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Game theory offers techniques for applying autonomy in the field. In this mini-

review, we define autonomy, and briefly overview game theory with a focus on

Nash and Stackleberg equilibria and Social dilemma. We provide a discussion of

successful projects using game theory approaches applied to several

autonomous systems.
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1 Introduction: Autonomy and game theory

Autonomous systems are designed with tools to respond to situations that were not

anticipated during design; e.g., decisions; self-directed behavior; human proxies [12].

Autonomous systems likely follow rules like their human counterparts (e.g., laws,

commanders’ intents, etc.). This short review paper is intended to illustrate how game

theory can be effectively used in representative autonomous systems.

Game theory is the study of the ways in which interacting choices of agents produce

outcomes with respect to the preferences (or utilities) of those agents, where the outcomes

in question might have been intended by none of the agents [21].

A game represents situations in which at least one agent or player acts to maximize its

utility through anticipating the responses to its actions by one or more other agents. The

game provides a model of interactive situations among rational players. The key to game

theory is that one player’s payoff relies on the strategy used by the other player. The

structure of a game includes players and their preferences, the strategies available, and

outcomes of the strategies [32].

In the interaction of rational agents [3], non-cooperative game theory is an approach

often utilized to obtain intended objectives. The strategic game is the most used non-

cooperative game. For this game, only the strategies and outcomes available from a

combination of choices incorporated.

The strategy of an agent specifies the procedure based on how a player chooses their

actions. A solution concept is a well-specified set of rules used to predict how a game will

develop. For example, a Nash equilibrium is a solution concept and when agents have no

incentive to deviate from their selected actions, the game is in Nash equilibrium [23].

When agents or players opt for what they view as the most appropriate action to oppose

their opponent’s actions, it is termed a Nash equilibrium.

The strategic (or normal form) game is typically represented by a matrix which shows

the players, strategies, and payoffs (Table 1). It can be represented by a function that
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associates a payoff for each player with every possible

combination of actions. For example, for two players and a

game matrix: one player chooses the row and the other

chooses the column. As determined by the number of

columns and rows, there are two strategies determined for

each agent/player. The payoffs are provided in the

intersections. The row/column intersections contain the

payoffs as a pair of values. The first value is the payoff for a

row player and the second is payoff for a column player. When

each agent or player in the game performs simultaneous actions

or is at least ignorant of another player’s actions, the game is in

normal form.

For example, in the prisoner’s dilemma [18], each prisoner can

either “confess” or be “silent”. If exactly one prisoner confesses, their

sentence is less and the other prisoner has a longer sentence.

However, if they both confess, they both have shortened

sentences. Hence we see that confess is strictly dominated by

silent. This can be seen by comparing in Table 1, the first

numbers in each column, in this case 0 > −1 and −2 > −5. This

comparison shows that no matter what the column player chooses,

the row player does better by choosing silent. Also when for every

row the second payoff is examined, we see the same options, the

values compared are the same: 0 > −1; −2 > −5. This shows that no

matter what choice row player does, column is better by choosing

silent. This demonstrates that the unique Nash equilibrium of this

game is (silent, silent).

2 Robotic applications

Several projects have considered the utilization of game

theory for applications in robotics. First we can examine a

cooperative situation in which robots agree on strategies that

may involve sacrifices by all to have a lower overall cost but still

achieve their goals. However, every robot must take into account

that the other robots are also trying to resolve their goals

independently, which is termed a non-cooperative situation.

An equilibrium solution occurs when, by taking account the

possibilities of other robots performing operations in conflict

with its goals, the robot selects its actions.

One example of this in the context of a complicated set of

corridors is how to provide for autonomous coordination of two

robots. The robots have independent goal locations and initial

locations. The conflicts arise when robots need to occupy the

same corridors at the same point in time while traversing their

optimal paths. Game theory provides a solution suitable for both

robots. However, the same choices for an individual robot may be

less than optimal [19].

A multi-robot searching task can be modeled as a

multiplayer cooperative nonzero-sum game. The robotic

players choose their strategies simultaneously at the

beginning of the game. Although the overall process of

searching is dynamic, it can be treated as a sequence of

static games at each discrete point in time. The players must

resolve a non-zero sum static game for every discrete interval.

This process follows if, with conditioned probability, that

observations by the other team are available.

Specifically a game-theory based strategic searching

approach has been developed for cooperation of a multi-robot

system performing a searching task. To consider the interactions

between robots, dynamic programming estimated the utility

function, based on using the a priori probability map, travel

costs, and the other robots’ current state. Based on this utility

function, a utility matrix was developed for an N-robot non-zero-

sum game, where both pure Nash and mixed-strategy equilibria

were applied to guide the robots to their decisions [22].

A distributed decision-making approach to the problem of

control effort allocation to robotic team members in a warehouse

has been designed [27]. In this approach, coordination of the

robotic team in completing a task in an efficient manner was the

objective. A controller design methodology was developed which

allowed the robot team to work together based on game theoretic

learning algorithms using fictitious play and extended Kalman

filters. In particular, each robot of the team predicts the other

robots’ planning actions while making decisions to maximize its

own expected reward that is dependent on the reward for joint

completion of the task. The algorithm was successfully tested on

collaborations for material handling and for patrolling robots in

warehouses.

In [8], a game theory-based negotiation is utilized for

allocating functions and tasks among multiple robots. After

the initial task allocation, a new approach employing utility

functions was developed to choose the negotiation robots and

construct the negotiation set. All the robots have various tasks

and the problem is assigning jobs to them minimizing costs and

without conflicts. There are m robots and n tasks and xij indicates

if the job Ji is allocated to robot Rj. Then the objective is to

minimize overall cost

Min
m

j�1
⎛⎝φj

⎛⎝∑n
i�1
wijxij⎞⎠⎞⎠ where ∑n

i�1
wijxij ≤Cj ·j− ·j

where Cj is max cost allowed for Rj and wij is max cost for job Ji
assigned to Rj. φj is a design objective function.

TABLE 1 Prisoners’ game matrix.

Player 1 Confess Silent

Player 2

Confess −1, −1 −5, 0

Silent 0, −5 −2, −2
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3 Autonomous/self-driving cars

There has been extensive use of game theory to control self-

driving cars. For cars, decisions are constantly interacting

between drivers and roadways, composing a game-theoretic

problem. Accurately planning through road interactions is a

safety-critical challenge in autonomous driving [13]. To deal

with the mutual influence between autonomous vehicles and

humans with computational feasibility, a game structure

provided the authors a hierarchical framework. Their design

accounted for the complex interactions with lane changing, road

intersections and roundabout decisions.

The road decisions of autonomous vehicles interact with the

decisions of other drivers/vehicles. Decisions include passing

another car, road merging or accident avoidance. This mutual

dependence, best captured by dynamic game theory, creates a

strong coupling between the vehicle’s planning and its

predictions of other drivers’ behavior. The basic approach in

[13] considers one human driver, H, and one autonomous

vehicle, A. The dynamics of their joint state is xt and xt+1 is

the expression of its evolution

xt+1 � f(xt, utA, utH)
where uA

t , uH
t are the driving actions of the human and

autonomous vehicles.

The system must maximize an objective that depends on the

evolution of the vehicles over a finite time. The reward function

RA captures specifications of the vehicle’s behavior such as fuel

consumption, safety, etc. It is the cumulative return for t = 0:N,

Max [RA (x0: N , u0: NA , u0: NH ) � ∑N
t�0
ra (xt, utA, utH )]

3.1 Autonomous vehicle lane changes

Another project considers a particular urban traffic scenario

in which an autonomous vehicle needs to determine the level of

cooperation of the vehicles in the adjacent lane in order to change

a lane [26]. Smirnov’s team developed a game theory-based

decision-making model for lane changing in congested urban

intersections. As input, driving parameters were related to

vehicles in an intersection before a car stopped completely.

For game players to enhance and protect their independent

interests, strategies must consider mutual awareness of the

situation and the predicted outcomes. The authors reported

that non-cooperative dynamic games were the most effectively

used for lane-changing

Differential games were used to design a fully automated

lane-changing and car following control system [35]. Decisions

computed the vehicles under control minimized costs for several

undesirable/unexpected situations. Evaluations of the discrete

and continuous control variables for lane-changes and

accelerations were simulated. To provide optimal lane

changing decisions and speed-ups, they used both cooperative

and non-cooperative controllers.

A mandatory lane-changing decision-making model [2] was

designed based on game theory for a two-player nonzero-sum

non-cooperative game under incomplete information. Using the

Harsanyi transformation [16], they transformed the model into a

game that contained imperfect information to cover traditional

and connected environments given complete and incomplete

information inputs. They restructured the game with incomplete

information to an imperfect information game

3.2 Intersection problems

A decision-making model based on a dynamic non-

cooperative game was also used to investigate lane changing

in an urban scenario of a congested intersection [29]. The game’s

results can be predicted if each vehicle maximizes its payoff in the

interaction. For this approach the context proposed was

management of traffic with red lights at two-lane road

intersections.

In [15] the authors developed an approach to mimic human

behavior. In their project, various styles of driving operation were

assessed using utility functions involving safety of driving, comfort

of riding and efficiency of total travel routing. They used non-

cooperative games for Stackleberg and Nash equilibria [25]. They

concluded that the algorithms developed performed the proper

decisions under different driving situations. They also tested two

scenarios to change lanes, i.e., merging and overtaking, to evaluate

the feasibility and effectiveness of the proposed decision-making

framework for different human behaviors. Their experimental

evaluations showed that decision-making for autonomous

vehicles similar to observed human behaviors can be achieved

using both game theory approaches. In situations modeling

ordinary styles of driving, the Stackleberg equilibrium game

compared to Nash equilibria reduced the cost value by 20 percent.

A model of cooperative behavior strategy in conflict

situations between autonomous vehicles in roundabouts has

used game theory [4]. Roundabout intersections promote a

more efficient and continuous flow of traffic. Roundabout

entries move traffic through an intersection quickly and with

less congestion for intersections. They can be managed more

effectively using cooperative decisions by autonomous vehicles.

This approach leads to shorter waiting times and more efficient

traffic control while following all traffic regulations.

For roundabouts, well defined rules of the road dictate how

autonomous vehicles should interact in traffic [17]. A game

strategy based on the prisoner’s dilemma has been used [4]

for such roadways. The entry problem for roundabouts has

been solved using non-zero sum games to yield shorter

waiting intervals for each individual car.
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3.3 Open road autonomy

For autonomous vehicles in uncomplicated environments

with few interactions, mapping and planning is well developed

[28]. However, the unresolved problems are the complexities of

human interactions on the open road. Still, this approach

presents a model for negotiation between an autonomous

vehicle and another vehicle at an unsigned intersection or

(equivalently) with a pedestrian at an unsigned road-crossing

(i.e., jaywalking), using discrete sequential game [14]. In this

model if only car location indicates intent, a non-zero collision

probability provides optimal behavior for both vehicles. They

also concluded that to reduce probabilities of collisions,

alternative forms of control and signal usage should be

considered for autonomous vehicles.

4 Aerial and underwater autonomous
vehicles

A game theoretic real time planning approach for an

autonomous vehicle (e.g., an aerial drone) for competitive

races against several opponents over a race course while

accounting for opponents’ decisions has been developed [34].

It uses an iterative best-response scheme with a sensitivity term

to find approximate Nash equilibria in the space of multiple

robot trajectories. The sensitivity term develops Nash equilibria

that provide an advantage to individual robots. Through

extensive multi-player racing simulations, where the planner

exhibits rich behaviors like blocking, overtaking, nudging or

threatening, it demonstrated behaviors similar to human racers.

Modeling the interactions of agents that are risk sensitive is

important to allow more real-world and efficient agent behavior.

During interactions, the extent to which agents exhibit risky

maneuvers is not solely determined by their risk tolerance; it also

depends on the risk-sensitivity of their opponents. Agent

interactions involving risk were modeled in a game-theoretical

framework [20]. By being aware of the underlying risks during

interactions, this approach leads to safer behaviors by being at a

farther distance from other agents [33]. Anticipating feedback in

game-theoretic interactions leverages other agent’s risk-

awareness to plan for safe and time-efficient trajectories.

An important related issue that can arise is that use of “best

responses” may have a potential downside. That is in some

situations, cooperation can involve possibly violating certain

ethical rules [10] and has engendered discussions recently

about self-driving cars and autonomous weapons. This can

also be considered from the point of view whether user stress

has an effect. It has been shown that even with the increased

cognitive load such as during stressful situations, individuals are

generally honest [24] and this aspect can be significant in game

theory modeling of human and autonomous systems

interactions. It is important that such issues be considered in

system designs as there will be ever more various autonomous

systems and their human interactions involved in the future.

4.1 Applications of unmanned aerial
vehicles

Autonomous unmanned aerial vehicles can be tasked to

search an unknown/uncertain environment, and neutralize

targets perceived as threats. This problem can be formulated

by issues that a uav faces when it detects multiple such targets and

needs to decide which target to neutralize, given the uncertainty

over the decisions of its opponents [5], in a game theoretic

framework. Bardhan and colleagues use a correlated equilibrium

concept based decentralized game theoretic solution that requires

local information of the uavs.

Another game was designed [31] for a swarm (group) of

autonomous uavs, where each uav is tasked with collecting

information from an area of interest. In this setting, a mission

needs to maximize the amount of information collected by uavs.

This is formulated by dividing the region of interest into discrete

cells, each having potential information value. Each selfish uav

(i.e., player) makes the simplest decision for itself by selecting a

path among available choices (i.e., strategies) it will fly. So each

player or uav behaves selfishly by choosing the best choice of

available paths. Game payoffs are determined using information

fusion for aggregating information from the multiple uavs

operating at multiple locations. Efficiency of a mission is the

ratio of an optimal output to a pure strategy Nash equilibrium for

the corresponding game.

Stackelberg games can obtain flight routes for uavs operating

in areas with malicious opponents using gps spoofing attacks to

divert uavs from their chosen flight paths [11]. In a Stackelberg

game between a uav acting as the game leader and a gps spoofer,

the leader chooses a group of uavs to protect, after which the

spoofer opponent determines its actions by observing the choice

of the leader. Strategies during this game reflect abilities of each

uav group to estimate its location using positions of its nearby

uavs, allowing it to succeed to gain a destination despite ongoing

gps spoofing attacks.

4.2 Autonomous underwater vehicles

Autonomous underwater vehicles multi-vehicle coordination

and cooperation has been formulated with game theory. Very

simple games have been used [7] to stably steer an auv formation

in its position underwater that is the best compromise between

target destination of each vehicle and preservation of

communication capabilities among all of the vehicles due to

limits on underwater communications.

A specific type of security game is a Stackelberg Security

Game [30]. A key concept in this type of security game is a
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leader-follower framework for strategies for underwater auv

patrols. In the real world, it can be assumed that any security

pattern can be exploited by attackers beforehand through

reconnaissance. Thus, security patrols must have a certain

degree of randomness while maintaining their efficiency. The

leader will commit to an optimal policy and the follower will find

an optimal policy after observing the leader’s actions. The

leader’s policy, x, a probability distribution over the leader’s

pure strategies where xi is the percentage of times strategy i was

used in the policy. Then q and qj are the follower’s optimal policy

and strategy j’s percentage in response to the leader’s strategy. Rij

and Cij are the reward matrices of the leader and follower

respectively when the leader commits to strategy i, and the

follower strategy j [9]. The leader will then solve the following

Mixed Integer Quadratic Problem:

Max
x,q,a

⎡⎢⎢⎣∑
i∈X

⎛⎝∑
j∈Q

CijXiqj⎞⎠ ⎤⎥⎥⎦
0≤⎛⎝a −∑

i∈X
Cij xi⎞⎠≤ (1 − qj)M∀j ∈ Q

X and Q are index sets of leader’s and follower’s strategies, M

is a large positive number and a ∈A is the follower’s maximum

reward.

5 Conclusion

We have provided a mini-review illustrative but not

exhaustive of successful autonomy applications of game theory

based onNash, Stackleberg and social dilemmas. There are recent

research developments in game theory that can enhance such

applications. Mean-field (MF) game theory [6] is a model created

to deal with an environment where several participants interact

smoothly. Standard game theories are used to deal with how two

participants interact with each other. MF however describes one

participant deals with a group of others. Due to the complexity of

interactions between participants, the original theory was

nonapplicable to large groups but using mean-field game

theory, situations involving large groups can be solved quickly

and easily. Another new approach is evolutionary game theory

which focuses on evolutionary dynamics that are frequency

dependent [1, 36]. The fitness payoff for a particular

phenotype depends on population composition. Classical

game theory focuses largely on the properties of the equilibria

of games. A central feature of EGT is a focus on dynamics of

strategies and their composition in a population rather than on

properties of equilibria.
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