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This study investigates the adaptive fuzzy output feedback control of strict-feedback
fractional-order chaotic systems with unmeasurable states and quantized input. First, the
functional uncertainties are approximated by fuzzy logic systems (FLSs). Second,
combining the FLS and the system output signal, an observer is constructed to
estimate the unmeasurable states. A command filter is defined to cope with the
“explosion of complexity” problem resulting from the repeated derivatives of virtual
control inputs in each backstepping step. To compensate for quantization errors, a
hyperbolic tangent function is introduced to transform the control signal, which can not
only guarantee that the tracking error converges to an arbitrarily small region near the origin
but also reduce the chattering phenomenon of the control input. In addition, the stability
analysis is carried out relying on the fractional Lyapunov stability criterion such that all the
signals keep bounded. Finally, a numerical simulation example is put forward to verify the
effectiveness of our method.
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1 INTRODUCTION

During the past few decades, fractional calculus has received increasing research interest because of its
special properties that can be well used in system modeling, such as heredity and memory. After a long
period of development, it has been a powerful mathematical instrument in the fields of bioengineering,
physics, economics, medicine, and so on [1–4]. At the same time, many traditional calculus theories have
been extended to the fractional calculus theory, especially the Mittag–Leffler stability theory [5]. As an
extension of the Lyapunov stability theory, it plays an important role when designing the controller for
fractional-order nonlinear systems (FONSs), including fractional-order chaotic systems (FOCSs).

Strict-feedback systems are a common form of chaotic systems, such as fractional-order Arneodo
systems [6] and fractional-order Rossler systems [7]. One of the effective strategies to control these
systems is the backstepping technique. However, virtual control inputs need to be repeatedly
differentiated in each backstepping step, which will cause the “explosion of complexity” problem.
Furthermore, different from the traditional calculus, the fractional order derivative of a composite
function is a complicated infinite series that is hard to be calculated in practical engineering, which also
increases the difficulty of designing controllers for strict-feedback FONSs. To this end, researchers have
done special research and some interesting results have been achieved. For instance, in [8, 9], the
fractional-order derivative of the virtual control input was regarded as an extra uncertain term and was
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approximated by fuzzy logic systems (FLSs), which can avoid the
“explosion of complexity” problem; however, as the order of the
system increases, the cumulative increase of fuzzy errors will affect
the final control performance. To reduce the influence of fuzzy
errors, an adaptive dynamic surface control was extended to FONSs
in [10]. Moreover, a fractional-order command filter and an exact
differentiator were introduced in [11, 12], respectively.

In addition, it is worth pointing out that in the aforementioned
literature, a key assumption, i.e., the states must be measurable
and should be satisfied, which is too demanding for practical
engineering applications. Constrained by sensor technology or
cost consumption, in most cases, only the system output signal is
measurable directly, which means that the unknown states need
to be estimated by developing an observer. In [13], the tracking
control problem for incommensurate FONSs with input
saturation was addressed via the observer-based backstepping
algorithm. In [14], an observer was proposed for FONSs with
unknown input gain based on the LMI technique. A sliding mode
observer came up for FONSs with parameter uncertainties in
[15]. However, there are still some limitations in these works: the
system model of [13] is considered to be free of functional
uncertainties or disturbances; the method of [14] is only
applicable to system models that can be linearized; and a
switch term is included in the observer structure appearing in
[15], which will result in the chatting phenomenon. Some other
interesting methods can be seen in [16–19]. For the observer
design of the FONS, there is still a lot of work worth exploring.

On the other hand, because of limited-bandwidth
communication channels and data transmission pressure, the
control input signal must be quantized for some systems, such as
digital control systems, hydraulic systems, and network systems
[20–22]. A common type of quantizer is the sector-bounded
quantizer, whose quantization errors satisfy the sector-bounded
condition, including uniform quantizers, logarithmic quantizers,
and hysteretic quantizers. In [23], a method that divides a sector-
bounded quantizer into a linear segment and a nonlinear segment
was discussed, which is the main idea of the quantized controller
design. During the past few years, considerable results about
quantized control for integer-order nonlinear systems have been
achieved [24–27], and several important conclusions have been
successfully extended to FONSs. For example, in [28], a
Nussbaum function was used to study the fuzzy quantized
control problem for uncertain FONSs with unknown control
directions; in [29], a logarithmic quantizer was employed to
achieve the synchronization control for fractional-order output-
coupling neural networks; in [30], for a FONS with input
quantization and actuator failures, an adaptive asymptotic
tracking control strategy was proposed; in [31], an output-
feedback quantized controller was designed for fractional-order
neural networks described by Takagi–Sugeno fuzzy models; and
in [32], the neural network-based quantized synchronization control
for FOCSs was investigated. Nevertheless, it should be noted that the
aforementioned literature treats the nonlinear part decomposed by
the quantizer as an extra disturbance. How to better compensate for
the quantization error in the design of the control input is still a
matter of concern.

Inspired by the aforementioned discussion, this study
investigates the adaptive fuzzy output feedback control
problem for strict-feedback FOCSs subject to unmeasurable
states and input quantization. The main contributions of this
work are listed as follows. 1) Compared with the results presented
in [13, 14], a broader class of FOCSs with functional uncertainties
in each subsystem has been investigated. 2) Taking into account
limited communication channels and data transmission pressure,
a logarithmic quantizer is used to quantize the input signal, which
has a better application value for actual engineering. 3) In
comparison with the method of compensating for quantization
errors in [24], a hyperbolic tangent function is introduced to
transform the control signal in the controller design so that the
disturbance derived from the nonlinear part of the quantizer is
cleverly avoided and the chatting phenomenon is reduced. 4)
Distinct from [28–32], all the states of the system model
considered in this work are supposed to be unknown except
the output signal.

The article is organised as follows. Some basic knowledge of
fractional calculus and the problem description are provided in
Section 2; Section 3 gives the details about the design of the
observer and the controller; simulation results are presented in
Section 4; and Section 5 summarizes the conclusion. In the
following, R and Rn denote the spaces of real numbers and n-
vectors, respectively, C1 is the space of differentiable functions, ‖
·‖ stands for the Euclidean norm, and sign (·) represents the
signum function.

2 PRELIMINARIES AND PROBLEM
DESCRIPTION

2.1 Preliminaries
Definition 1 [33] The Caputo’s fractional derivative is defined as

Dϑ
t f t( ) � 1

Γ 1 − ϑ( )∫
t

0
t − τ( )−ϑf′ τ( )dτ, (1)

where 0 < ϑ < 1.
Lemma 1 [34] Suppose that x(t) ∈ Rn is Lipschitz continuous and
P is a positive matrix, then

1
2
Dϑ

tx
T t( )Px t( )≤ xT t( )PDϑ

tx t( ). (2)

Lemma 2 [10] Let V(t) ∈ C1 satisfy

Dϑ
t V t( )≤ − aV t( ) + b, (3)

where a, b > 0 are constants. Then, there exists a constant t0 > 0
such that

|V t( )|≤ c0b

a
(4)

holds for all t ≥ t0, where c0 > 1 is a constant.
Lemma 3 [11] The fractional-order command filter is defined as

Dϑ
t γ1 t( ) � βγ2 t( ),

Dϑ
t γ2 t( ) � −2βζγ2 t( ) − β γ1 t( ) − α t( )( ),{ (5)
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where γ1 (0) = α(0) and γ2 (0) = 0. The function α(t) is the input
signal that satisfies |Dϑ

tα(t)|≤ ρ1 and |D2ϑ
t α(t)|≤ ρ2, where ρ1, ρ2 >

0 are constants. Then, for any μ > 0, there exist β > 0 and ζ ∈ (0, 1]
so that |γ1(t) − α(t)| ≤ μ.

2.2 Problem Description
Consider the following FOCS with a strict-feedback form:

Dϑ
t xi t( ) � fi �xi( ) + xi+1 t( ), i � 1, . . . , n − 1,

Dϑ
t xn t( ) � fn �x( ) + q u t( )( ),

y t( ) � x1 t( ),

⎧⎪⎨⎪⎩ (6)

where �xi � [x1(t), x2(t), . . . , xi(t)]T ∈ Ri represents the state
vector, �x � �xn ∈ Rn, fi(·): Ri ↦ R is an unknown Lipschitz
continuous function, y(t) and u(t) stand for the output signal and
input signal, respectively, and q(·): R ↦ R denotes a logarithmic
quantizer. It is assumed that only y(t) is measurable directly. Let yd(t)
be a referenced signal, and our objective is to design a suitable
controller for the system subject to input quantization so that the
output trajectory can track the referenced signal.
Assumption 1 yd(t) and Dϑ

t yd(t) are continuous and known.
Assumption 2 For ∀X1,X2 ∈ Ri, there exists an unknown
constant hi > 0 so that

|fi X1( ) − fi X2( )|≤ hi‖X1 − X2‖. (7)
The logarithmic quantizer is characterized as follows:

q u t( )( ) �
ujsign u t( )( ), uj

1 + ϱ< |u t( )|≤ uj

1 − ϱ,

0, |u t( )|≤ umin

1 + ϱ,

⎧⎪⎪⎨⎪⎪⎩ (8)

where j = 1, 2, /, umin > 0, ξ ∈ (0, 1), uj = ξ1−jumin, ϱ � 1−ξ
1+ξ is the

density of quantization, and umin
1+ϱ is the dead-zone of the quantizer.

It is obvious that q(u(t)) belongs to the set U = {0, ±uj}, and the
quantizer (8) satisfies the following properties:

|q u t( )( ) − u t( )|≤ ϱ|u t( )| + umin. (9)

3 MAIN RESULTS

Since all the states of the system are unmeasurable except the
output signal, it is essential to design an observer first.

3.1 Observer Design
Let �̂xi � [x̂1(t), . . . , x̂i(t)]T be the estimation of �xi, then system
(6) can be rewritten as

Dϑ
t �x � A�x +∑n

i�1
Bi fi �̂xi( ) + ~fi( ) + Eq u t( )( ),

y � CT�x,

⎧⎪⎪⎨⎪⎪⎩ (10)

where A �

0 1 / 0 0
0 0 1 / 0
..
. ..

. ..
. ..

. ..
.

0 0 0 / 1
0 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, Bi � [0, . . . , 0, 1︸︷︷︸

i−th
, 0, . . . , 0]T, C =

[1,0, . . . ,0]T, E = [0, . . . ,0,1]T, and ~fi � fi(�xi) − fi(�̂xi).

Remark 1. Since �xi is unknown, it cannot be used as the input of
the FLS to approximate fi(�xi). However, the estimation �̂xi can be
obtained from the observer. According to the definition of function
continuity, one has

lim
�̂xi→�xi

fi �̂xi( ) � fi �xi( ), (11)

which means that fi(�̂xi) can be approximated as fi(�xi) when the
estimation error is very small. It should be noted that fi(�̂xi) is also
an unknown function, so an FLS f̂i(�̂xi) whose input is �̂xi will be
defined to approximate fi(�̂xi) in the following analysis.

Consider the following FLS [35]:

f̂i �̂xi, Ŵ i( ) � Ŵ
T

i Ψi �̂xi( ), (12)
where Ŵ i � [ŵ1(t), ŵ2(t), . . . , ŵN(t)]T ∈ Ωcwi ⊂ RN is an
adjustable parameter vector, Ψi(�̂xi) �
[ψi1(�̂xi),ψi2(�̂xi), . . . ,ψiN(�̂xi)]T ∈ RN is the vector of fuzzy
basis functions (this study uses the Gaussian function), and N
is the number of fuzzy rules. Then,fi(�̂xi) can be approximated by
the FLS (12), and the optimal approximation is

fi �̂xi( ) � WpT
i Ψi �̂xi( ) + ϵi �̂xi( ), (13)

where Wp
i is the optimal parameter vector, and ϵi(�̂xi) is the

optimal approximation error. The optimal parameter vector Wp
i

is defined as

Wp
i � arg min

Ŵ i∈Ωcw

sup
�̂xi∈Ωcx̂i

fi �̂xi( ) − f̂i �̂xi, Ŵ i( )∣∣∣∣∣ ∣∣∣∣∣⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦, (14)

where Ωcwi and Ωcx̂i represent the compact sets
corresponding to Ŵ i and �̂xi, respectively. It should be
noted that W i′ is just considered for analysis purpose,
whose value is not required. Based on [36], it is
reasonable to assume that there exists an unknown
constant εi > 0 such that ϵi(�̂xi) meets |ϵi(�̂xi)|≤ εi.

The observer is designed as

Dϑ
t �̂x � �A�̂x +∑n

i�1
Bif̂i �̂xi( ) + Eq u t( )( ) +Ky t( ),

ŷ � CT �̂x,

⎧⎪⎪⎨⎪⎪⎩ (15)

where �A � A −KCT and K � [k1, . . . , kn]T is a design parameter
vector to ensure that �A is strict Hurwitz. Consequently, for an
arbitrary positive definite matrix Q, there exists a positive definite
matrix P such that

P �A + �A
T
P � −Q. (16)

Let ~x � �x − �̂x � [~x1(t), . . . , ~xn(t)]T be the estimation error
vector, then from Eq. 10 and Eq. 15, it can yield

Dϑ
t ~x � �A~x +∑n

i�1
Bi

~W
T

i Ψi �̂xi( ) + ϵi �̂xi( ) + ~fi( ), (17)

where ~W i � Wp
i − Ŵ i. Then, the observer (15) can be expanded

to the following form:
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Dϑ
t x̂i t( ) � ki~x1 t( ) + x̂i+1 t( ) + Ŵ

T

i Ψi �̂xi( ),
Dϑ

t x̂n t( ) � kn~x1 t( ) + q u t( )( ) + Ŵ
T

nΨn �̂x( ).
⎧⎨⎩ (18)

3.2 Controller Design
Based on the information derived from the observer, the final
controller will be given via the backstepping algorithm in this
part. The whole design process is divided into n steps.

Step 1: let e1(t) = x1(t) − yd(t), whose fractional order derivative
can be expressed by

Dϑ
t e1 t( ) � Dϑ

t x1 t( ) −Dϑ
t yd t( ) � f1 �x1( ) + x2 t( ) −Dϑ

t yd t( )
� f1 �̂x1( ) + ~f1 + x2 t( ) − x̂2 t( ) + x̂2 t( ) − α1 t( ) + α1 t( )

− αc1 t( ) + αc1 t( ) −Dϑ
t yd t( )

� f1 �̂x1( ) + ~f1 + ~x2 t( ) + e2 t( ) + α1 t( ) + αc
1 t( ) − α1 t( )( )

−Dϑ
t yd t( )

� W1*
TΨ1 �̂x1( ) + ϵ1 �̂x1( ) + ~f1 + ~x2 t( ) + e2 t( ) + α1 t( )

+ αc1 t( ) − α1 t( )( ) −Dϑ
t yd t( ),

(19)
where α1(t) is the first virtual control input, e2(t) � x̂2(t) − αc1(t),
and αc1(t) � γ1,1(t) is the filter output which comes from

Dϑ
t γ1,1 t( ) � β1γ1,2 t( ),

Dϑ
t γ1,2 t( ) � −2β1ζ1γ1,2 t( ) − β1 γ1,1 t( ) − α1 t( )( ),{ (20)

where γ1,1 (0) = α1 (0) and γ1,2 (0) = 0. In terms of Lemma 3, for
any μ1 > 0, there exist β1 > 0 and ζ1 ∈ (0, 1] such that |γ1,1(t) −
α1(t)| ≤ μ1 for all t > 0.

Choose the virtual control input α1(t) to be

α1 t( ) � −c1e1 t( ) − Ŵ1
TΨ1 �̂x1( ) +Dϑ

t yd t( ), (21)
where c1 > 0 is a design parameter. Substituting (21) into (19), one
obtains

Dϑ
t e1 t( ) � −c1e1 t( ) + e2 t( ) + ~W

T

1Ψ1 �̂x1( ) + ϵ1 �̂x1( ) + ~f1 + ~x2 t( )
+ αc1 t( ) − α1 t( )( ).

(22)
Let Ŵ1 be updated by the adaptation law

Dϑ
tŴ1 � r1e1 t( )Ψ1 �̂x1( ) − a1Ŵ1, (23)

where r1, a1 > 0 are design parameters.
Construct a Lyapunov function as

V1,1(t) � 1
2e

2
1(t) + 1

2r1
~W

T
1
~W1, then one can get

Dϑ
t V1,1 t( )≤ e1 t( )Dϑ

t e1 t( ) − 1
r1

~W
T

1D
ϑ
t Ŵ1 ≤ − c1e

2
1 t( ) + e1 t( )e2 t( )

+ |e1 t( )μ1| + |e1 t( )ε1| + |e1 t( )|h1‖~x‖ + e1 t( )~x2 t( )

+a1
r1

~W
T

1 Ŵ1. (24)

Utilizing Young’s inequality, one has

|e1 t( )μ1| ≤
η1
2
e21 t( ) + μ21

2η1
,

|e1 t( )ε1| ≤ η1
2
e21 t( ) + ε21

2η1
,

|e1 t( )|h1‖~x‖ ≤
η1
2
e21 t( ) + h21

2η1
~xT~x,

e1 t( )~x2 t( ) ≤
η1
2
e21 t( ) + 1

2η1
~xT~x,

a1
r1

~W
T

1 Ŵ1 ≤ − a1
2r1

~W
T

1
~W1 + a1

2r1
WpT

1 Wp
1,

(25)

where η1 > 0 is a constant. Hence, one gets

Dϑ
tV1,1 t( )≤ − c1 − 2η1( )e21 t( ) + e1 t( )e2 t( ) + h21 + 1

2η1
~xT~x + μ21

2η1

+ ε21
2η1

− a1
2r1

~W
T

1
~W1 + a1

2r1
WpT

1 Wp
1.

(26)
Step i (i = 2, . . . , n − 1): similar to the previous step, the ϑ-th

derivative of ei(t) is

Dϑ
t ei t( ) � Dϑ

t x̂i t( ) −Dϑ
tα

c
i−1 t( )

� ki~x1 t( ) + x̂i+1 t( ) + Ŵ
T

i Ψi �̂xi( ) −Dϑ
tα

c
i−1 t( )

� ki~x1 t( ) + x̂i+1 t( ) + αi t( ) − αi t( ) + αc
i t( ) − αc

i t( )
+ Ŵ

T

i Ψi �̂xi( ) −Dϑ
tα

c
i−1 t( )

� ki~x1 t( ) + ei+1 t( ) + αi t( ) + αc
i t( ) − αi t( )( ) + Ŵ

T

i Ψi �̂xi( )
−Dϑ

tα
c
i−1 t( ),

(27)
where αi(t) is the ith virtual control input,
ei+1(t) � x̂i+1(t) − αci(t), and αci(t) � γi,1(t) is the
corresponding filter output derived from

Dϑ
tγi,1 t( ) � βiγi,2 t( ),

Dϑ
tγi,2 t( ) � −2βiζ iγi,2 t( ) − βi γi,1 t( ) − αi t( )( ),{ (28)

where γi,1 (0) = αi (0) and γi,2 (0) = 0. Similarly, for any μi > 0,
there exist βi > 0 and ζi ∈ (0, 1] such that |γi,1(t) − αi(t)| ≤ μi for all
t > 0. We choose

αi t( ) � −ciei t( ) − ei−1 t( ) − Ŵ
T

i Ψi �̂xi( ) +Dϑ
tα

c
i−1 t( ) − ki~x1 t( ),

(29)
where ci > 0 is a design parameter. It follows from (27) and (29)
that

Dϑ
t ei t( ) � −ciei t( ) − ei−1 t( ) + ei+1 t( ) + αc

i t( ) − αi t( )( ). (30)
We design the adaptation law

Dϑ
tŴ i � riei t( )Ψi �̂xi( ) − aiŴ i, (31)

where ri, ai are positive design parameters. We select the
Lyapunov function as V1,i(t) � 1

2e
2
i (t) + 1

2ri
~W

T
i
~W i; then,
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Dϑ
tV1,i t( )≤ ei t( )Dϑ

t ei t( ) − 1
ri

~W
T

i D
ϑ
t Ŵ i

� −cie2i t( ) − ei−1 t( )ei t( ) + ei t( )ei+1 t( ) + ei t( ) αc
i t( ) − αi t( )( )

− 1
ri

~W
T

i D
ϑ
t Ŵ i

� −cie2i t( ) − ei−1 t( )ei t( ) + ei t( )ei+1 t( ) + ei t( ) αc
i t( ) − αi t( )( )

− ei t( ) ~WT

i Ψi �̂xi( ) + ai
ri

~W
T

i Ŵ i ≤ − cie
2
i t( ) − ei−1 t( )ei t( )

+ ei t( )ei+1 t( ) + |ei t( )μi| − ei t( ) ~WT

i Ψi �̂xi( ) + ai
ri

~W
T

i Ŵ i.

(32)
Because of the property that ∑N

j�1ψij(�̂xi) � 1, then one has
ΨT

i (�̂xi)Ψi(�̂xi)≤ 1. Using Young’s inequality, one has

|ei t( )μi| ≤
ηi
2
e2i t( ) + μ2i

2ηi
,

−ei t( ) ~WT

i Ψi �̂xi( ) ≤
ηi
2
e2i t( ) + 1

2ηi
~W

T

i
~W i,

ai
ri

~W
T

i Ŵ i ≤ − ai
2ri

~W
T

i
~W i + ai

2ri
WpT

i Wp
i ,

(33)

where ηi > 0 is a constant. Substituting (33) into (32), one obtains

Dϑ
tV1,i t( )≤ − ci − ηi( )e2i t( ) − ei−1 t( )ei t( ) + ei t( )ei+1 t( ) + μ2i

2ηi

− ai
2ri

− 1
2ηi

( ) ~W
T

i
~W i + ai

2ri
WpT

i Wp
i .

(34)
Step n: the ϑ-th derivative of en(t) is given by

Dϑ
t en t( ) � Dϑ

t x̂n t( ) −Dϑ
tα

c
n−1 t( )

� kn~x1 t( ) + q u t( )( ) + Ŵ
T

nΨn �̂x( ) −Dϑ
tα

c
n−1 t( ). . (35)

The controller u(t) is designed as

u t( ) � −tanh en t( )�u t( )
γ

( )�u t( ),

�u t( ) � 1
1 − ϱ −αn t( ) + χ tanh

χen t( )
γ

( )[ ],
αn t( ) � −cnen t( ) − en−1 t( ) − kn~x1 t( ) − Ŵ

T

nΨn �xn( ) +Dϑ
tα

c
n−1 t( ),

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(36)

where cn, γ > 0 are two design parameters and χ > umin is a
constant. Let the adaptation law of Ŵn be

Dϑ
tŴn � rnen t( )Ψn �̂xn( ) − anŴn, (37)

where rn, an > 0 are design parameters. Defining a Lyapunov
function as V1,n(t) � 1

2e
2
n(t) + 1

2rn
~W

T
n
~Wn and using (35), one has

Dϑ
tV1,n t( )≤ en t( )Dϑ

t en t( ) − 1
rn

~W
T

nD
ϑ
t Ŵn

� en t( )kn~x1 t( ) + en t( )q u t( )( ) + en t( )ŴT

nΨn �̂x( )
− en t( )Dϑ

tα
c
n−1 t( ) − 1

rn
~W

T

nD
ϑ
t Ŵn

� en t( )kn~x1 t( ) + en t( )q u t( )( ) + en t( )ŴT

nΨn �̂x( )
− en t( )Dϑ

tα
c
n−1 t( ) − en t( ) ~WT

nΨn �̂xn( ) + an
rn

~W
T

n Ŵn. (38)

Considering the term en(t)q(u(t)), multiplying |en(t)| on both
sides of Eq.9, invoking (36), and using the fact that |x| − x tanh (x/
γ) ≤ 0.2785γ, one has

en t( )q u t( )( )≤ en t( )u t( ) + ϱ|en t( )u t( )| + umin|en t( )|≤

− en t( )�u t( )tanh en t( )�u t( )
γ

( ) + ϱ en t( )�u t( )tanh en t( )�u t( )
γ

( )∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

+ umin|en t( )|

� − 1 − ϱ( )en t( )�u t( )tanh en t( )�u t( )
γ

( ) + umin|en t( )|≤

− 1 − ϱ( )|en t( )�u t( )| + umin|en t( )| + δ1 ≤ − 1 − ϱ( )en t( )�u t( )
+ χ|en t( )| + δ1

� en t( )αn t( ) + χ|en t( )| − χen t( )tanh χen t( )
γ

( )
+ δ1 ≤ en t( )αn t( ) + δ2

� −cne2n t( ) − en−1 t( )en t( ) − en t( )kn~x1 t( ) − en t( )ŴT

nΨn �xn( )
+ en t( )Dϑ

tα
c
n−1 t( ) + δ2,

(39)
where δ1 = 0.2785γ(1 − ϱ) and δ2 = 0.2785γ(2 − ϱ). Substituting
(39) into (38), one obtains

Dϑ
t V1,n t( )≤ − cne

2
n t( ) − en−1 t( )en t( ) − en t( ) ~WT

nΨn �̂xn( )
+ an
rn

~W
T

nŴn + δ2. (40)

Similar to (33), one has

−en t( ) ~WT

nΨn �̂xn( ) ≤
ηn
2
e2n t( ) + 1

2ηn
~W

T

n
~Wn,

an
rn

~W
T

n Ŵn ≤ − an
2rn

~W
T

n
~Wn + an

2rn
WpT

n Wp
n,

(41)

where ηn > 0 is a constant. Then,

Dϑ
t V1,n t( )≤ − cn − ηn

2
( )e2n t( ) − en−1 t( )en t( )

− an
2rn

− 1
2ηn

( ) ~W
T

n
~Wn + an

2rn
Wn*

TWn* + δ2. (42)

Therefore, based on the aforementioned analysis, the stability
analysis can be summarized as the following theorem.

Theorem 1 Consider system (6) under Assumptions 1–2. The
observer and quantizer are (15) and (8), respectively. The virtual
control inputs are given by (21) and (29), and the corresponding
filters are defined as (20) and (28). Consequently, the controller
(36) with the parameter adaptation laws (23) (31), and (37) can
guarantee that the tracking error e1(t) and the estimation error
~xi(t) converge to a small region near the origin and all the signals
remain bounded via selecting appropriate parameters.

Proof. Define a Lyapunov function as

V1 t( ) � ∑n
i�1

V1,i t( ). (43)
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By means of Eq. 26, Eq. 34, and Eq. 42, one has

Dϑ
tV1 t( )≤ − c1 − 2η1( )e21 t( ) −∑n−1

i�2
ci − ηi( )e2i t( ) − cn − ηn

2
( )e2n t( )

− a1
2r1

~W
T

1
~W1 −∑n

i�2

ai
2ri

− 1
2ηi

( ) ~W
T

i
~W i + h21 + 1

2η1
~xT~x + ε21

2η1

+∑n−1
i�1

μ2i
2ηi

+∑n
i�1

ai
2ri

WpT
i Wp

i + δ2 ≤ −∑n
i�1

ci − 2ηi( )e2i t( )

−∑n
i�1

ai
2ri

− 1
2ηi

( ) ~W
T

i
~W i + h21 + 1

2η1
~xT~x + ε21

2η1
+∑n−1

i�1

μ2i
2ηi

+∑n
i�1

ai
2ri

WpT
i Wp

i + δ2.

(44)
We define

V2 t( ) � 1
2
~xTP~x. (45)

From Eq. 17, one has

Dϑ
tV2 t( )≤ ~xTPDϑ

t ~x � ~xTP �A~x

+∑n
i�1

~xTPBi
~W

T

i Ψi �̂xi( ) + ϵi �̂xi( ) + ~fi( )
� 1
2
~xTP �A~x + 1

2
~xT �A

T
P~x

+∑n
i�1

~xTPBi
~W

T

i Ψi �̂xi( ) + ϵi �̂xi( ) + ~fi( )
� −1

2
~xTQ~x +∑n

i�1
~xTPBi

~W
T

i Ψi �̂xi( )
+∑n

i�1
~xTPBiϵi �̂xi( ) +∑n

i�1
~xTPBi

~fi.

(46)
Using Young’s inequality, one has

~xTPBi
~W

T

i Ψi �̂xi( ) ≤
κ

2
~xT~x + ‖P‖2

2κ
~W

T

i
~W i,

~xTPBiϵi �̂xi( ) ≤
κ

2
~xT~x + ε2i

2κ
‖P‖2,

~xTPBi
~fi ≤

κ

2
~xT~x + h2i

2κ
‖P‖2~xT~x.

. (47)

It follows from Eq. 46 and Eq. 47 that

Dϑ
tV2 t( )≤ − 1

2
λmin Q( ) − 3κn

2
− ‖P‖2

2κ
∑n
i�1

h2i⎛⎝ ⎞⎠~xT~x

+ ‖P‖2
2κ

∑n
i�1

~W
T

i
~W i + ‖P‖2

2κ
∑n
i�1

ε2i .

(48)

Let V(t) = V1(t) + V2(t), then from Eq. 44 and Eq. 48, one has

Dϑ
t V t( ) � Dϑ

t V1 t( ) +Dϑ
t V2 t( )≤

− 1
2
λmin Q( ) − 3κn

2
− ‖P‖2

2κ
∑n
i�1

h2i −
h21 + 1
2η1

⎛⎝ ⎞⎠~xT~x

−∑n
i�1

ci − 2ηi( )e2i t( ) −∑n
i�1

ai
2ri

− 1
2ηi

− ‖P‖2
2κ

( ) ~W
T

i
~W i

+ ‖P‖2
2κ

∑n
i�1

ε2i +∑n−1
i�1

μ2i
2ηi

+∑n
i�1

ai
2ri

WpT
i Wp

i +
ε21
2η1

+ δ2.

(49)
Setting the parameters to ensure

1
2λmin(Q) − 3κn

2 − ‖P‖2
2κ ∑n

i�1h
2
i − h21+1

2η1
> 0, ci − 2ηi > 0 and

ai
2ri

− 1
2ηi

− ‖P‖2
2κ > 0, one has

Dϑ
t V t( )≤ − aV t( ) + b, (50)

in which a � min (λmin(Q) − 3κn − ‖P‖2
κ ∑i�{ 1nh2i − h21+1

η1
)

λmax(P), 2(c1 − 2η1), . . . , 2(cn − 2ηn), a1 − r1
η1
− r1‖P‖2

κ , . . . , an− rn
ηn
−

rn‖P‖2
κ }, b � ‖P‖2

2κ ∑n
i�1ε2i +∑n−1

i�1
μ2i
2ηi

+ ∑n
i�1

ai
2ri
WpT

i Wp
i + ε21

2η1
+ δ2.

According to Lemma 2, there exist a constant c0 > 1 and a
constant t0 > 0 such that |V(t)|≤ c0b

a holds for all t > t0, which
means that all the signals including the tracking error e1(t) and
the estimation error ~xi(t) are bounded and converge to the origin
‖x‖≤

''
c0b
a

√
. ■

Remark 2 According to the principle of the backstepping
algorithm, the role of αi(t) is to act as the controller of the ith
subsystem, and αci(t) is the estimation of αi(t) derived form the
filter (28). As we all know, for the design controller of any system,
the value of its control input cannot be infinite, which means that
αi(t) and its corresponding filter output αci(t) are uniformly
continuous.

Remark 3 The advantages of the filter (28) can not only avoid
the “explosion of complexity” problem, but also release the
condition of Assumption 2 in [37] (the knowledge of Diϑ

t yd(t)
is needed). In this study, only the information of yd(t) andDϑ

t yd(t)
is required. In addition, the convergence speed of the filtered error
μi is faster than the dynamic surface of [10]. However, it should be
noted that μi can be decreased by increasing βi, but the parameter
drift problem will appear if βi is too large.

Remark 4 It can be seen from the definitions of a and b in
(50) that the range of ~xi(t) and e1(t) can be reduced by
increasing ci and ri, but more control energy will be
consumed if ci and ri are too large. Moreover, when a too
large ri is selected, the parameter drift problem may also occur.
For the sake of considering a trade-off between the control
performance and cost consumption, it is necessary to select the
proper parameters through simulation.

Remark 5 It is worth noting that the property (9) is possessed by
all sector-bounded quantizers, which means that our method is
valid for other forms of quantizers, such as hysteretic quantizers
and uniform quantizers.
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Remark 6 The scheme of designing a variable structure-
quantized controller introduced in [24] can also be applied to
our work. The main idea is based on the following properties
of (8):

u t( ) 1 − ϱ( )≤ q u t( )( )< u t( ) 1 + ϱ( ), u t( )> umin

1 + ϱ,

q u t( )( ) � 0, |u t( )|≤ umin

1 + ϱ,

u t( ) 1 + ϱ( )< q u t( )( )≤ u t( ) 1 − ϱ( ), u t( )< − umin

1 + ϱ.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(51)

Using the method of [24], the controller u(t) can be
designed as

u t( ) � sign en t( )( )⎡⎢⎢⎣ 1
1 − ρ

|cnen t( )| + |kn~x1 t( )| + |ŴT

nΨn �̂x( )|(

+|Dϑ
tα

c
n−1 t( )| + |en−1 t( )|) + umin

1 + ϱ
⎤⎥⎥⎦. (52)

Then, according to (51), one has

FIGURE 1 | (A) Tracking performance of the output y(t). (B) x1(t) and x̂1(t). (C) x2(t) and x̂2(t). (D) x3(t) and x̂3(t).

FIGURE 2 | (A) Control input u(t). (B) Quantized input q (u(t)).
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en t( )q u t( )( ) ≤ en t( )u t( ) 1 − ϱ( )
� −|en t( )| |cnen t( )| + |kn~x1 t( )| + |ŴT

nΨn �̂x( )|(
+|Dϑ

tα
c
n−1 t( )| + |en−1 t( )| + 1 − ϱ

1 + ϱumin)≤ − cne
2
n t( ) − |en t( )kn~x1 t( )|

− |en t( )ŴT

nΨn �̂x( )| − |en t( )Dϑ
tα

c
n−1 t( )| − |en−1 t( )en t( )|.

(53)
Substituting (53) into (38), one has

Dϑ
t V1,n t( )≤ − cne

2
n t( ) − |en−1 t( )en t( )| − en t( ) ~WT

nΨn �̂xn( )
+ an
rn

~WnŴ . (54)
Then, (42) can be rewritten as

Dϑ
tV1,n t( )≤ − cn − ηn

2
( )e2n t( ) − |en−1 t( )en t( )|

− an
2rn

− 1
2ηn

( ) ~W
T

n
~Wn + an

2rn
WpT

n Wp
n. (55)

The following analysis is the same as the proof of theorem 1.
The controller (52) is valid for controlling system (6), which will
be demonstrated in the simulation part; however, because there is
a discontinuous function sign (·) in (52), a serious chattering
phenomenon will occur.

4 SIMULATION RESULTS

In this section, a simulation example is provided to show the
performance of the proposed method, and this example will show
the superiority of our method in comparison with [24].

We consider the fractional-order Chua–Hartley’s chaotic system

D0.98
t x1 t( ) � 10

7
x1 t( ) − x3

1 t( )( ) + x2 t( ),
D0.98

t x2 t( ) � 10x1 t( ) − x2 t( ) + x3 t( ),
D0.98

t x3 t( ) � −99
7
x2 t( ) + q u t( )( ),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (56)

FIGURE 3 | (A) Control input u(t). (B) Quantized input q (u(t)).

FIGURE 4 | Comparative results between our approach and the method proposed by [24].
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where f1(�x1) � 10
7 (x1(t) − x3

1(t)), f2(�x2) � 10x1(t) − x2(t) and
f3(�x3) � −99

7 x2(t). For the purpose of simulation, three FLSs are
needed to approximate f1(�̂x1), f2(�̂x2), and f3(�̂x3) corresponding
to f1(�x1), f2(�x2), and f3(�x3), respectively. For the first FLS, the
input is x1(t), and three Gaussian membership functions which are
uniformly distributed on [ − 3, 3] are defined. Hence, three fuzzy rules
are used, and the initial condition of Ŵ1 is randomly chosen in R3.
For the second FLS, the inputs are x1(t) and x̂2(t), and for each input,
three Gaussian membership functions which are uniformly
distributed on [ − 5, 5] are used. Thus, nine fuzzy rules are used
in this FLS, and the initial condition of Ŵ2 is randomly chosen inR9.
For the third FLS, the inputs are x1(t), x̂2(t) and x̂3(t), and three
Gaussianmembership functions are definedwhich are the same as the
first FLS. Twenty seven fuzzy rules are used, and the initial condition
of Ŵ3 is randomly chosen in R27. The initial condition of (56) is
�x(0) � [0.6, 0.2, 0.3], and the referenced signal is yd(t) � 1

2 sin t.
The parameter selections are chosen as follows. First, we set c1 = 4

and c2 = 4 for the virtual inputs in (21) and (29), respectively; second,
we set c3 = 5, χ = 0.15 and γ = 1.5 for the controller in (36); third, we
setK= [k1, k2, k3] = [10, 30, 200] and �̂x(0) � [0, 0, 0] for the observer
in (15); fourth, we set r1 = r2 = r3 = 0.15 and a1 = a2 = a3 = 0.2 for the
parameter adaptation laws in (23), (31), and (37); fifth, we set β1 = β2
= 5 and ζ1 = ζ2 = 0.5 for the filter in (20) and (28), respectively; and
finally, we set umin = 0.1 and ξ = 0.5 for the logarithmic quantizer (8).

The simulation result of the tracking trajectory is presented in
Figure 1A. It is clear that ourmethod achieves a better control effect.
The real states of system 56) and the estimated states are shown in
Figures 1B–D. However, because of the existence of fuzzy errors, the
observer curves and the real state curves cannot be completely
consistent. The actual control input and the corresponding
quantized input are displayed in Figure 2A and Figure 2B,
respectively.

To reflect the superiority of our approach, the actual control
input and the corresponding quantized input by using the method
of [24] are depicted in Figure 3A and Figure 3B, respectively, and
the performance comparison between the twomethods is shown in
Figure 4. It can be seen that under the same parameter-setting
conditions, compared with [24], not only is the control effect
almost the same, but also the ability to save the control energy and
reduce the chattering has been greatly improved.

Remark 7 In this simulation, the step size is selected as h =
0.001s. In fact, since the use of the hyperbolic tangent function
instead of the function sign (·), the input of the controller is

continuous, so the chattering phenomenon does not exist
theoretically. If the step size is selected as h = 0.0001s, and γ is
increased, the chatting will be reduced to some extent.

5 CONCLUSION

The tracking control problem for strict-feedback FONSs with
unknown states and functional uncertainties has been
addressed in this study via the backstepping algorithm. To
decrease the data transmission pressure and make use of
communication channel effectively, a logarithmic quantizer
is considered in the controller design. With the help of the
fractional Lyapunov stability criterion, the tracking error and
the estimation error converge to a small region near the origin
and the boundedness of all the signals of the controlled plant
is guaranteed. However, on the one hand, because of the
existence of fuzzy errors, the control performance may be
affected. On the other hand, the chattering phenomenon
still exists. Hence, further work will focus on how to
improve the recognition accuracy of FLSs and eliminate
the chattering.
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