum set to 800 nm wavelength. The
epi-TPEF is collected by a water-dipping objective (Olympus
XLUMPLFLN20XW, NA = 1) and directed towards a
photomultiplier tube (PMT, Hamamatsu H10769A-40) using a
dichroic beamsplitter (AHF Analysentechnik, HC665LP) and an
additional emission filter in front of the PMT (AHF, ET680SP-
2P8). In our measurements, to operate with a more homogeneous
pupil illumination, we artificially reduce the NA to about 0.7
using an aperture in a pupil-conjugate plane (not shown in
Figure 3).

For our systematic comparison, the sample consists of a thin
layer of rhodamine solution sandwiched between a glass slide and
a coverslip of 1 mm and 170 μm thickness, respectively. Before
each algorithm run, we perform an initial precorrection run to
compensate for optical-system wavefront distortions such as the
spherical aberrations introduced by the coverslip. Starting from
this precorrection, the wavefront correction algorithms

FIGURE 3 | Experimental setup. SLM = spatial light modulator; PMT = photomultiplier tube. Inset: Exemplary test phase mask for a-CSA. Every superpixel except
the one under test is superposed by a shallow blazed grating to diffract the desired fraction of light intensity off the optical axis where it is blocked by an iris aperture. This
enables amplitude tunability while using a standard, phase-only SLM.

4NB that a thin 3D fluorescent sample layer as assumed here leads to smaller signal
enhancements and slower algorithm convergence than an (infinitely thin) 2D layer.
In the limit of a homogeneous 3D sample volume with thickness much larger than
the Rayleigh range of the focused beam, the second-order nonlinearity of TPEF
imaging is insufficient for providing any signal enhancement at all [23].
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FIGURE 4 | Scatter correction in different turbidity regimes. The three scenarios A–C correspond to an increasing degree of scattering with (A) L/ls = 1, σ = 1, (B) L/ls =
3, σ = 3, and (C) L/ls = 5, σ = 5, respectively. The left column shows examples of the phase aberration applied in the objective BFP and the resulting TPEF intensity distribution
in the focal plane before correction. The plots in the center and right column showhow the TPEF signal improves during correction in simulation (center) and experiment (right).
Here, solid curves represents the mean value over 5 repeated runs in the simulation or experiment, each initialised with a different random scatterer, and the ribbons
represent the respective standard error of the mean. In particular, each plot point shown is the result of P measured phase steps, where p = 3 (p = 5) in the simulation
(experiment). For the simulations (center), insets show a final SLM compensation pattern (respective top) and the corresponding object-plane intensity distribution (respective
bottom) after running the optimization algorithms. For the experimental data (right), kinks in the a-CSA curves (blue asterisks) are caused by the circular, underfilled pupil (see
main text).
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afterwards only have to correct for the artificial scatterer
displayed on our SLM, ensuring compatibility with the
numerically simulated correction runs.

For DASH, we typically set the intensity in the test mode to 30%
of the total intensity (i.e., f = 0.3, see Supplementary Material). For
a-CSA, we amplify the relative power in the test-superpixel by
superposing all other a-CSA-superpixels (consisting of many
physical SLM pixels) with a blazed grating of defined modulation
depth [24]. Thus, for all except the test-superpixel, power is
diffracted away from the optical axis and cut by an aperture as
indicated in Figure 3. It is important that the mean phase of the
blazed grating is nought to prevent an effect on the zero-order beam,
which carries the phase mask.5 Our blazed gratings have a period of
4 SLM-pixels and a modulation depth of approximately π rad,
resulting in (1 − β) ~ 50% of the laser power being dumped
(measured value) and a power fraction f ≈ 1/(βN2) in the case of
N×N superpixels. Naturally, dumping power on the iris also
decreases the total TPEF signal, wherefore we have to
compensate by increasing the total laser power. Since in practice
the available power is necessarily finite, this approach for amplitude
modulation is only applicable in regimes of turbidity which do not
require too many (i.e., too small) a-CSA-superpixels.

For compatibility, we conduct our experiments with the same
number of test modes as in the simulations for the different
regimes, i.e., 16, 64, and 256 modes for low, medium, and high
turbidity, respectively. Our SLM holograms measure 560 × 560
SLM-pixels and entirely fill the reduced objective pupil. For
a-CSA this means that we form 4 × 4 square superpixels (each
140 × 140 SLM-pixels) for the low turbidity, 8 × 8 superpixels
(each 70 × 70 SLM-pixels) for the medium turbidity, and 16 × 16
superpixels (each 35 × 35 SLM-pixels) for the high turbidity
scenario. Analogous to the simulation, DASH and a-CSA are
executed for three full iterations. The results are summarized in
Figure 4.

4.4 Results Systematic Comparison
For our systematic comparison, we study three different scenarios
(A, B, C) concerned with increasing levels of turbidity.

In Scenario A we study low turbidity, with an effective
scatterer thickness of a single scattering mean free path, L/ls =
1, and a spatial frequency distribution of the scatterer chosen
accordingly narrow, σ = 1. An example of such a scatter mask is
shown on the top left of Figure 4A. In the focal plane, such a mild
scatterer typically leads to an intensity distribution which is still
spatially confined and only moderately deviates from the
aberration-free focus, as shown in Figure 4A, bottom left.
Here, the intensity scale is normalized to the peak intensity of
the aberration-free focus, such that the maximum value (typically
around 0.4 for Scenario A) equals the respective Strehl ratio. In
this low-turbidity case it is expected that only a small number of
modes is needed for adequate compensation, wherefore we
correct 4 × 4 = 16 modes. The plots in the center and right
column of Figure 4A show the TPEF signal enhancement

simulated numerically (center) and measured experimentally
(right), respectively, for a-CSA (blue) and DASH (orange).
Specifically, we plot the TPEF signal measured when the
established compensation pattern is applied at the respective
measurement number.6 In the numerical simulations
(Figure 4A, center), we observe that for a-CSA the signal
initially increases fast, but then flattens off from the second
iteration onwards. DASH, in contrast, exhibits a less
monotonic signal evolution than a-CSA, first increasing more
slowly, but ultimately surpassing the final signal level of a-CSA.
We attribute the signal flattening and lesser total performance of
a-CSA to the fact that its compensation patterns are inherently
displayed at the native resolution of the test-mode basis (i.e., 4 × 4
superpixels in Scenario A) and therfore do not exploit the full
resolution supported by the SLM (32 × 32 pixels in the
simulation). This coarser spatial discretization leads to
increased diffraction losses compared to DASH (which always
exploits the full SLM resolution, regardless of the number of
tested modes) during the course of the optimisation.
Additionally, we observe that for DASH the steepest changes
in signal usually occur at the beginning of each iteration. This is
due to the fact that we intentionally sort our test modes in
ascending order with regard to the angle between their
propagation direction and the optical axis. Since small
scattering angles are typically more dominant in fluorescence
imaging settings, this tends to speed up the algorithm
convergence. Both methods achieve comparable final Strehl
ratios around 0.75 and 0.85 for a-CSA and DASH, respectively
(see Supplementary Material). Our experimental measurements
(Figure 4A, right) show the same general trends. When
comparing absolute values of signal enhancement, it is
important to keep in mind the critical dependence on the
sample thickness: in our simulations, e.g., we observe for
increasing the thickness as 0 → 4 μm → 10 μm (at constant
fluorophore density) a tendency of decreasing final
enhancements of 2.14 → 1.32 → 1.29 in case of a-CSA and
2.9→ 1.8→ 1.5 in case of DASH. Given that in our experiments
the sample layer thickness is controllable and measurable only
with limited accuracy, it seems fair to claim good agreement
between the observed values in simulation and experiment.

In Scenario B, we assume medium turbidity with L/ls = 3 and
an intermediate contribution of modes of higher spatial
frequency, σ = 3. We increase the number of correctable
modes to 64 to account for this greater spatial frequency
content. Before correction, the typical Strehl ratios in this
scenario are on the order of 5% (Figure 4B, bottom left).
Our numerical simulations (Figure 4B, center) indicate that
again, a-CSA initially improves faster than DASH, but levels off
at a lower final signal. The total signal enhancement achievable
by both correction algorithms is higher than for the low-
turbidity case; the final Strehl ratios are around 0.4 for
a-CSA and 0.6 for DASH. We suspect that the initial delay

5Note that by encoding our phase masks in the zero order and dumping power in
higher orders we avoid dispersion of the femtosecond laser pulses.

6Note that these curves are often similar, but in general not identical to the signal
collected during an algorithm run, as the latter results from an interference between
a partly compensated and a test beam.
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of DASH in comparison to a-CSA is related to the appearance of
higher diffraction orders (“ghost foci” as shown in Figure 2)
stemming from the phase-only field shaping of DASH. This is
one of several reasons which lead us to believe that the use of a
complex field-shaping technique might bear great potential for
improvement of algorithm performance in the future. In our
experimental measurements (Figure 4B, right), we observe
similar behaviour. Initially, a-CSA improves faster than
DASH, but ultimately DASH delivers higher signal
enhancement. For a-CSA, we observe a kink in the signal
enhancement at the transition between two iterations
(marked by the blue asterisk in Figure 4), which is not
present in the simulations. We attribute this kink to the
circular pupil in our experiment which cuts power from
superpixels located near the corners of the square SLM
pattern. Since we step through the a-CSA superpixels in
order of their distance to the pupil center, this effect is most
dominant towards the end of each iteration.

In Scenario C, we assume high turbidity, with L/ls = 5 and σ
= 5, where without correction typical Strehl ratios are on the
order of 1%. In this scenario, we correct 256 modes. In the
numerical simulations (Figure 4C, center), we observe that the
initial speed advantage of a-CSA compared to DASH
decreases, but the final enhancements achievable with both
algorithms are even higher than in Scenario B. Comparing

between the two algorithms, our simulations again deliver a
better performance for DASH than for a-CSA. Final Strehl
ratios are around 0.35 for a-CSA and 0.45 for DASH. These
trends are well supported by our experimental data
(Figure 4C, right).

Graphical animations of our simulated correction runs are
provided as GIF files (see Supplementary Material). These
animations show the phase patterns displayed on the SLM
during the correction algorithm as well as the evolution of the
focal plane intensity distribution.

4.5 Experimental Comparison for a
Biological Sample
Both DASH and a-CSA can offer striking quality improvements
for imaging through turbid media, such as in microscopy of layers
deep inside tissue. To demonstrate this, we use our TPEF
scanning microscope to image microglia expressing green
fluorescent protein (CX3Cr-1

GFP, cf. Ref. [1]), located 200 μm
deep inside the corpus striatum of a mouse brain slice fixed via
perfusion. For this, we adjust our wavelength to the excitation
maximum at 900 nm, retrieve a precorrection for optical system
aberrations by focussing on microglia directly below the
coverslip, and subsequently move the objective focus
mechanically 200 μm down into the brain tissue.

FIGURE 5 | Image enhancement for a biological sample. Murine striatal microglia expressing green fluorescent protein, 200 μm deep inside fixed brain tissue.
Image (A) was recorded without AO scattering correction. (B–D) show the same cell after correction (3 iterations of 256 modes) for scattering in the tissue above: (B) =
a-CSA, (C) = regular CSA, (D) = DASH. Upper left insets (if present) show the applied scatter compensation mask; lower left insets show the TPEF along the black,
dashed line. Main panels are in (blue) linear color scale, upper right insets show the same image data as the respective main panels in logarithmic (red) color scale.
The size of the scalebar in (A) corresponds to 10 μm.
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Figure 5A shows an example image of a microglia cell in the
deep layer, recorded with only the precorrection applied. Light
scattering in the brain tissue above leads to rather low contrast
between structures in Figure 5A, as illustrated by the plot of
signal intensity along the black dashed line, shown in the inset.
Figures 5B–D show the same microglia cell after running one out
of three AO correction algorithms, respectively, each for 3
iterations of 256 modes. Figure 5B shows the cell after
application of the correction mask shown the upper left inset,
which has been obtained by performing a-CSA with power-
overhead in the test mode (f ~ 2/256) on top of the
precorrection. The improvement in signal is on the order of a
factor of 2–3 across the cell body, and processes extending from
the cell into its surrounding are starting to become visible,
especially when a logarithmic color map is applied (upper
right inset). In Figure 5C, the cell is shown after performing
regular CSA (i.e., without power overhead in the test mode, f = 1/
256) on top of the precorrection. The measured modulation SNR
was insufficent for algorithm convergence; as is apparent, the
signal quality did not improve compared to the precorrection
alone (Figure 5A), or even became slightly worse. Figure 5D
shows the cell after performing DASH (3 iterations of 256 modes,
f = 0.3) on top of the precorrection. The signal intensity across the
cell body is increased by a factor of about 5; the contrast between
structures is clearly enhanced, allowing to distinguish processes
extending from the cell body into the surrounding tissue.

Note that for taking the images of Figure 5 we have started
from the precorrection of Figure 5A simply for illustration
purposes, to disentangle the correction of (mild) optical
system aberrations from the correction of scattering inside the
brain tissue, and for compatibility with the dye-slide simulations
and experiments. This, however, is not an experimental necessity;
typically, images of a similar quality as shown in Figures 5B, D
can also be obtained by performing DASH or a-CSA without any
precorrection.

4.6 Low-SNR Scenarios
The practicality of every sensorless wavefront correction scheme
depends on its robustness with respect to noise. It has already
been shown that DASH performs well in this regard in
comparison to alternative methods [1]. Let us now compare
performances at low SNR conditions. The key for all such
methods is being able to discern the TPEF signal
modulation—caused by phase-stepping of the test beam—on
top of the noise floor, since this modulation carries the
relevant information. For this, the test mode must contain a
significant percentage of the total light power. In the following, we
use numerical simulations to compare which SNR each of the
three methods DASH,7 a-CSA, and regular CSA8 requires to
operate successfully. To this aim, we simulate shot noise in the
PMT readout and then repeatedly execute the methods starting
from a decreasing initial signal level. We stop repeating once the

signal enhancement η achieved by a method (after 3 full
iterations) drops below a certain threshold ηth. We set this
threshold to ηth � 0.75(ηmax − 1) + 1, where ηmax is the
enhancement for the noise-free case (i.e., simulations as in
Section 4.4). The exact choice of the threshold prefactor (0.75
in our case) is largely arbitrary and uncritical for our conclusions.
We assume the same sample and investigate the same three
turbidity scenarios A, B, C as discussed above.

Our simulations show that for weak scattering (A) and
correction of N2 = 16 modes, DASH signal enhancement
crosses threshold when the photon level (before correction)
exceeds around 100 photons. a-CSA delivers comparable
performance when the test-superpixel contains about 10 times
more laser power than any of the other superpixels,
corresponding to around 40% of the total power. Regular CSA
only crosses threshold for signal levels from around 1000 detected
photons onwards, i.e., about 10 times higher than required
for DASH.

For medium turbidity (B) and N2 = 64 modes, DASH crosses
threshold at about 100 photons collected per measurement
(before correction). Comparable performance can be achieved
using a-CSA if the test-superpixel amplification factor is around
50, again representing roughly 40% of the total laser power.
Regular CSA crosses threshold at around 3 k photons.

Finally, for high turbidity (C) and N2 = 256 modes, DASH
crosses threshold at around 400 counted photons (before
correction). Again, comparable performance can be achieved
using a-CSA with a test-superpixel amplification factor around
50. Regular CSA, in contrast, requires about 15 k photons.

These results are summarized in Table 1. Of course, in
practice the required signal levels will also depend on the
nature of the sample, wherefore these numbers can only
serve as a rough orientation. For example, increasing the
sample thickness will make it increasingly difficult to obtain
a successful correction.

Nevertheless, from our results we can draw three main
conclusions. First, as expected, regular CSA requires a much
higher SNR than DASH to operate successfully. Achieving a
higher SNR requires sending more optical power into the
sample volume, making regular CSA unfavourable, e.g., for
imaging of fragile specimens. Second, it is possible to
successfully operate a-CSA at the same SNR conditions as
DASH, if a sufficient amplification of the test-superpixel can
be provided. However, it needs to be stressed that if the
amplification is realized using a superpixel method (as in
Section 4.3), discarding light from other pixels, this high
performance of a-CSA comes at the price of wasting much
optical power. For instance, if the hologram features N×N

TABLE 1 | Photon counts (before correction) required at low SNR for comparable
performance as in the noise-free case.

Low turbidity (A) Medium turbidity (B) High turbidity (C)

DASH 100 100 400
CSA 1 k 3 k 15 k

Regular CSA requires much higher signal levels than DASH; a-CSA requires substantial
power in the test-superpixel (see main text).

7For DASH we slightly increase the power in the test beam compared to before (f =
0.3 → 0.35), which has proven helpful in low-SNR situations [1].
8CSA without controlling the power in individual pixels, as in Ref. [2].
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superpixels and the test-superpixel is supposed to contain a
fraction f of the total pupil intensity, the incident laser power
must be increased by a factor of (N2 − 1)f/(1 − f) to keep the total
optical power in the objective pupil constant. Even for a
moderate number of modes of 64, i.e., N = 8, achieving f =
0.3 requires a total power increase by a factor of 27. This steep
scaling with N in practice quickly becomes unfavorable for
application of a-CSA in deep tissue imaging, where typically
many correctable modes are needed. Third, for DASH, in
contrast, such problems do not arise, since the power in the
test mode is independent of N and can be tuned conveniently
through the depth of the corresponding grating on the SLM.

5 DISCUSSION AND SUMMARY

In this work, we have devised a method to compute a 2D phase
mask whose effect on a light field is in many ways equivalent to
that of a voluminous scatter medium of corresponding transport
mean free path. This enables software-controlled systematic
studies where the degree of scattering is controlled precisely,
tunable over a large range, and manual exchange of physical
scatter materials is not needed.

We have used this method to investigate the performance of
DASH for different scales of turbidity, ranging from the
“traditional AO” regime to the regime of multiply-scattered
photons, and compared it to an alternative approach which we
call Amplified Continuous Sequential Algorithm (a-CSA). a-CSA
operates on a square-superpixel mode basis and is shown to work
also in low-SNR situations (unlike regular CSA) due to an
increased relative power in the test mode. In practice, this
amplification of the test superpixel can be achieved by
attenuating all other superpixels, e.g., by adding phase gratings
of defined modulation amplitude. While easy to implement, this
approach works only for a limited number of correctable modes
due to its inefficient use of light power, and only for a-CSA
superpixels consisting of a sufficient number of physical SLM
pixels.

We found in both numerical simulations and experiments that
for low turbidity DASH initially improves more slowly than
a-CSA, pointing to effects of the phase-only light shaping
principle behind DASH. This initial speed disadvantage of
DASH disappears for increasing turbidity. Furthermore, we
observed that independent of the degree of turbidity, from the
end of the second iteration onwards, DASH outperforms a-CSA.
We attribute this performance advantage to the fact that DASH
can always exploit the full resolution of the SLM, hence
minimizes diffraction losses compared to superpixel methods
such as a-CSA.

As an overall tendency, we observed that the signal
enhancement achievable using DASH or a-CSA grows for
increasing degrees of turbidity, highlighting the potential
benefits these algorithms promise for nonlinear imaging in
highly scattering environments.

We have illustrated the practical improvements these methods
can yield for two-photon microscopy by the example of GFP-
microglia 200 μm deep inside mouse brain tissue. Furthermore,
we emphasize that a-CSA and DASH were performed using
identical hardware on the same experimental setup. Therefore,
depending on the task, it is possible to execute either (or a
combination) of both routines on a pure software level.

A critical challenge for wavefront correction in highly
scattering samples remains the size of the corrected field of
view (“isoplanatic patch”, IP). For fixed brain tissue, as shown
in Figure 5, IP diameters are on the order of 20–30 μm,
whereas live brain tissue tends to scatter photons at larger
angles, decreasing the IP size to just a few μm [14]. Several
strategies have been proposed to increase IPs, including
multi-conjugated AO [25–27] or the application of
individual corrections for many sample points [13, 14, 21].
Whether a-CSA and DASH may benefit from such strategies
in terms of the IP size is an interesting question for future
studies.
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