AUTHOR=Gu Zongchao , Su Sunhao , Lu Wei , Yao Yishu TITLE=Estimating Spatiotemporal Contacts Between Individuals in Underground Shopping Streets Based on Multi-Agent Simulation JOURNAL=Frontiers in Physics VOLUME=10 YEAR=2022 URL=https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2022.882904 DOI=10.3389/fphy.2022.882904 ISSN=2296-424X ABSTRACT=
Coronavirus disease 2019 (COVID-19) has exposed the public safety issues. Obtaining inter-individual contact and transmission in the underground spaces is an important issue for simulating and mitigating the spread of the pandemic. Taking the underground shopping streets as an example, this study aimed to verify commercial facilities’ influence on the spatiotemporal distribution of inter-individual contact in the underground space. Based on actual surveillance data, machine learning techniques are adopted to obtain utilizers’ dynamics in underground pedestrian system and shops. Firstly, an entropy maximization approach is adopted to estimate pedestrians’ origin-destination (OD) information. Commercial utilization behaviors at different shops are modeled based on utilizers’ entering frequency and staying duration, which are obtained by re-identifying individuals’ disappearances and appearances at storefronts. Based on observed results, a simulation method is proposed to estimate utilizers’ spatiotemporal contact by recreating their space-time paths in the underground system. Inter-individual contact events and exposure duration are obtained in view of their space-time vectors in passages and shops. A social contact network is established to describe the contact relations between all individuals in the whole system. The exposure duration and weighted clustering coefficients were defined as indicators to measure the contact degree of individual and the social contact network. The simulation results show that the individual and contact graph indicators are similar across time, while the spatial distribution of inter-individual contact within shops and passages are time-varying. Through simulation experiments, the study verified the effects of self-protection and commercial type adjustment measures.