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Unlike classical correlation, quantum entanglement cannot be freely shared among many
parties. This restricted shareability of entanglement among multi-party systems is known
as monogamy of entanglement, which is one of the most fundamental properties of
entanglement. Here, we summarize recent theoretical progress in the field of monogamy of
entanglement. We firstly review the standard CKW-type monogamy inequalities in terms of
various entanglement measures. In particular, the squashed entanglement and one-way
distillable entanglement are monogamous for arbitrary dimensional systems. We then
introduce some generalized version of monogamy inequalities which extend and sharpen
the traditional ones. We also consider the dual polygamy inequalities for multi-party
systems. Moreover, we present two new definitions to define monogamy of
entanglement. Finally, some challenges and future directions for monogamy of
entanglement are highlighted.
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1 INTRODUCTION

Quantum entanglement has been recognized as the most important resource in many quantum
information processing tasks [1–3]. One of the essential differences between quantum entanglement
and classical correlation is that quantum entanglement cannot be freely shared among many parties.
For example, in a multi-party state, if two parties are maximally entangled, then none of them can
share entanglement with any part of the rest of the system. This restriction of entanglement
shareability among multi-party systems is known as the monogamy of entanglement (MOE) [4, 5].

Since the MOE restricts on the amount of information that an eavesdropper could potentially
obtain the secret key extraction, it is a crucial property that guarantees quantum key distribution
secure [3, 4, 6]. MOE also has many fundamental applications in other areas of physics, including
classification of quantum states [7–9], no-signaling theories [10], condensed-matter physics [11–13],
statistical physics [14] and even black-hole physics [15].

An important basic question in the study of MOE is to determine whether a given entanglement
measure is monogamous. Usually, there are several ways to define the monogamy property of
entanglement measure. Originally, a monogamy relation of entanglement measure E is quantitatively
displayed as an inequality of the following form

E ρA|BC( )≥E ρA|B( ) + E ρA|C( ) (1)
where E(ρA|BC) is an entanglement measure quantifying the degree of entanglement between
subsystems A and BC, and E(ρA|B) (E(ρA|C)) is the bipartite entanglement between A and B (A
and C) (See Figure 1 for a graphical representation). This inequality means that the sum of
entanglement between A and each of the other parties B or C cannot exceed the entanglement
between A and BC. Using squared concurrence (SC) as an entanglement measure, Coffman, Kundu
andWootters (CKW) proved the first monogamy inequality for three qubit states [16] which we shall
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refer to as the CKW inequality. The CKW inequality was later
generalized by Osborne and Verstraete for arbitrary multi-qubit
system. It should be noticed that the entanglement of formation
(EOF), when not squared, does not obey the monogamy relation
given by Eq. 1 [17]. Besides SC, it was further proven that similar
monogamy inequality can be established for the squared
entanglement of formation (SEF) [18, 19], Rényi-α
entanglement (RαE) [20], the squared Rényi-α entanglement
(SRαE) [21], Tsallis-q entanglement (TqE) [22], the squared
Tsallis-q entanglement (STqE) [23, 24], and unified-(q, s)
entanglement [25]. The establishment of these inequalities
depends on monogamy inequality of SC. In this sense, these
inequalities can be classified into concurrence-based monogamy
relations. For high-dimensional systems, it has been shown that
monogamy inequality of SC can be violated due to the existence
of counterexamples [26, 27]. At present, it is still unclear whether
other concurrence-based monogamy relations hold in high-
dimensional systems.

Another way to generalize the CKW inequality is using
negativity [28] or convex-roof extended negativity (CREN)
[26], and CREN is a good candidate for MOE without any
known example violating its CKW-type inequality even in
higher-dimensional systems [26]. More recently, Gao et al [29]
established a class of CKW-type monogamy inequalities based on
the μ-th power of logarithmic negativity and logarithmic convex-
roof extended negativity (LCREN). The CKW-type inequality
was also generalized to other entanglement measures, such as
squashed entanglement [30, 31], one-way distillable
entanglement [30] and continuous-variable entanglement
[32–34]. Among them, the squashed entanglement and one-
way distillable entanglement fulfill Eq. 1 for arbitrary
dimensional systems. Furthermore, other types of monogamy
relations were presented in Refs. [35–51]. In particular, Regula
et al [52, 53] have proposed a set of strong monogamy (SM)
inequalities sharpening the conventional CKW-type inequality.
For the validity of SM inequality, an extensive numerical evidence
was presented for four qubit pure states together with analytical
proof for some cases of multi-qubit systems.

On the other hand, the polygamous property can be regarded
as another kind of entanglement constraints in multi-qubit
systems, and Gour et al [54] established the first dual
polygamy inequality for multi-qubit systems using concurrence
of Assistance (CoA). Subsequently, polygamy inequalities was
generalized into various entanglement measures [55–64].

However, the main problem with the definition of monogamy
in Eq. 1 is that their validity is not universal, but depends on the
specific choice of E. Moreover, several important measures of
entanglement do not satisfy the relation (1). Therefore, the

summation in the right-hand sides of Eq. 1 is only a
convenient choice and not a necessity. To overcome this
problem, one attempt is to replace Eq. 1 with a family of
monogamy relations of the form E(ρA|BC) ≥ f (E (ρA|B), E (ρA|
C)), where f is some function of two variables that satisfies certain
conditions [65]. Another approach is based on the definition of
monogamy relations without inequalities introduced in Ref. [66].
According to this definition, we can reproduce the traditional
monogamy relations similar to Eq. 1 by replacing E with Eα for
some α > 0.

In this review, we focus on introducing theoretical advances on
monogamy of quantum entanglement but not include the topic of
quantum correlations, see Ref. [67] for the summary of recent
advances in monogamy of quantum correlations. In Sec.II, we
firstly review the standard CKW-type monogamy inequalities in
terms of various entanglement measures. In Sec.III, we then
introduce some other types of monogamy inequalities which
extend and sharpen the existing ones. In Sec.IV, we focus on
reviewing the dual polygamy inequalities for multi-qubit systems.
The new definitions of MOE are discussed in Sec.V. Finally, in
Sec. VI, we give some concluding remarks.

2 CKW-TYPE INEQUALITIES

In this section we briefly review the CKW-type monogamy
inequality and we divide them into three categories according
to different entanglement measures.

2.1 Concurrence-Based Inequalities
We start by recalling the monogamy inequality introduced by
Coffman, Kundu andWootters (CKW) [16] for three-qubit states

C2 ρA|BC( )≥C2 ρA|B( ) + C2 ρA|C( ) (2)
where C2 denote the squared concurrence for quantifying
bipartite entanglement. For an arbitrary two-qubit state,
concurrence is defined as [68, 69] C(ρ) = max{0, λ1 − λ2 − λ3
− λ4}, in which λ1, λ2, λ3, λ4 are the square root of the eigenvalues
of the matrix ρ(σy ⊗ σy)ρ*(σy ⊗ σy)in decreasing order, σy is the
Pauli spin matrix and ρ* denotes the complex conjugate of ρ.
Usually, Eq. 2 is termed as CKW inequality, and it shows a
tradeoff relation between the amount of entanglement shared by
qubits A and B and the entanglement shared by qubits A and C.
For three-qubit pure states, the difference between left and right-
hand sides of Eq. 2 is interpreted as a genuine three-qubit
entanglement measure, three tangle. It has been proved that
three-tangle is an entanglement monotone, and the
generalization of the three-tangle to mixed states can be
obtained by the convex roof method [70–72]. Later, CKW
inequality was generalized to the multi-qubit case,
C2(ρA|B1...Bn−1)≥C2(ρA|B1

) +/ + C2(ρA|Bn−1), in which
C2(ρA|B1...Bn−1) quantifies bipartite entanglement in the
partition A|B1. . .Bn−1, and C2(ρA|Bi

) characterizes the two-
qubit entanglement with i = 1, 2, . . ., n − 1. Unfortunately,
the CKW inequality is violated if we use EOF instead of SC. In
order to obtain a similar monogamy inequality, Bai et al [18]

FIGURE 1 | (color online). Schematic picture of the CKW-type
monogamy relation described by Eq. 1.
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proved that the squared entanglement of formation (SEF) obeys
the CKW-type monogamy relation for an arbitrary multi-qubit
mixed state. Based on this new monogamy relation, they further
constructed entanglement indicators which detect genuine
multiqubit entanglement even in the case of three-tangle being
zero. Another generalization is using RαE which is a well-defined
entanglement measure introduced in Ref. [20]. For a bipartite
pure state |ψ〉AB, the RαE is defined as

Eα |ψAB〉( ) ≔ Sα ρA( ) � 1
1 − α

log2 trραA( ) (3)

where the Rényi-α entropy is Sα(ρA) � [log2(∑iλ
α
i )]/(1 − α) with α

being a nonnegative real number and λi being the eigenvalue of
reduced density matrix ρA. The Rényi-α entropy Sα(ρ) converges to
the von Neumann entropy when the order α tends to 1. For a
bipartite mixed state ρAB, the RαE is defined via the convex-roof
extension Eα(ρAB) � min∑ipiEα(|ψiAB〉), where the minimum is
taken over all possible pure state decompositions of

ρAB � ∑
i
pi|ψi〉AB〈ψi|. It is shown that RαE obeys the CKW-type

inequality for α ≥ 2, but this monogamy relation does not cover the
case of EOF, which corresponds to RαE with the order α = 1.
Subsequently, Song et al [21] proved that the SRαE with the order
α≥

�
7

√ − 1/2 ≃ 0.823 obeys a general monogamy relation in an
arbitrary multi-qubit mixed state. This result provides a broad
class of monogamy inequalities including the monogamy relation
of the SEF as a special case. Recently, CKW-type inequalities in terms
of TqE, STqE and unified-(q, s) entanglement for arbitrary multi-
qubit mixed state have also been proved in [22–25]. The above
discussed monogamy inequalities are termed as concurrence-based
inequalities since their validity are conditioned on the truth of the
monogamy inequality of SC. Moreover, it has been shown that the μ
th (μ ≥ 2) power of concurrence and the μ th(μ≥ �

2
√ ) power of EOF

satisfy the monogamy inequalities, respectively [39]. In addition,
Kumar showed in Ref. [74] that monogamy is preserved for raising
the power and polygamy is maintained for lowering the power, and
this result has also been pointed our in the earlier paper [75]. The
CKW inequality is invalid for higher-dimensional systems due to the
existence of counterexamples for states in the systems 3 ⊗ 3 ⊗ 3 [27]
and 3 ⊗ 2 ⊗ 2 [26]. It is still an open problem yet to be answered
whether other concurrence-based monogamy relations hold in high-
dimensional systems since the exact formula for these cases are
missing.

2.2 Negativity-Based Inequalities
Another well-known bipartite entanglement measure is
negativity [76? ]. It is a rare entanglement measure which is
easy to compute for pure as well for mixed bipartite states. For
any bipartite state ρAB in the Hilbert space HA ⊗ HB, the
negativity is defined by

N ρAB( ) � ‖ρTA
AB‖ − 1
2

(4)

where ρTA
AB is the partially transposed matrix of ρAB with respect to

the subsystem A, ‖X‖ � Tr
����
XX†

√
denotes the trace norm of X. In

order for any maximally entangled state in 2 ⊗ 2 systems to have

the negativity one, we use the following definition of negativity:
N (ρAB) � ‖ρTA

AB‖ − 1. It has been shown that for any pure three-
qubit state, the squared negativity satisfies the following CKW-
type monogamy inequality [28]

N 2 ρA|BC( )≥N 2 ρA|B( ) +N 2 ρA|C( ) (5)
where N 2(ρA|B) and N 2(ρA|C) are the negativities of the mixed
states ρAB and ρAC, respectively. For any n-qubit pure states, the μ-
th (μ ≥ 2)power of negativity satisfies the monogamy inequality
[77]: N μ

A|B1...Bn−1(|ψ〉)≥N
μ
A|B1

+/ +N μ
A|Bn−1 . The definition in

Eq. 3 cannot distinguish positive partial transposition (PPT)
bound entangled states [78–80] from separable states, and for
a bipartite mixed state, its convex roof extended negativity
(CREN) is modified as [26]

N c ρA|B( ) � min∑
k

pkN |ϕk〉A|B( ) (6)

where the minimum is taken over all possible pure state

decompositions of ρAB � ∑
k
pk|ϕk〉AB〈ϕk|. CREN provides a

perfect discrimination of PPT bound entangled states and
separable states in any bipartite quantum system. For an
arbitrary n-qubit state ρAB1...Bn−1, the square of CREN
satisfies the following monogamy inequality:
N 2

c(ρA|B1...Bn−1)≥N 2
c(ρA|B1

) +/ +N 2
c(ρA|Bn−1). This inequality

still holds for the counterexamples that violate CKW
inequality in higher dimensional systems. Further
generalization for the μ-th power of CREN has been shown
in Ref. [81]. Recently, Gao et al [29] generalized the concept of
logarithmic negativity [76] to logarithmic convex roof
extended negativity (LCREN). For any bipartite state ρAB,
LCREN is defined as

EN c ρAB( ) � log2 N c ρAB( ) + 1[ ] (7)
and Gao et al have shown that LCREN is an entanglement
monotone under LOCC operations but not convex. For any n-
qubit pure state |ψ〉AB1...Bn−1, the μ-th power of logarithmic
negativity obeys the CKW-type inequality
Eμ
N (ρA|B1...Bn−1)≥Eμ

N (ρA|B1
) +/ + Eμ

N (ρA|Bn−1) for μ≥ 4
�
2

√
, and

similar monogamy inequality also holds for arbitrary n-qubit
state ρAB1...Bn−1 in terms of LCREN. These results indicate that
entanglement measure without convexity can also obey the
monogamy inequality.

2.3 Other CKW-Type Inequalities
We now summarize other CKW-type inequalities in terms of
various entanglement measure. Firstly, we consider the
squashed entanglement introduced in Refs. [82, 83], which is
the first additive measure with good asymptotic properties. It is
defined as

Esq ρAB( ) � inf
1
2
I A: B|E( ): ρAB � TrE ρABE( ){ } (8)

where the infimum is taken over all extensions ρABE of the state
ρAB and I (A: B|E) = S (ρAE) + S (ρBE) − S (ρABE) − S (ρE) is the
conditional quantum mutual information. For any tripartite state
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ρABC, Koashi and Winter [30] have proved that squashed
entanglement obeys the following CKW-type inequality:

Esq ρA|BC( )≥Esq ρA|B( ) + Esq ρA|C( ) (9)
and the above form of inequality is also true for the one-way
distillable entanglement introduced in Ref. [30]. Although
squashed entanglement and one-way distillable entanglement
satisfies the CKW inequality for arbitrary dimensional systems,
there is no analytical formula to calculate these entanglement
measures.

The CKW-type inequality has also been generalized to the
continuous variable systems. By introducing the continuous-
variable (CV) tangle (contangle) to quantify entanglement
sharing in Gaussian states, Adesso et al [32]proved the
monogamy inequality for arbitrary three-mode Gaussian states
and for symmetric n-mode Gaussian states. Here, contangle is
defined as the convex roof of the square of the logarithmic
negativity. Moreover, Hiroshima et al have generalized the
monogamy inequality to all n-mode Gaussian states of in
terms of squared negativity [33].

3 STRONG MONOGAMY INEQUALITIES

In this section we focus on reviewing some generalized version of
monogamy relation. It is well known that tightening the
monogamy inequalities can provide a precise characterization
of the entanglement sharing and distribution in multipartite
systems, thus it is important to find tight monogamy
inequalities for various entanglement measure. We first
consider the strong monogamy (SM) inequality introduced by
Regula et al [52]. For an n-qubit pure state |ψ〉, it was conjectured
that the following inequality holds:

τ |ψ〉A1 |A2 ...An
( )≥ ∑n−1

m�2
∑
�j
m

τ ρA1 |Ajm
1
|...|Ajm

m−1
( )m

2

(10)

where the index vector �j
m � (jm1 , . . . , jmm−1) spans all the ordered

subsets of the index set {2, . . ., n} with m − 1 distinct elements,
and τ(ρA1|Ajm

1
|...|Ajm

m−1
) is defined as

τ ρA1 |Ajm
1
|...|Ajm

m−1
( )

� min
ph,|ψh〉{ } ∑h ph

�����������������
τ |ψh〉A1|Ajm

1
|...|Ajm

m−1
( )√⎡⎣ ⎤⎦2 (11)

with the minimization over all possible pure state decompositions

ρA1Ajm
1
...Ajm

m−1
� ∑hph|ψh〉A1Ajm

1
...Ajm

m−1
〈ψh|. The right side of Eq. 10

appears in between the both side of the n-qubit CKW inequality,
therefore it is a stronger inequality. The difference between left
and right hand side of Eq. 10 is defined as n-tangle which is a
quantifier of genuinely entanglement shared among n-partites. In
fact, this inequality comes from the strong monogamy
inequality of continuous variable Gaussian states introduced in
Ref. [34]. Eq.10 reduces to normal three-qubit CKW inequality
for n = 3. For a four-qubit state |ψ〉, the SM inequality can be

written as: τA1 |A2A3A4 ≥ τ
(2)
A1 |A2

+ τ(2)A1 |A3
+ τ(2)A1 |A4

+ [τ(3)A1 |A2 |A3
]3/2+

[τ(3)A1 |A3 |A4
]3/2+ [τ(3)A1 |A2 |A4

]3/2.
For the validity of SM inequality, an extensive numerical evidence
has been presented for four-qubit state together with analytical
proof for some cases of multi-qubit state. Another generalization
of SM inequality in terms of squared convex roof extended
negativity (SCREN) has been presented by Choi and Kim [84],
and it is shown that the superposition of the generalized W-class
states and vacuum (GWV) states satisfy the SM inequality based
on SCREN. In Ref. [85], Kim further proved that SM inequality
holds good even in a class of higher dimensional state where the
original SM inequality fails.

Next we present some other generalized version of monogamy
relation. In Ref. [42], Jin et al have investigated tighter
entanglement monogamy relations related to Cμ and Eμ for μ
≥ 2 and μ≥

�
2

√
, respectively. Using the Hamming weight of the

binary vector related with the distribution of subsystems, Kim
[44, 45] established a class of monogamy inequalities of multi-
qubit entanglement based on the μ-th power of unified-(q, s)
entanglement. Other approaches to construct tighter monogamy
inequalities in terms of various entanglement measures were also
proposed in Ref. [43]. Moreover, Oliveira et al [38] proposed a
monogamy relation in the linear version for a three-qubit system,
which was proved by Liu et al [41]. In. Reference [49], Shi et al
generalized the multi-linear monogamy relation for a multi-qubit
system in terms of EOF and concurrence.

4 POLYGAMY INEQUALITIES

In previous section, we have reviewed MOE which reveals the
limited shareability of multiparty quantum entanglement, the
assisted entanglement was shown to have a dually monogamous
property in multi-party quantum systems, i.e., polygamy of
entanglement (PoE). PoE is mathematically characterized as
the polygamy inequality

Ea ρA|BC( )≤Ea ρA|B( ) + Ea ρA|C( ) (12)
for a three-party quantum state and Ea (ρA|BC) denotes the
bipartite assisted entanglement in the partition A|BC. In
contrast to monogamy inequality, which provides an upper bound
on the bipartite shareability of entanglement in multi-party systems,
the polygamy inequality in Eq. 12 provides a lower bound for
distribution of bipartite entanglement in multi-party systems.

The polygamy inequality in (12) was first proposed in three-
qubit systems. For a three-qubit pure state |ψ〉ABC, the following
inequality holds.

τ |ψ〉A|BC( )≤ τa ρA|B( ) + τa ρA|C( ) (13)
where τ(|ψ〉A|BC) is the tangle of the pure state |ψ〉A|BC between A
and BC, and τa (ρAB) = max∑ipiτ(|ψ〉AB) is the tangle of
assistance of ρAB = TrC|ψ〉ABC〈ψ| with the maximum taken
over all possible pure-state decomposition ρAB =∑ipi|ψi〉AB〈ψi|. This inequality was generalized into multi-
qubit system τa(ρA1|A2...An

)≤∑n
i�2τa(ρA1|Ai

) for an arbitrary
multi-qubit mixed state ρA1A2...An

and its reduced density
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matrices ρA1Ai
with i = 2, . . ., n. In Refs. [57–63], polygamy

inequalities were also established for other entanglement
measures.

For polygamy inequality beyond qubits, it was shown that von
Neumann entropy can be used to establish a polygamy inequality
of three-party quantum system [55].We have E(|ψ〉A|BC) ≤ Ea (ρA|
B) + Ea (ρA|C) for any three-party pure state |ψ〉A|BC, where
E(|ψ〉A|BC) = S (ρA) = − Tr ρA ln ρA is the von Neumann
entropy of entanglement between A and BC, and Ea(ρAB) is
the entanglement of assistance of ρAB defined by Ea(ρAB) =
max∑ipiE (|ψi〉AB), where the maximization is taken over all
possible pure state decompositions of ρAB. In Ref. [57], a general
polygamy inequality of multipartite quantum entanglement was
established for arbitrary-dimensional quantum states ρA1A2...An

.
Recently, Kim [64] further proposed a class of weighted polygamy
inequalities of multipartite entanglement in arbitrary-
dimensional quantum systems.

5 NEW DEFINITIONS OF MOE

In this section we present some alternative methods to define
MOE. The main problem with CKW inequalities is that their
validity is not universal since several important measures of
entanglement do not satisfy Eq. 1. In Ref. [65], Lancien et al
raise the following question: Should any entanglement measure
be monogamous in a CKW-type sense? In fact, the summation in
the right-hand side of Eq. 1 is only a convenient choice but not a
necessity. For example, it has been shown that if E does not satisfy
the CKW monogamy inequalities, it is still possible to find a
positive μ such that Eμ satisfies the Eq. 1. Inspired by this idea, one
attempt is to replace Eq. 1 with the following generalized
monogamy relation:

E ρA|BC( )≥f E ρA|B( ), E ρA|C( )( ) (14)
where f: R+ × R+ → R+ is a function independent on the
dimension of the underlying Hilbert space, and it is
continuous, and satisfies the condition f (x, y) ≥ max (x, y).
This requirement comes from the fact that E is an
entanglement monotone which is nonincreasing under
partial traces. The CKW-type monogamy inequality can be
recovered for the particular choice f (x, y) = x + y. It has been
proved that the entanglement of formation EF and the relative
entropy of entanglement ER, as well as their regularizations,
cannot satisfy the new definition in Eq. 14. In addition, any
additive entanglement measure which is geometrically faithful
in the sense of being-lower bounded by a quantity with a sub-
polynomial dimensional dependence on the antisymmetric
state, cannot be monogamous. Nevertheless, we can recover
the monogamy relation (14) if we allow the function to be
dimension-dependent. For example, it has been shown that
the non-trivial dimension-dependent monogamy relations
can be established for EF and E∞

R in any finite dimension.
Another approach to define MOE is given in terms of an

equality, as opposed to the traditional monogamy inequality.
According to the definition in Ref. [66], a measure of

entanglement E is monogamous if for any ρABC ∈ SABC that
satisfies

E ρA|BC( ) � E ρAB( ) (15)
we have that E (ρAC) = 0. With respect to this definition, if the
entanglement between system A and the composite system BC is
as much as the entanglement that systemA shares with subsystem
B, then it is left with no entanglement to share with C. If E satisfies
Eq.1, then any state ρA|BC that satisfies the definition (15) must E
(ρAC) = 0. Therefore, the condition in Eq. 1 is stronger than the
definition in Eq. 15. This new definition is consistent with Eq.1
and it has been shown that they are equivalent if and only if there
exists 0 ≤ μ ≤ ∞ such that

Eμ ρA|BC( )≥Eμ ρAB( ) + Eμ ρAC( ) (16)
for all ρABC ∈ SABC with fixed dimHABC � d<∞. It is to be noted
that Eq. 16 is not a special case of Eq. 14 because the exponent
factor μ depends on the dimension d, whereas the function f
defined in Eq. 14 is universal and does not depend on the
dimension. By adopting the new definition of monogamy
without inequalities, Guo and Gour [86] further proved the
monogamy of EOF on mixed tripartite states.

6 CONCLUDING REMARKS ANDOUTLOOK

The subject of MOE has attracted extensive research interest in the
past two decades. In this review, we present the theoretical
developments in the field of MOE, as well as some new definitions
ofMOE.Despite the rapid progress in recent years, there are stillmany
challenging problems to be solved and we briefly list them as follows.

First, most previous studies of MOE are focussed on the multi-
qubit systems. But our knowledge of MOE in the high-
dimensional case is still very limited and there are few results
on MOE for high-dimensional systems [84, 87–90]. In [91] Kim
et al. proved that the n-qudit generalized W-class (GW) states
satisfy the monogamy inequality in terms of the SC. Recently, Shi
et al. presented in [47] new monogamy and polygamy relations
for n-qudit generalized W-class states and vacuum (GWV) states
in terms of the TqE. In [59, 92] the authors investigated the
monogamy and polygamy relations for the GWV states in high-
dimensional systems in terms of the RαE. Except for squashed
entanglement and one-way distillable entanglement, monogamy
relations for various entanglement measures only hold for some
special high-dimensional states. The difficulties are caused by the
entanglement properties in higher-dimensional systems are
hardly known so far and there is no analytical formula for
calculating the high-dimensional entanglement measure. Thus,
it is important to explore monogamy inequality for general high-
dimensional states in terms of various entanglement measures.

Second, the validity of the traditional monogamy inequality is
not universal and several important measures of entanglement do
not satisfy Eq. 1. However, MOE has beenmathematically proven
to be a valid property of entanglement in the n-shareability sense
[5]. In order to solve this problem, two new definitions of MOE
have been proposed. One definition is to replace the right-hand
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side of Eq. 1with a universal function f independent of dimension
d [65]. This definition [65] is somewhat artificial and some
important entanglement measure such as EOF and relative
entropy of entanglement cannot satisfy the new monogamy
inequality. Another approach is to define MOE with an
equality rather than inequality. It was shown that this
definition is consistent with the traditional notion of MOE if
the measure E is replaced by Eα for some exponent α > 0.
According to this new definition, EOF are monogamous on
mixed tripartite systems. It supports that monogamy is a
property of entanglement and not of some particular functions
quantifying entanglement. Although the second definition of
MOE seems more natural in physical, there is no
mathematical proof of which definition is better, and we do
not know whether there are entangled states that violate the
second definition. Therefore, extensive efforts are still needed to
investigate the relationship between these two definitions.
Moreover, by adopting these new definitions, it is necessary to
explore whether many important measures of entanglement are
monogamous.

Third, different attempts have been made to construct a
sharper version of monogamy inequality. In particular, Regula
et al [52] have proposed a set of SM inequalities in terms of
concurrence. Although an extensive numerical evidence has
been presented for four qubit systems, an analytical proof of
SM conjecture is still desired. It would also be interesting to

answer whether there are counterexamples that violate the SM
inequality for more qubits. This conjecture can be further
extended to negativity and SCREN for some classes of states.
Future directions may include the study of SM inequalities for
other entanglement monotones such as squashed
entanglement.

In summary, we have reviewed the mathematical foundation
of MOE but not include many problems concerning real physical
phenomena, and monogamy is being considered in the study of
these problems. For example, it was argued that the black hole
evaporation is incompatible with our understanding of MOE
[93]. Thus, it is desirable for us to have a sufficient understanding
of monogamy further.
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