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Abstract—A novel double-layer transmitarray element is presented at 60 GHz with linearly-
and circularly-polarized characteristics. A planar frequency-selective structure using the
complementary design is adopted to augment the element performance for millimeter-
wave applications. By integrating two different types of structure, i.e. cross and slot type,
the compensation phase range is extended effectively with a satisfactory transmission
magnitude. A transmitarray prototype is fabricated and tested to verify this double-layer
complementary design. The measured gain at 60.5 GHz is 33.1 dBi with an aperture
efficiency of 42.15%. Low side-lobe and cross-polarization levels are obtained. The
proposed double-layer complementary design can reduce the structure complexity
effectively and offer a high aperture efficiency at a low cost, which can be a potential
candidate for the millimeter-wave transmitarray.
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1 INTRODUCTION

Recently, transmitarray antenna has become a popular research item. Compared with the traditional
lens antenna, the transmitarray aperture can be a planar frequency-selective surface, which makes it
easy integration, visual invisibility, and economical fabrication with PCB technology. Many
transmitarray antennas have been investigated with diverse performances such as wideband [1],
multiple bands [2], low profile [3], multiple beams [4], and beam scanning [5].

Many devices have been reported for the millimeter-wave band near 60 GHz [6–8]. A three-layer
linearly polarized transmitarray antenna was presented in [9] for millimeter-wave applications.
Employing a slot-coupling method, a triple-layer linearly polarized transmitarray was proposed in
[10]. Although satisfactory performances have been realized, these designs have at least three metallic
layers that make the structure relatively complicated. A dual-layer transmitarray was proposed for
the 77-GHz automotive radar applications [11]. However, the proposed element can only provide 0°

and 180° phase differences, which would result in a relatively large phase error and lower aperture
efficiency. A dual linearly polarized transmitarray was presented at D-band with a peak gain of 32 dBi
and aperture efficiency of 32% at 150 GHz [12]. It is discussed in [13] that at least three metallic layers
are required to achieve a compensation phase range of nearly 360°and -1-dB magnitude
simultaneously. To reduce the structural complexity, the double-layer element has been
investigated and reported. A double-layer transmitarray element with metallic vias was proposed
[14, 15]. It was further investigated in [16–18] with improved performance. A two-layer linearly-
polarized metal-only TA was presented in [19].

For the 60-GHz millimeter-wave and even higher frequency band, transmitarrays with a simple
structure are desired for easy fabrication and low cost. Then, some double-layer designs without vias
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are investigated. A double-layer planar lens antenna was
presented in [20] using a gradient metasurface structure with a
measured aperture efficiency of 24.6%. A double-layer design
from [21] can achieve a high aperture efficiency of 60.2% using a
circular polarization conversion approach for circular
polarization. Recently, a conformal transmitarray was
developed in [22] using a dual-layer Huygens element with
single linear polarization. It has a measured gain of 20.6 dBi
with an aperture efficiency of 47%. Although the above designs
have achieved satisfactory performance, it is still difficult to
accommodate both linear and circular polarizations
simultaneously to meet the application requirements of
different occasions. Recently, a planar transmitarray element
based on a complementary frequency-selective structure was
reported in [23] with an extended compensation phase range.
It can be adapted potentially for millimeter-wave applications.

A complementary double-layer transmitarray element is
presented for the millimeter-wave band in this letter. The
element performance is improved effectively based on the
hybrid design combining cross and slot-type structures with
linear and circular polarization characteristics. Then, a
transmitarray antenna is fabricated for verification. Satisfactory
radiation performance has been achieved with a measured gain of
33.1 dBi. The measured aperture efficiency is 42.15% with low
side-lobe and cross-polarization levels.

2 PROPOSED DOUBLE-LAYER
COMPLEMENTARY ELEMENT

The double-layer complementary element is shown in Figure 1.
The element size is 2.98 mm in the X- and Y-directions. Two

identical metallic structures are printed on the top and bottom of
the Rogers-5880 substrate with a thickness of 20 mil. The detailed
parameters are in Table 1.

The metallic structure consists of modified cross, slot, and
parasitic structures. The slot-type structure has four stubs at the
corners with lengths L2, L3, and widthsW2,W3. The cross has the
length L and width W with a circular slot carved at the center.
Four parasitic rectangular patches with the sizes of L1 andW1 are
distributed around the cross with a gap of G1. All metallic
structures are distributed symmetrically. The central symmetry
structure makes it suitable for both linear and circular
polarizations.

Using structural design freedom, two complementary
elements with different stub and cross sizes are utilized to
extend the compensation phase range, as shown in Figure 2.
For element 1, the stub is relatively short with L2 = 0.37 mm and
L3 = 0.05 mm, respectively. The diameter of the central slot is with
the equation D = –1.75L2+4.52L–2.17. The phase range is
obtained by changing the cross length L from 0.9 to 1.67 mm.
For element 2, the stub lengths L2 and L3 are 0.61 and 0.54 mm,
respectively. D is with the equation of D=(1.96 mm–L)×2. The L
varies between 1.68 and 1.9 mm. The element performances with
a normal incidence at 60 GHz are plotted in Figure 2. The phase
range of element 1 is from −59° to −141° with a transmission
magnitude better than −1.5 dB. For element 2, the −1.5-dB phase
range is from 40° to 133°. The phase range between −180° and 180°

can be covered with a maximum phase error of 55° based on these
two elements. So a double-layer complementary element with an

FIGURE 1 | Structure of the double-layer element. (A) Top view, (B) Side
view.

TABLE 1 | Antenna element parameters (mm).

Para L1 W W1 W2 W2 W3 W4
Value 0.15 0.53 0.42 0.13 0.13 0.31 0.25

Para G G1 G2
Value 0.1 0.15 0.057

FIGURE 2 | Phase and magnitude performance of the complementary
element at 60 GHz with normal incidence.
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extended phase range is realized for the 60-GHz millimeter-
wave band.

3 ANTENNA ANALYSIS

The element performances under oblique incidence are simulated
with the TE and TM sources. The phase and magnitude
performances are plotted in Figure 3 and. 4. It is observed in
Figure 3A that the maximum phase error for TE source is 61°

between the normal and oblique incidence with θ = 25° and φ = 45°.
For the TM source in Figure 3B, the maximum phase error is 49°

between the normal and oblique incidence with θ = 25° and φ = 0°. In
Figure 4, the maximum magnitude error for TE source is −1.18 dB
between the normal and oblique incidence with θ = 25° and φ = 45°

while the maximum magnitude error for TM source is −2.5 dB
between the normal and oblique incidence with θ = 25° and φ = 0°.

As elements 1 and 2 can cover the phase ranges from −180° to
0° and from 0° to 180° respectively, the effective current
distributions are plotted for analysis, which is depicted in
Figure 5 with the cross length L = 1.68 mm.

For element 1, it is observed in Figure 5A that most currents
distribute on the cross while there are few currents on the slot-
type structure due to a relatively small stub length. The slot-type
structure has little effect on the element performance when the
stub length is electrically small, so the slot-type structure has
limited influence on element 1.

In Figure 5B, the currents are on cross and slot-type structures
of element 2. The slot-type structure affects the element
performance when the stub length is comparable to the
wavelength. The instantaneous current distributions are in
Figure 6. The cross is excited at the reference time point of t
in Figure 6A. The slot-type structure is excited at the time point

FIGURE 3 | Phase performance under oblique incidence: (A) TE, (B) TM.

FIGURE 4 | Magnitude performance under oblique incidence: (A) TE,
(B) TM.
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of t + T/6 in Figure 6B where T represents one cycle. It is noticed
that the slot-type and cross structures are not excited
simultaneously but with a time interval of T/6. The introduced
slot-type structure can offer an extra phase shift compared with
element 1, so the transmission phase is shifted from the negative
range to the positive range, as shown in Figure 2. It can be
concluded that the cross is responsible for the performance of
element 1. Both the cross and slot-type structures affect the
performance of element 2. They are stimulated successively
within half cycle.

FIGURE 5 | Effective current distributions with L = 1.68 mm: (A) Element
1, (B) Element 2.

FIGURE 6 | Instantaneous current distributions of element 2 with L =
1.68 mm at different time points: (A) t, (B) t+T/6.

FIGURE 7 | Antenna prototype based on the proposed double-layer
complementary element.

FIGURE 8 | Measured and simulated patterns at 60 GHz: (A) E-plane,
(B) H-plane.
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4 EXPERIMENTAL VERIFICATION

To verify the proposed double-layer frequency-selective
structure, a transmitarray antenna with a diameter of
113 mm is designed and fabricated, as shown in Figure 7. It
includes 1,060 elements with a cross length varying between
0.9 and 1.89 mm. A linearly-polarized horn antenna with a
gain of 18.25 dBi at 60 GHz is employed to illuminate the
antenna aperture in the normal direction. The height is
optimized to be 140 mm. Based on the element and feed
characteristics, the compensation phase of each element is
calculated [24]. A full-wave simulation is conducted using CST
software. The calculated radiation patterns are plotted in
Figure 8. In Figure 9, the antenna gain at 60 GHz is
calculated to be 33.16 dBi with the simulated aperture
efficiency of 43.7% [25].

An LPKF ProtoLaser system is employed for the aperture
fabrication while the antenna prototype is assembled and tested in
an anechoic chamber. The measured radiation patterns and gain are
plotted in Figures 8, 9, respectively. The measured gain at 60 GHz is
31.95 dBi with an aperture efficiency of 34.5% while the maximum
gain is 33.1 dB at 60.5 GHzwith an aperture efficiency of 42.15%. The
3-dB-gain bandwidth is from 58.4 to 61.9 GHz with a relative
bandwidth of 5.9%. It is observed in Figure 8 that the measured

main beam almost overlaps with the simulation result. The measured
side-lobe levels are below −24.2 dB at E-plane and −22.3 dB at
H-plane while the maximum cross-polarization level is -29.1 dB. It
is observed that the measured gain is 1.2 dB lower than the simulated
one at 60 GHz while the simulated and measured gains are almost
equal at 60.5 GHz.

There are certain discrepancies between the simulation and
measurement results. Firstly, certain elements are not etched
precisely. It would introduce additional phase and magnitude
errors. Secondly, the tramsmitarray prototype is assembled
manually, the assembly errors with the radiation aperture and
feeding horn are inevitable. Finally, the antenna is supported by a
metallic frame. It would introduce more reflections and refractions,
resulting in certain influences on the radiation patterns.

The proposed transmitarray is compared with some existing
millimeter-wave designs in Table 2. Based on the traditional
three-layer frequency-selective structure [9, 10], aperture efficiency
of more than 42% has been realized with 3-dB-gain bandwidths of
more than 15%. However, they are only suitable for linear-polarized
applications with a relatively complex structure. A linearly-polarized
dual-layer transmitarray was proposed [11] at 77 GHz with a
relatively lower aperture efficiency of 19.3%. A triple-layer
transmitarray antenna has been presented at D-band with both
linear and circular polarization characteristics [12]. The measured
gain is 32 dBi with an aperture efficiency of 32%. To improve the
aperture efficiency and to reduce the structural complexity, a double-
layer complementary frequency-selective structure is designed in this
work. The measured aperture efficiency is improved to be 42.15%,
which is close to the triple-layer designs of [9, 10]. Furthermore, the
proposed element is suitable for linear and circular polarizations. It
can fulfill various requirements and extend its application scenarios.

5 CONCLUSION

A double-layer complementary transmitarray structure is studied at
60 GHz for linear and circular polarizations. Combining the cross
and slot-type structure, a double-layer frequency-selective element
has been designed with good transmission phase and magnitude
performances. The working principle of this complementary
structure has been investigated and a prototype has been
fabricated for verification. The measured antenna gain is 33.1 dB
at 60.5 GHz with an aperture efficiency of 42.15%. The antenna
structural complexity and cost have been reduced effectively. With
these favorable advantages, this double-layer transmitarray antenna
should have broad application prospects in the future.

FIGURE 9 | Measured and simulated gains.

TABLE 2 | Comparison of the proposed antenna with existing designs.

References Freq. (GHz) No. of
layers

Polariza-tion Gain (dBi) Aperture effi.
(%)

3-dB-gain Bandwidth

[9] 61.5 3 Linear 32.5 42.7 21%
[10] 61 3 Linear 33.4 48 15.4%
[11] 76.5 2 Linear 24.1 19.3 N. A
[12] 150 3 Linear & Circular 32 32 19.8
This work 60.5 2 Linear & Circular 33.1 42.15 5.9%
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