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In active matter systems, energy consumed at the small scale by individual agents gives
rise to emergent flows at large scales. For 2D active nematic microtubule (ANMT) systems,
these flows are largely characterized by the dynamics of mobile defects in the nematic
director field. As these defects wind about each other, their trajectories trace out braids.
We introduce a minimal model of ANMT systems based on the topological properties of
these braids. In particular, we consider the topological entropy of braids, which quantifies
how chaotic the associated flowmust be. Since microtubule bundles, an extensile system,
stretch out exponentially in time, the resultant defect movement must correspond to braids
with positive topological entropy. Indeed, we conjecture that the emergent defect
dynamics are often optimal in that they give braids which maximize the, suitably
normalized, topological entropy. We will look at the dynamics of four +1/2 defects on
a sphere as a case study, using both simulations and a reinterpretation of experimental
data from the literature.
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1 INTRODUCTION

Active matter systems [1–3], whether biological (e.g. bacterial suspensions, bird flocks) or
engineered (e.g. Janus particles), convert energy consumed by individual agents into global
flows with interesting emergent behaviour. When these agents have asymmetries in their
shapes (e.g. rod-like or disk-like), the active system can exhibit a time-dependent nematic
phase [4]. A nematic phase is characterized by local orientational alignment of the agents
(represented by a director field, which encodes how the orientation angle of agents varies
spatially). The canonical example of such an active nematic is a system of microtubule
bundles confined to 2D5. Active nematic microtubule (ANMT) systems can have turbulent [6]
(i.e. chaotic) or regular [7, 8] (i.e. periodic) behavior. Indeed, we will show that the behavior of
ANMT systems is particularly well modeled by certain tools from dynamical systems (foliations,
braids, and the Nielsen-Thurston classification theorem).

Models of ANMT dynamics range in complexity from PDEs [9] for the evolution of the director
and velocity fields, to ODEs [10] for the motion of topological defects in the director field. We
propose a minimal model for certain regimes of ANMT dynamics based on topological braids. Here,
defect trajectories wind about one-another to form a geometric braid. The topological information
associated with this braid discretely encodes the state of the system and the dynamics. Instead of
equations of motion, there exist restrictions on the types of braids that can form. First, due to the
extensile dynamics of the microtubule bundles, material curves stretch out exponentially in time.
This implies that braids formed from the motion of topological defects are pseudo-Anosov and have
positive topological entropy (see Section 4 for an introduction to these dynamical systems ideas).
This weak dynamics principle can act as a useful test when developing new ANMT models. Second,
in many simple ANMT system geometries, it appears that these braids not only have positive
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topological entropy, but indeed maximize a suitably normalized
version of topological entropy. This strong dynamics principle
uniquely determines the braid and therefore the defect motion
topology.

We investigate the strong and weak dynamics principles
through a couple of example ANMT system geometries. First
we consider the braids formed when the ANMT system is
confined to an annular channel. Next we look at the case of
four defects on the surface of a sphere. Here we analyze the braids
formed from an ODE model [10] of defect motion, as well as
reconsider empirical data [8] in light of this topological view-
point.

The use of braids to analyze the dynamics of fluid systems is
well established [11–15]. This topological perspective has been
used to help find coherent structures in flows [16, 17], to
characterize point vortex motion [18, 19], to investigate
mixing in lid-driven cavity flow [20] and channel flow [21],
and to design industrial mixing protocols [22]. Recently, braids
were used to help understand the ANMT turbulent state [6]. We
take inspiration from this article and aim to clarify the
relationship between ANMT systems and the braids formed by
their moving topological defects.

As a side note, braids have also gained prevalence in
topological quantum computing [23], where anyon
quasiparticles (e.g. potentially Majorana fermions [24–26])
produce braids in much the same manner as the defects we
investigate here. Though neither active nor nematics, it would
certainly be interesting to see if topological quantum computing
could benefit from the dynamical systems perspective we
advance here.

This paper is structured as follows. In Section 2 we introduce
ANMT systems and outline a minimal model of their dynamics
using topological braids. The mathematical description of braids
is specified in Section 3, and the connection between braids and
dynamics, via the Nielsen-Thurston classification theorem, is put
forward in Section 4. The uncanny similarities between the
foliations associated with a braid and the nematic field of
microtubule bundles gives rise to the weak dynamics principle
of Section 5. In Section 6, we reconsider the topological entropy
of braids, and how best to normalized this quantity. Next we
introduce our first specific example, that of an ANMT system
confined to a periodic channel, in Section 7. Our second such
example, an ANMT system on a sphere, is introduced in Section
8. This necessitates a closer look at how we define and describe
braids on a sphere, which we detail in Section 9. Next, in Section
10, we analyze the braids produced by a computational model of
defect motions on the sphere. The data from an experimental
realization of this system is re-contextualized in light of our
braiding model in Section 11. In all of these examples there is
ample evidence that the braids produced by the ANMT dynamics
maximize the topological entropy per operation. This strong
dynamics principle is discussed in Section 12. We tie
everything together and provide some final thoughts in
Section 13. Finally, we have two appendices: Supplementary
Appendix S14A, which gives details of finding the topological
entropy of spherical braids, and Supplementary Appendix S14B,
which explains how to obtain braids from defect trajectory data.

2 SYSTEM OF ACTIVE NEMATIC
MICROTUBULES

The basic active nematic microtubule (ANMT) system has
become a canonical example of active nematics since it was
first introduced [5]. It is comprised of biologically derived
microtubules (from the cytoskeleton of cells) which are
confined to a 2D oil-water interface. Molecular motors
(kinesin motor proteins) both condense microtubules into
bundles and drive the extensile motion of these bundles. The
energy is provided by ATP, the concentration of which (activity
level) determines the rate of bundle extension.

When densely packed, the microtubule (MT) bundles form a
nematic phase (see Figure 1), where the local nematic orientation
is given by the tangent to the MT bundles. This director field is
well-defined everywhere except for at a discrete number of
topological defect points. These defects come in two varieties
(see the marked circles and triangles of Figure 1 or Figure 4 for a
close-up view): +1/2 defects, which locally look like a comet, and
−1/2, which locally look like a triangle. Line integrals of the
director about a closed loop containing a defect give the
topological charges. The total topological charge of an ANMT
system is invariant in time, and defects are produced and
annihilated in opposite charge pairs.

The local extensile dynamics give rise to a global flow of
material points and an interesting time evolution of the nematic
field. The topological defects are mobile (particularly the +1/2
defects), and their relative motion about one-another form braids.
We can consider the braids formed in this manner to be an
emergent feature of the system, and the main theme of this paper
concerns which braids are formed.

This can be framed as developing a model of the ANMT
system. We can consider a hierarchy of approaches to modeling
this system, going from maximalist to minimalist. On the more

FIGURE 1 | Active nematic microtubule system in the “bulk” turbulent
state. Microtubule bundles are shown in green, with −1/2 and +1/2 topological
defects identified by the triangular and circular symbols respectively. This
image is taken from a study of topological chaos in active nematics [6],
and is courtesy of Amanda Tan and the Hirst lab at UC Merced.
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complex side are agent-based approaches [27], which model the
bundles as rods and try to capture the local physics of their
interactions. Somewhat simpler are continuum field-based
approaches, which describe the state of the system using the
director field (or nematic order tensor field) and velocity field,
and the dynamics using nematic hydrodynamic equations (PDEs,
e.g. Beris-Edwards [9]). Defect dynamics models, which use
ODEs to evolve forward the locations and orientations of
topological defects, constitute a further reduction in model
complexity. This simplification acknowledges that the effective
degrees of freedom in an ANMT system are discrete, quite small,
and are associated with the defects.

At each reduction step we might loose the ability to capture
salient features of the physical system. For example, defect
dynamics models inherently neglect creation and annihilation
events. Every attempt at modeling a physical system is a trade-off
between capturing the full range of physical phenomena and
creating a minimal model with as few degrees of freedom as
possible. Some systems, ones that physicists love, do well on both
counts and are amenable to simple minimal models that are
highly expressive. ANMT systems appear to be of this type.

All dynamical models need a description of the system state, a
notion of time, and a dynamics principle for advancing the state
forward in time. For our minimal model of ANMT dynamics, the
system state is discrete with a finite number of configurations.
More specifically, a discrete state corresponds to the assignment
of labeled defects to the vertices of a particular graph (introduced
in Section 3). Time is also discrete; we use algebraic braid
generators to record the braiding motion. These generators
encode not just the fact of a change from one state to another,
but also how that change took place. The dynamics principle is
more subtle, and here we think of it as a principle which helps us
determine which algebraic braids are actually realized by the
ANMT system out of the huge number of logically possible
braids.

ANMT systems exhibit a wide variety of behavior, from the
bulk “turbulent” state with constant creation and annihilation
events to simpler periodic behavior for certain constrained
geometries. This minimal model is most powerful when
applied to the regime in which periodic behavior occurs. We
will consider the effectiveness of our model by analyzing two
different ANMT domain geometries: a singly periodic channel
(topologically an annular domain) in Section 7, and the sphere in
Section 8. Along the way, we will develop two different dynamics
principles for the minimal model.

3 BRAIDING

As we have mentioned, densely packed microtubule bundles
confined to a 2D domain are modeled, without much loss of
information, by the locations and orientations of defects in the
director field. Likewise, the trajectories of these topological
defects efficiently encode the overall dynamics of this system.
Here, we extend this dimension-reduction idea to a logical
extreme by representing the defect trajectories as braids and
extracting the associated discrete topological information.

In the traditional braid construction, our trajectories
constitute strands in (2 + 1) D space-time, and wind about
one-another to form a geometric braid. To obtain an algebraic
braid, we choose a plane parallel to the time axis, project the
strands onto this plane, and record the time-ordered set of strand
crossings with crossing orientation identified. Here, we take a
different approach [28]; one that is better suited to describing
braids on more general surfaces (e.g. the sphere).

We start with a graph that is embeddable on our surface, where
vertices represent defects and edges represent pairs of defects that
can swap positions. Each edge is labeled such that the braid
generator, σi, represents a counter clockwise swap (and σ−1i
represents a clockwise swap) of the defects adjacent to edge i,
see Figure 2 for two examples. Defect trajectories are
topologically encoded as a time-ordered sequence of these
generators, i.e. a braid word.

For example, we can recover the traditional braid construction
by choosing a linear graph (points on a line with edges connecting
them to their adjacent neighbors, see the left side of Figure 2) on a
disk. The projection of our defect locations onto this line defines
an ordering of the defects, which, along with the natural ordering
of the graph vertices on the line, defines a 1-1 mapping of defects
to graph vertices. When the defects move, and the ordering
changes, we record the change with the appropriate braid
generator. In this example, the braid generators, σi, are the
traditional Artin generators of the Artin algebraic
representation of braid groups [29–31].

There are two main difficulties in realizing this procedure on
arbitrary surfaces: choosing a fixed reference graph, and realizing
a procedure for mapping defect positions to vertices on the graph.
In general, there might not be a natural choice of graph or
mapping. However, this will not be the case for the scenarios
we consider in this study. We will detail this braiding
construction for defects on an annular domain in Section 7
and for 4 +1/2 defects on a sphere in Section 9.

4 BRAIDING AND DYNAMICS

Given that many different geometric trajectories can correspond
to the same topological braid, what general information is

FIGURE 2 | Two examples of graphs. (A)—a linear graph on the disk.
Point movement consistent with the Artin braid generator σi is shown in red.
(B)—the dodecahedral graph on the sphere. Though shown as a planar
graph, this can be embedded on the sphere (considering the rest of the
plane as a pentagonal face through one point compactification). The braid
generator σi is again shown in red.
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encoded in a braid word, and what does it tell us about the
dynamics of the system in which the braid is embedded? The
starting place for connecting braids to dynamics is the Nielsen-
Thurston classification theorem [32–35] of mapping classes. Out
of necessity, we will only convey the basic picture of this beautiful
bit of mathematics.

Here, maps are homeomorphisms of the relevant surface to
itself, such that the positions of a set of distinguished points
remain set-wise unchanged (though possibly permuted). In our
case, the Lagrangian map of all material points in an ANMT
system that has periodic defect motion is just such a map. Each
map is associated with the braid formed from the motion of the
distinguished points, and the set of maps associated with a single
braid is a mapping class. The Nielsen-Thurston classification
theorem says that for each mapping class, there exists a
representative map with well defined properties, and that a
representative map is one of three types: finite order, pseudo
Anosov (pA), or reducible. Finite order braids are simple, and
some power of the representative map is the identity. Reducible
braids have representative maps that can be cut up into a
combination of finite order and pA maps. We will be
exclusively interested in pA maps; the connection between pA
maps and ANMT systems is discussed in the next section.

Pseudo Anosov maps have very rich behavior despite being
simple to characterize. For the representative map,Φ, there exists
twomeasured foliations [34] -F u andF s. A foliation, in our case,
is essentially a local decomposition of the surface into stacks of
one-dimensional manifolds (leaves). The top left portion of
Figure 3 shows two foliations (F u - red and F s - blue,
transverse to one another) of a neighborhood of the point P.
A measure, μ, on a foliation assigns a positive real number to any
finite curve segment, which, roughly, captures the flux of the
foliation through this curve. Thus, for the red foliation in the top
left of Figure 3, the measure evaluated on line V, μ(V,F u), is

non-zero, while μ(H,F u) � 0, as the line H is parallel to the
leaves of F u. As long as we stick to a transverse measure, we can
drop the reference to particular curves.

For the pA map representative, Φ, there exists a positive
number, λ, the dilation, such that

μ Φ F u( )( ) � λ μ F u( )
μ Φ F s( )( ) � 1

λ μ F s( ). (1)

The foliations, F u and F s, are shown in the top right of
Figure 3 after a mapping with λ = 2, and in the same
neighborhood of point P. The unstable foliation, F u, is
compressed in the direction transverse to the leaves, thus
increasing the transverse measure (i.e. the number of leaves
intersecting line V increases after the mapping). Similarly, the
stable foliation, F s, is rarefied in the transverse direction.

Additionally, if the measured foliations are uniform (the
transverse measures don’t vary from point to point), then
Φ(F u) and separately Φ(F s) look the same in the
neighborhood of P′ = Φ(P) as in the neighborhood of P (see
bottom of Figure 3). Thus, the rectilinear neighborhood H − V
gets mapped to H′ − V′, and all curves along the leaves of Φ(F u)
are stretched by a factor of λ, and those along leaves ofΦ(F s) are
compressed by the same factor.

This braid dilation factor, λ, can be recast as the topological
entropy [36–38], h = log(λ). This most salient of braid attributes
can be interpreted as the exponential stretching rate of material
curves in the surrounding medium upon repeated application of
the representative map. Importantly, this ensures that every map
in a pA mapping class will have material curves that stretch out
with at least this rate, including the map corresponding to the
flow of material in our system.

Finally, our foliations are singular foliations, meaning that at
discrete points the local foliation structure does not look like the
stack of lines in Figure 3, but can have more than one leaf
emanating from the singular point. These are called k-prong
singularities, for the k half-line leaves attached to the point. The
simplest singularities are 1-prong and 3-prong, as seen in
Figure 4 (2-prong points are identical to generic points in the

FIGURE 3 | The (A) shows two foliations in the neighborhood of a point
P, F u in red and F s in blue. The (B) shows Φ(F u) and Φ(F s) in this same
neighborhood for a representative mapΦwith λ = 2. The (C) shows the image
of the original H-V neighborhood under the mapping (assuming foliations
with spatially uniform measures).

FIGURE 4 | Two transverse foliations, F u in red and F s in blue, about a
1-prong singularity (A), and about a 3-prong singularity (B).
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foliation, and are therefore not singularities). Figure 4 also shows
how F u and F s remain transverse to one another about these
singular points. Singular points in our foliations correspond to
the identified braid points (i.e. the nematic defects).

5 WEAK DYNAMICS PRINCIPLE

In Section 4 we connected braids with dynamics by associating
every pA braid with a representative map, Φ, that has stable and
unstable singular transverse measured foliations, F s and F u, and
a dilation, λ, such that Eq. 1 holds. Now we connect this
mathematical structure to our ANMT system.

There is a natural correspondence between the unstable
foliation, F u, and material curves everywhere tangent to the
active nematic microtubule bundles (integral curves of the
director field). Indeed, the ANMT bundle geometry near −1/2
defects is exactly what one sees near a 3-prong singularity, and
similarly for +1/2 defects and 1-prong singularities (see Figure 5).

If we assume a relatively dense packing of microtubules, then
there are few if any voids away from defects, and the ANMT
bundle is well modeled by foliations with uniform measure (see
this paper [39] for an interesting analysis of fractal generation in
an ANMT system with density fluctuations). This in-turn
suggests that any curve along a leaf will increase in length by
a common factor of λ after the mapping. This is exactly what the
ANMT system does as a result of extensile dynamics. There is
ample evidence [6] that on scales longer than that of the
microtubule length, material curves tangent to the bundles
extend their length exponentially in time. This extension rate
is controlled by the ATP concentration and, due to diffusion and

efficient mixing, is very uniform across the domain. This uniform
expansion factor (over the time it takes to form the braid)
corresponds to the braid dilation.

The density assumption also ensures that the ANMT system is
pretty close to area preserving. As the stretching along the
unstable direction thins the bundles, more bundles move in
transversely to maintain a roughly constant microtubule
density. This area conservation means that the compression of
material points perpendicular to the bundle orientation contract
by a factor of 1/λ. Thus we can visualize the stable foliation as
being oriented along these contracting directions.

It is important to note that the remarkably close
correspondence between the behavior of the microtubule
bundles and that of the unstable foliation indicate that the
material flow map of the ANMT system is remarkably close to
the minimal representative in the appropriate mapping class. In
other words, given the braid formed from the defect trajectories,
the flow map of the surrounding material is the simplest possible
compatible map. Any additional strands created from the motion
of passively advected material points would lead to braids with
the same topological entropy. Indeed it has been shown [6] that
only the +1/2 defects contribute to the topological entropy; the
addition of strands corresponding to the −1/2 defects do not
change the complexity of the braid in this respect.

In the usual application of braid theory to fluid dynamics, the
braid is often globally specified (e.g. as a stirring protocol for a
rod-stirring device) and the result is a forced lower bound on the
stretching of material lines. The application of braids to ANMT
systems inverts the causality: the stretching rate is a priori
specified at the small scale (e.g. controlling ATP
concentration), and the braiding pattern of defects is what
emerges. From the point of view of braids as a minimal model
for the ANMT system, braids encapsulate both the state of the
system (where defects are) and the dynamics (how the defects
move). However what determines which braids, of the infinite
number of logically possible braids, are actually dynamically
realized? The simplest dynamics principle for discriminating
amongst braids, which we will call the weak dynamics
principle, merely notes that the exponential stretching of
microtubule bundles implies a braid with dilation λ > 1 (i.e. a
pA braid).

Weak Dynamics Principle: The braids that emerge from the
motion of topological defects in the director field of an ANMT
system must have positive, non-zero topological entropy.

This statement is predicated on a few assumptions that we
should explicitly state:

1) The microtubule bundles are densely packed. If they are not
densely packed (i.e. there are voids), then the dynamics are not
necessarily area preserving and the stable foliation might not
be well defined. For very rarefied ANMT systems, the unstable
foliation might also be ill-defined.

2) Material lines along microtubule bundles stretch exponential
in time with a constant rate that is spatially uniform.
Microtubule bundles might have exponential stretching
rates that are spatially and temporally nonuniform if
mechanical stresses are comparable to the active stresses in

FIGURE 5 | (A): The foliation around a 3-prong singularity (Top) and the
microtubule bundle configuration about a −1/2 topological defect (Bottom).
(B): The foliation around a 1-prong singularity (Top) and the microtubule
bundle configuration about a +1/2 topological defect (Bottom). The
microtubule images are details from Figure 1.
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some locations. This nonuniformity, while not a deal-breaker,
would result in a material flow map that is not minimal in its
mapping class. Of course, no stretching (say from too small of
an ATP concentration) leads to no movement and no
braiding.

3) There are no creation or annihilation events. Creation of pairs
of +1/2 and −1/2 defects, as well as their annihilation,
complicate the interpretation of braids (though an analysis
of topological entropy can still be done [6]). It is this
assumption that necessarily breaks down when the weak
dynamics principle is applied to the case of two +1/2
defects circling about each-other in a disk geometry. Two
stranded braids cannot be pseudo Anosov (need three
strands), and therefore have zero topological entropy, so
this motion is not possible. In experiments [40], this
situation is resolved by pair production then annihilation
events periodically interrupting the above mentioned
circular motion. Creation and annihilation events can be
suppressed by choosing particular domain geometries, and
choosing low enough ATP concentrations.

4) The defect motion is periodic. This is more of a minor
difficulty. Non-periodic trajectories can still be analyzed
with braids [14], though it might take long trajectories for
the topological entropy to converge to a well defined value.
Periodic motion is desirable, as it produces simple braids that
can be easily identified in experiments. Periodic defect motion
seems to occur at relatively low activity levels for certain
boundary geometries. In the case of a periodic channel
geometry (Section 7), the region of parameter space in
which periodic behavior occurs has been computationally
explored [7, 41]. In general, we will see that periodic defect
motion is more essential when considering the strong
dynamics principle.

Finally, the weak dynamics principle is useful as a benchmark
for evaluating models of ANMT systems. A model that violates
this principle is likely not capturing enough of the relevant
physics. As an example, this paper [8] developed a numerical
model of the movement of four +1/2 defects on a sphere. This
model worked well in explaining the dependence of the period of
the movement on activity level. However, the defect motion it
produced (two pairs of rotating defects, permanently separated by
the sphere’s equatorial curve) constituted a braid with zero
topological entropy. The real motion of these four defects is
more interesting, as we will see in Section 11.

6 NORMALIZED TOPOLOGICAL ENTROPY

Before we look at two particularly nice examples of braiding in an
ANMT system, we must refine our notion of topological entropy.
Topological entropy is a rate (exponential stretching rate), and
the central concern here is how to best normalize it (i.e. a rate in
what?). The topological entropy of braids introduced in Section 4
is the rate per application of the braid. This is extensive, in that
h(βn) = n h(β) for any braid β. We can convert this to an intensive
quantity by normalizing by other extensive braid attributes.

One choice is to normalize by the time it takes to produce
the trajectories that give rise to the braid. This topological
entropy production per unit time is the most natural measure
for analyzing mixing in experimental data. However, there are
multiple factors that help determine this value: the speed of
defects, the distance between defects, and the intrinsic braiding
pattern woven by the points. As we increase ATP
concentration, defects move faster and their areal density
might change. To isolate the effects of the underlying
braiding pattern, we can identify a characteristic time (e.g.
from a characteristic speed and distance) and measure the
topological entropy production rate per characteristic time.
This idea was used [6] to analyze the changes to topological
entropy in the bulk “turbulent” ANMT state due to increasing
ATP concentration. While the topological entropy per unit
time increased with concentration, the topological entropy per
unit characteristic time did not change, indicating a common
braiding pattern underlying the turbulent ANMT state. We
will see analogous, though simpler, behavior in the example of
Section 10.

We would like a normalization that is intrinsic to the algebraic
braid (i.e. doesn’t require reference to the physical system), and is
intensive. One method would be to normalize by the number of
generators in the braid word to get the topological entropy per
generator (TEPG). The TEPG is intensive in “time”, hTEPG(β

n) =
hTEPG(β), but not in space. If we denote n adjacent copies of the
braid β by ⊕nβ, then hTEPG(⊕nβ) = hTEPG(β)/n. The issue here is
that braid generators that happen at the same time are being
counted separately. A set of braid generators that can be
performed simultaneously is called a braid operation. For a
given braid generated on a particular surface graph, we can
find the minimum number of braid operations that it is
comprised of. This number is the topologically mandated
number of time-steps needed to execute the braid.
Normalizing the topological entropy by the number of braid
operations gives the topological entropy per operation (TEPO)
[22], �h. Importantly, the TEPO can have a maximum value
(potentially different for different surfaces and generating
graphs). In what follows, we will mainly be concerned with
the TEPO of braids.

7 ANMT IN A CHANNEL

One of the simplest ways to control an ANMT system is to
constrain its movement with the geometry and topology of the
surface on which the ANMT system resides. We will see that
some of the simplest surfaces can produce simple periodic defect
motion. Our first example consists of a rectangular channel with
periodic boundary conditions (a topological annulus). This
configuration has been studied computationally [7] and
experimentally [42]. The computational work found that
certain parameter ranges of channel aspect ratio and activity
level allowed for periodic motion of the +1/2 defects. This
occurred for activity numbers (the ratio of channel width to
active length scale) roughly between 17 and 277. The −1/2 defects
migrated to the fixed boundaries and were pinned there, while the
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+1/2 defects aggregated on the channel mid-line. Half of these
defects move left, and half right, all while alternating going over
and then under the other group. This movement brings to mind
the maypole dance of mayday celebrations in Germany. Indeed,
the authors of the computational study [7] named this movement
after the traditional Scottish Ceilidh dance.

Whatever dance analogy we use, this braid is well known in the
braiding literature [22], and is best described using braid
generators. First, assume that there are an even number, N, of
+1/2 defects. We specify an annular graph which has these defects
as vertices, see Figure 6. Thus there are N generators (and their
inverses), indexed by the edges in the graph. Note that edge N
connects both sides through the periodic boundary. There are
many potential braid operations, but we specify just two: σ+even{ } -
the set of all positive generators (CCW switches) on every other
edge, starting with edge 2, and σ−odd{ } - the set of all negative
generators (CW switches) on every other edge, starting with edge
1 (see Figures 6A,B). The braid corresponding to the Ceilidh
dance can now be given by

βδ � σ+even{ } σ−odd{ }. (2)
It has a topological entropy per operation of �h(βδ) � log(δ),

where δ � 1 + �
2

√
is the silver ratio. Hence, this is often known as

the silver ratio braid, or silver braid. Interestingly, the silver braid
has been proven [13, 22] to have the maximum TEPO of all
possible annular braids. So, in this case, not only does the weak
dynamics principle hold, but the ANMT system automatically
produces a braiding pattern that is the most efficient at forcing
stretching in the surrounding medium. Might other geometric
configurations also produce maximum TEPO braids?

8 ANMT ON A SPHERE

Perhaps the simplest possible geometric domain on which the
ANMT dynamics can play out is a sphere. Due to the Gauss-
Bonnet theorem, the total topological charge for a surface is equal

to its Euler characteristic, χ. For a flat surface or torus, χ = 0, and
so the positive and negative defects must balance out. This also
explains why defects are produced and annihiliated in pairs of
opposite topological charge (total charge is conserved). For the
sphere, χ = 2, which is most simply achieved with 4 +1/2 defects.
Indeed, this lowest energy configuration persists for non-zero
values of the activity, and constitutes the dynamic state in which
we will find interesting braiding. The dynamics of 4 +1/2 defects
on a sphere have many desirable attributes: there are no negative
defects and therefore no annihilation events, the geometry is
simple enough to have an explicit method for mapping defect
positions to graph vertices, and there are both experimental [8]
and numerical [10] studies of this system.

In the pioneering experimental study [8], the defect
positions were tracked over time (look for their videos too)
and this data was recorded as the pair-wise angular differences
between each defect pair (between the two associated radial
lines). The time dependence of these angular differences are
periodic, as the defects go from a tetrahedral configuration to
co-planar and back to tetrahedral. They noted that the period
of this motion depended on the activity (and sphere radius),
and came up with a simple model of the defect motion to
account for this feature. While the model captured the
periodicity of the oscillations and their dependence on
activity, it did not produce motion consistent with the
experimental findings. Indeed, the defect motion due to the
model produces a braid that is finite order, and therefore not
compatible with the exponential stretching of MT bundles
(weak dynamics principle). This motion consisted of rotations
of two pairs of defects such that an equatorial curve separating
the two pairs is left invariant. In this way, the weak dynamics
principle could have been used to detect that this model was
not accurately capturing the experimental behavior (though
the authors did not consider defect braiding).

Before we analyze the computational (Section 10)
and experimental (Section 11) motion of 4 +1/2 defects
on a sphere, we must introduce how to describe braids on a
sphere.

FIGURE 6 | Annular braid operations. (A): the braid generators (red
arrows) comprising the operation σ+even{ }. (B): the braid operation σ−odd{ }.
These two operations make up the silver braid.

FIGURE 7 | Tetrahedral graph of four points on the sphere. (A)—the
graph is shown embedded on the sphere, with edges and vertices labeled.
(B)—a geometrically simplified version of this graph. Here the fourth
tetrahedral face has been expanded to the whole plane (one point
compactification gives back the sphere). The pairwise motion associated with
braid generator σ1 is shown in red.
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9 BRAIDS ON A SPHERE

The first step in describing braids of four points on the sphere is to
construct the generating graph. Fortunately, the appropriate
graph in this case is unambiguous - the tetrahedral graph.
When the four points are in general position (i.e. not in a co-
planar configuration), the complete graph, with a geometric
embedding formed from the defect locations (vertices) and
great arcs (edges) connecting pairs of defects, is a tetrahedral
graph (see Figure 7A).

This graph encodes two aspects of the system: the
association of labeled defects with labeled vertices, which
constitutes a discrete encoding of the state of the system,
and the labeled edges, which represent the possible braid
generators. Consider the defects to have labels 1–4, and the
vertices are labeled V = (V1, V2, V3, V4). Now, the state of the
system is given by an ordering of the set (1, 2, 3, 4), e.g. V = (1,
4, 2, 3). Of course, there is some ambiguity to this assignment.
Permutations of the vertex indexing consistent with the
rotational symmetries of the sphere are all equally valid
encodings. For instance, V = (1, 2, 3, 4) is consistent with
V = (3, 1, 2, 4) after a rotation about an axis connecting the
origin and vertex V4, see Figure 7 for the geometry. Indeed,
vertex indexing sets are equivalent, due to the rotational
symmetries of the sphere, if they are related by an even
permutation. This defines two equivalence classes for vertex
indexing sets, C1 and C2. C1 consists of all even permutations of
(1, 2, 3, 4), while C2 consists of all odd permutations. We will
treat the initial choice of vertex indexing set within one of the
equivalence classes as a convention (say (1, 2, 3, 4) for C1 and
(2, 1, 3, 4) for C2), which, along with the dynamics, removes
any ambiguity in the discrete state of the system. You can
determine which of C1 or C2 the initial defect positions are
consistent with. Right handed tetrahedra have the fourth defect
situated above the plane formed from the first three defects
(normal to the plane given by right handed ordering of these
three points), while left handed tetrahedra have the fourth
defect below this plane. Right handed tetrahedra have vertex
indexing sets in C1, while left handed tetrahedra correspond to
C2. Note that this whole procedure for determining the discrete
state of the system is analogous to finding the linear order of
defect positions for Artin braids.

Now that we can define a discrete system state, we move on to
the second use for our graph - defining braid generators. For
simplicity, we will consider the equivalent tetrahedral graph
shown on the right of Figure 7. We have six edges, and
therefore six braid generators, σi (and inverses, σ−1i ), see
Figure 7 for the motion associated with generator σ1. Each
generator induces an odd permutation on the vertex indexing
set, and thus takes C1 states to C2 states, and vice versa. Indeed,
geometric movement associated with any generator necessarily
includes an intermediate geometric configuration of defects
which is co-planar (separating C1 and C2 tetrahedral
configurations).

The rotational symmetries of the sphere were important in
making sense of the discrete system state. They are likewise
central to finding the minimal set of generators necessary to

describe motion. Pairs of generators are equivalent to each other
[σ2j ~ σ2j−1 for j ∈ (1, 2, 3)] if we allow for a rotation after one of
the generators. Since there is no dynamical difference between
σ1 and σ2, we must choose one and stick with it as a convention.
We choose σ1, σ3, σ5. It should be noted that the discrete system
state will be different after a σ1, as compared to that after a σ2.
However, the choice between the two again constitutes an
arbitrary, though necessary convention. Finally, a less
obvious relation exists between adjacent edges: σ−11 ~ σ3,
σ−15 ~ σ1, and σ−13 ~ σ5. Again, the relation holds after a
rotation of the sphere. After these symmetry reductions, we
can represent arbitrary defect movement with braid
words constructed from an alphabet of just three symbols:
(σ1, σ3, σ5).

Only one braid generator can be executed at the same time,
so the set of braid generators is also the set of braid operations.
We would like to find the braid with the largest topological
entropy per operation. As a first step, we need a method for
finding the TEPO of a given braid word. We outline the
method developed in this paper [28], and give the details in
Supplementary Appendix S14A. As a reminder, the
topological entropy measures the exponential stretching rate
of material curves under the action of the braid. We create a
coordinate system (intersection coordinates) for discretely
encoding closed curves (homotopy classes of these curves).
The action of a braid generator on this coordinate system is
specified, as are all other generators through symmetry. The
sum of the coordinates is a good proxy for the length of the
curve, and the asymptotic exponential increase in this value
after repeating the braid action constitutes the topological
entropy (again, for details see Supplementary Appendix
S14A).

We checked braid words up to length 10, and the unique (up to
cyclic shifts) braid to maximize TEPO is

βϕ � σ1σ1σ5σ5σ3σ3. (3)
This braid has a TEPO of �h(βϕ) � log(ϕ), where ϕ �

(1 + �
5

√ )/2 is the golden ratio. This braid is often called the
golden ratio braid, or simply the golden braid. That this braid
maximized the TEPO in this configuration is expected, as it has
been proven [22] that the max TEPO braid for B3 (three points
on a disk) has this TEPO value. Four points on a sphere are
equivalent to three points on a disk if we associate one of the
points on the sphere with the disk boundary. Indeed, if we relax
the last symmetry reduction and use the braid generators (σ1, σ3,
σ5) and their inverses, we recover many braid words that have
this max TEPO. Each of these braid words map to the usual
golden braid in B3 after a particular choice of point on the
sphere to expand out to the disk boundary. The utility of the
braid word in Eq. 3 lies in its uniqueness and symmetry. Each
pair of repeated braid generators leaves the system state
invariant, and act as full twists about the three equatorial
curves (that divide the defects into two pairs). Now that we
have a max TEPO braid for the case of 4 points on a sphere,
we would like to know if this braid is realized in an ANMT
system.
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10 SPHERICAL
EXAMPLE—COMPUTATIONAL

A recent paper [10] introduced a computational model for the
trajectories of 4 +1/2 defects on the surface of a sphere. The model
consists of a set of implicit ordinary differential equations for the
evolution of 8 angular variables (spherical coordinate angles for
each defect) and one extra variable (which sets the defect
orientations). The main free parameter corresponds to the
activity level, and increasing it results in faster defect
movement. We have implemented this model, using the same
initial conditions and computational choices as in the original
paper [10], to get the pair-wise angle differences seen in Figure 8.
Due to the symmetries of the problem, there are only three unique
angle differences, which oscillate periodically.

When the defects are close to a tetrahedral configuration, all
angles are roughly the same (1.91 radians or 109.5°); when they
are co-planar, the smaller angles are π/2 = 1.57 radians and the
larger angle is π. The angles in Figure 8 reveal the periodic change
in topological configuration—tetrahedral to co-planar and back

to tetrahedral. Each time we pass through a co-planar
configuration it corresponds to a new braid generator. We can
figure out which braid generator if we know the state of the
system before the co-planar configuration and know which pairs
of defects are along the diagonals of the co-planar configuration,
see Supplementary Appendix S14B for the details. The braid
corresponding to the trace in Figure 8 is σ1σ1σ5σ5σ3σ3σ1, which,
when repeated in the obvious way, is the same as the golden braid
of Eq. 3.

Next, we vary the activity level over an appropriate range and
see what braiding behavior results. As seen in Figure 9, the
topological entropy per unit time (note, not TEPO)
monotonically rises with activity level. For activity levels below
~ 0.22 there is no movement of the defects, and therefore no
topological entropy production.

The TEPO over this same activity range behaves quite
different, as seen in Figure 10. Here, as soon as the defects
start to move, the TEPO value jumps up to its maximum value of
�h(βϕ) � log(ϕ) � 0.481211825. For activity levels greater than

FIGURE 8 | Dynamics of 4 +1/2 defects on a sphere. The three independent pair-wise angle differences are shown (green, blue, and orange traces) over time. The
motion is periodic, and we can identify the switching of topological configuration from tetrahedral to co-planar, and back to tetrahedral. For comparison with Figures 9,
10, this motion corresponds to an activity level of 0.265 (third data point).

FIGURE 9 | The braiding topological entropy per unit time extracted from
the movement of 4 +1/2 defects on the sphere for a range of activity levels.

FIGURE 10 | The braiding topological entropy per operation (TEPO)
extracted from the movement of 4 +1/2 defects on the sphere for a range of
activity levels.
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~ 0.53, the TEPO value slowly decreases, though still relatively
close to the maximum.

Taken together, Figures 9, 10 tell the following story. As soon
as the activity level is large enough for the active stresses to
overcome the mechanical stresses, the defects start moving in a
pattern that produces the braid with maximum possible TEPO,
the golden braid. As the activity level increases, the braiding
pattern is still the golden braid, but the period of oscillations is
shorter. Since the same braiding pattern is executed in a shorter
time, the topological entropy per unit time rises. As the activity
level rises further, we eventually loose the perfectly periodic defect
motion, and the trajectories start to become chaotic. The
topological entropy per unit time continues to rise as the
defect movements speed up, but the TEPO decreases and is no
longer maximal. A typical segment of a braid word from this
regime (activity—0.792) is:
σ1σ5σ5σ5σ3σ3σ1σ5σ5σ3σ3σ1σ1σ5σ5σ3σ1σ1σ1σ5σ5σ3. Note how this
has a similar pattern to the golden braid, just with the
occasional deletion or addition of a braid generator. In this
way, the max TEPO braid not only dictates the defect
movement at low activity levels, but also plays a key
organizing role for the movement at higher activity levels.

The behavior of topological entropy per unit time and TEPO
in this example is analogous to the results in the bulk turbulence
topological entropy study [6]. In both cases, a closer look at how
best to normalize topological entropy reveals the existence of a
common braiding pattern over a large range of activity levels.

Finally, a future study should look at the onset of chaos in this
system. The period doubling route to chaotic defect trajectories
should be reflected in analogous, though discrete, behavior in the
braids that are generated. Unfortunately, the current
computational model [10] has some shortcomings that
preclude this right now. The largest issue is that the defects
occasionally work their way into a configuration that
asymptotically approaches a fixed state with no movement.
This non-physical behavior, and others where this defect slow
down is transitory, effect the determination of the topological
entropy per unit time. Here, we have roughly accounted for this
by finding the average time to go between tetrahedral
configurations after removing the time intervals that are more
than twice as long as the mode of whole set of time intervals. This
average period is then used to get the topological entropy per unit
time from the more robust TEPO calculation.

11 SPHERICAL
EXAMPLE—EXPERIMENTAL

Is the max TEPO braid for 4 +1/2 defects on a sphere
experimentally realized? We return to the original paper [8],
which introduced this ANMT system geometry. While we do not
have access to their original data, we can back out the braid word
corresponding to the movement captured in one of their figures.
We have reproduced a cartoon version of their Kymograph in
Figure 11. It shows the six pairwise angle differences between the
four defects over time, where the angles have been thresholded to
clarify the salient information content. At times where two angles

are close to 180° and the other four are closer to 90°, the defect
configuration is close to co-planar. In between these co-planar
times we have tetrahedral configurations. Thus, at each transition
from tetrahedral to other tetrahedral configuration, we can
determine which pairs of points are diagonal to one-another
on the quadrilateral formed while the points are co-planar. This
information, along with knowledge of the handedness of the
initial tetrahedron, is sufficient to generate the corresponding
braid word, see Supplementary Appendix S14B for details.

The braid word recovered by this method is

βexp � σ5σ5σ3σ3σ1

σ5σ5σ3σ1σ1

σ5σ5σ3σ1σ1

σ5σ5σ3σ3,

(4)

where the braid has been broken up into four chunks to make
comparisons easier. The TEPO value is �h(βexp) � 0.45795. This is
very close to the max TEPO value of 0.48121, and the braid word
is similar to that of the golden braid, just with the occasional
skipped generator. This, along with the analysis in Section 10,
suggests that the defect motions recorded in the Kymograph are
just beyond the activity level at which the transition to chaotic
motion happens. We suspect that data taken at a smaller activity
level would exactly realize the golden braid.

12 STRONG DYNAMICS PRINCIPLE

In both of the previous two examples (ANMT system confined to
a periodic channel or to the surface of a sphere), the dynamics
give rise to emergent braids that not only satisfy the weak
dynamics principle, but also seem to maximize the TEPO.
This suggests the possibility of a stronger dynamics principle
dictating the evolution of our minimal ANMT model.

Strong Dynamics Principle: The braids that emerge from the
motion of topological defects in the director field of an ANMT
system maximize the topological entropy per operation (TEPO).

Again, we have the same assumptions as with the weak
dynamics principle: 1) The microtubule bundles are densely
packed, 2) Material lines along microtubule bundles stretch
exponential in time with a constant rate that is spatially
uniform, 3) There are no creation or annihilation events, and
4) The defect motion is periodic. For the strong dynamics

FIGURE11 | This is a cartoon version of the Kymograph figure (encoding
movement as time traces) from the spherical ANMT experimental study [8].
The movement of 4 defects are given by the 6 pairwise angle differences over
time. Here we have thresholded the data (closer to 180° or 90°) to
highlight the tetrahedron to co-planar to tetrahedron topological changes.
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principle, the periodic motion assumption is particularly
important (unlike for the weak dynamics principle). As we
have seen, deviations from periodic motion (say at higher
activity levels for the numerical implementation of four +1/2
defects on a sphere) accompany braids that have TEPO values
smaller than the maximum possible.

At this point, we have two examples of defect behavior that
satisfy the strong dynamics principle. It is natural to wonder how
broadly this principle can be applied, as it all but completely
determines the topological dynamics. As we have seen in Section
10, an increase in the activity level will eventually lead to braids
with TEPO less than the max TEPO, though this defect motion is
chaotic and not periodic. From this, we can see that the max
TEPO braid is most likely to be realized for low activity levels
(that are high enough for motion to occur).

As a component of our minimal model of simple ANMT
behavior, the strong dynamics principle completely determines
the topological motion of defects. The resulting unique predicted
braid does not change with activity level or other system
parameters, and is only seen in the region of parameter space
where the motion is periodic. Within this window of periodic
motion, the geometric motion of the defects changes with
parameter changes (e.g. speeds up with increasing activity, see
Figure 9), but the underlying braid remains the same (e.g. see
Figure 10). The size and prevalence of this parameter space
window does depend on system parameters, and for complex
enough system geometries might not exist at all. However, outside
this window, the max TEPO braid still influences the defect
motion, as realized braids are symbolically close to the max TEPO
braid. Additionally, the weak dynamics principle still applies
when the defect motion is not strictly periodic.

We have also analyzed arguably the two simplest geometries
possible, but this principle could likely be applied to new
geometric constraints: a lattice of boundary pillars, the surface
of a torus, or the surface of an ellipsoid. For the case of a lattice of
pillars or the surface of a torus, the max TEPO braids, and
therefore the predicted defect motion via the strong dynamics
principle, have already been calculated [28]. Another paper [43]
has considered the ellipsoidal geometry case. We believe that the
braiding dynamics could be determined by the strong dynamics
principle. Here, the max TEPO braid would need to be calculated
with braid operations having different weights (corresponding to
the differing times it takes to execute the motions).

Finally, there should be a physically explicable reason whymax
TEPO braids are favored over other braids. Unfortunately, we do
not have a complete understanding of this phenomena at this
time. If we compare many different braiding patterns, all of which
are describing defect motion for an ANMT system at a given
activity level (and therefore common stretching rate), then the
max TEPO braid will be the one that can be executed with the
smallest possible defect speeds. Defects typically move at the same
speed as the underlying material, but, not being material points
themselves, can move faster (especially when the MT bundles
fracture). Thus, a physical reason for slower defect speeds being
favored could help better justify the strong dynamics principle.

The realization of max TEPO braids over all the other a-priori
possible braids is a global constraint on the dynamics. It would be

useful to recast the strong dynamics principle as a local rule for
determining the next generator in a braid word, given the current
state of the system.

13 CONCLUSION

It is rather remarkable that a messy experimental system,
composed of large numbers of biologically derived
microtubules and molecular motors, and fueled by ATP, can
be accurately modeled by simple braids with unique properties.
From a broader view, we can view all 2D fluids in light of their
kinematic mixing properties: How does the stretching and
folding of material curves, characteristic of mixing, arise
from the coordinated dance of the relative motions of
material points? On the complex side there is 2D turbulence,
in which a full accounting of mixing requires that we include
more and more trajectories to access motion at all scales in the
inertial range. The ANMT systems that we have analyzed here
lie on the opposite side of this complexity spectrum. While they
still produce exponential stretching of material lines, and
therefore exhibit Lagrangian chaos of material points, all of
the information content is encoded in the topological motion of
just a small number of points (the +1/2 defects). In this sense,
the ANMT system is as simple as possible while still producing
non-trivial mixing behavior. This feature alone should make
ANMT systems a canonical example in the fluid dynamics and
mixing literature.

In this paper we have argued that much of the behavior of
ANMT systems can be generated by a particularly simple
minimal model. Here, the state of the system is discretely
encoded in the matching of labeled defects with vertices in a
graph. The dynamics are recorded in a sequence of braid
generators. Instead of equations of motion, we have
dynamics principles, which filter out the dynamically
permissible braids. The weak dynamics principle says that
only braids with non-zero topological entropy are possible,
while the strong dynamics principle goes farther and posits
that the movement of topological defects weaves braids that
maximize topological entropy per operation. We have compiled
evidence for these two dynamics principles by considering two
simple ANMT system geometries: a periodic channel, and a
sphere. Particularly for 4 +1/2 defects on a sphere, the
computational and experimental evidence points to the
central role of max TEPO braids in ordering the dynamical
behavior.

This topological point of view naturally raises as many
questions as it answers. In future work, we will be looking for
other simple ANMT system geometries to test the strong
dynamics principle. We have max TEPO predictions for braids
on a torus, which can be realized as braids on a square lattice.
ANMT experiments on a square lattice are currently underway.
Another direction for future work is to adapt this approach to
include creation and annihilation events. This is a challenge for
topological braids, however, many of the related topological tools,
like train tracks and foliations, can likely provide the starting
point. Finally, the dynamics principles are essentially global in
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their approach. It would be great to have a local approach that can
determine which braid generator is next, based on the current
state of the system. We believe that topological ideas still have
much to say about ANMT systems.
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