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The chiral interaction between single photons in waveguides and quantum emitters has
gained considerable attention. Here, we proposed a tunable quantum routing scheme with
a chiral quantum system by coupling an emitter to two chiral waveguides. Conventional
quantum routers can only be achieved with each port output probability no larger than
25%. But our scheme can transfer quantum information arbitrarily from an input port to
another, and each port’s output probability is 100%. Besides, we investigated the influence
of the Purcell factor in quantum routing properties. Nomatter how to change the size of the
directionalities Sj or set a specific value to the dissipation of the emitter, we always found
that the quantum routing has very high efficiency. Moreover, we also used a
superconducting qubit coupled to two resonators to show the present scheme is
pretty feasible for experimental implementation.
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1 INTRODUCTION

To further improve the rapid-developing quantum information technology, the establishment of a
global quantum network [1] is an inevitable trend in the future. The quantum network requires the
realization of quantum entanglement [2–4] among multiple remote quantum memories [5], and
enables multi-party quantum communication [6, 7]. Such a network can also be applied to quantum
computing, distributing quantum precision measurement and fundamental tests of physics in large-
scale space. Quantum internet is consisted of three basic elements, which are quantum nodes,
quantum channels and quantum repeaters. Quantum nodes, which generate, process and store
quantum information, are connected by long-distance quantum channels, while quantum repeaters
establish and distribute entanglement. As one kind of node devices, quantum routers [8–22] are a key
component of quantum network, which can transmit information continuously between remote
quantum nodes. Photons play significant roles in the construction of quantum router because they
are relatively free of the decoherence [23, 24]that plagues other quantum systems, and can be
manipulated and detected easily. Thus, photon is an ideal candidate of the flying qubit. The
waveguide is conveniently scalable so it can be easily integrated on the chip to expand the number of
nodes in the quantum network. Based on these excellent characteristics, the coupled waveguide-
emitter system has attracted extensive attention in the field in quantum information processing
[25–33] and quantum network. In the last several years, numerous theoretical and experimental jobs
have showed a variety of quantum router plans based on superconducting circuit [34], cavity-atom
[35], coupled resonator [18, 39], optomechanical system [36], or quantum dot [37] for controlling
the photonic transport in quantum networks. However, the expectable routing probabilities from the
incident channel to the other quantum channels are limited to no more than 50% in all previous
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schemes. But in the paper by Li et al [38], they investigate the
input-output relations of the system and analyze the effect of the
atomic states on the photon transmission. They scheme can route
the input signal into different output ports guided by the
quantum states of a two-level atom, and they also realized
100% output. In this paper we also present a physical scheme
that also achieves the output of 100%. In fact, for a complex
quantum network, quantum nodes can not only be used for the
localized generation, processing, and storage of quantum
information, but also generate and process a single qubit.
Therefore, improving the routing capabilities of quantum
routers is crucial.

Here, we put forward a plan to realize quantum router, our
scheme is composed of two chiral waveguides and a Λ-type three-
level system. Similar model has been considered in Ref. [17] to
demonstrate nonreciprocal few-photon scatterings. The single-
photon scattering amplitudes are given analytically. The result
shows that the quantum information incident from one
waveguide can be redirected into another with 100%
probability when the coupling is chiral. Compared to the
previous quantum routing plans [18, 39–43] that are based on
single photons, our design quantum routing can transport the
quantum information deterministically from an input port to
arbitrary output port with high efficiency. Such a chiral quantum
system could be a genuinely compact, versatile, and powerful
improvement to the development of a complex quantum
network.

2 MODEL SETUP

The physical system configuration considered in this article is
shown in Figure 1. Similar model has been considered in Ref. [17]
to demonstrate nonreciprocal few-photon scatterings. The hybrid
system located at x = 0 is consists of two parallel waveguides and
an emitter with ground states |g〉, intermediate state |s〉 and
excited state |e〉. The waveguides are labeled a and b respectively.
In theory, we allow these couplings to be chiral and marked as λjL

and λjR (j = a, b) respectively. When a single photon is incident
from the left of waveguide a, it will propagate or be reflected by
the atom along with the four ports of the two waveguide channels.
Specifically, in this configuration, the perfect nonreciprocity of
single-photon transport means when the single photon is incident
from the left of a, it will be output from the right of b with a
probability of 1. The Hamiltonian of the system is given by
(setting Z = 1)

H � H0 +Hw +HI, (1)
where H0, Hw and HI denote the free atomic Hamiltonian, the
free-transport photon in the waveguide Hamiltonian and the
interactions between the atom and the waveguides Hamiltonian
respectively. The free atomic Hamiltonian H0 is given by

H0 � ωs − iγ/2( )|s〉〈s| + ωe − iΓ/2( )|e〉〈e| + Ω |e〉〈s| + h.c( )
where ωs (ωe) is the frequency of the intermediate (excited)state, γ
and Γ account for the spontaneous emission of the state |s〉 and |
e〉 into other modes different from the waveguide modes, e.g., free
space.Ω is the Rabi frequency of the control field that is applied to
couple the atomic states |s〉 and |e〉. The Hamiltonian of the
photon mode in the two waveguides is given by

Hw � ∑
j�a,b

∫ dx C†
jR x( ) ω0j − i]g

z

zx
( )CjR x( )[

+C†
jL x( ) ω0j + i]g

z

zx
( )CjL x( )]

where ω0j space is the reference frequency. Here, we set ω0j = ω0a

= ω0b. C
†
jR(L)(x)(j = a, b) is the creation operator for the right-

moving (left-moving) photon along the waveguide j at position x.
]g is the group velocity of a photon in waveguide j which is
considered as equal in this work. The interaction Hamiltonian is
given by

HI � ∫ dxδ x( ) VaRC
†
aR x( )|g〉〈e| + VaLC

†
aL x( )|g〉〈e| + h.c( )

+∫ dxδ x( ) VbRC
†
bR x( )|g〉〈e| + VbLC

†
bL x( )|g〉〈e| + h.c( )

where δ represents the Dirac δ function. In this expression, we
choose the four coupling constants [VaR, VaL, VbR, VbL] to be real
numbers for simplicity. VaR(bR) (VaL(bL)) is the photon-atom
coupling strength for the photon propagating along the right
(left) direction, and due to the chiral interactions, VjR ≠ VjL (j = a,
b). They are related to the final decay rates into the waveguides
through λjR(L) � V2

jR(L)/]g. To measure the chiral coupling
character, we bring in the parameter [17].

Sj � |λjR − λjL
λjR + λjL

| j � a, b( ). (2)

Here, Sj = 0 when λjR = λjL, which occurs in nonchiral
interaction, 0 < Sj < 1 when λjR ≠ λjL, existing chiral
interaction, and whereas for maximally asymmetric coupling Sj
= 1. The other relevant element is the Purcell factor [44–48],
which accounts for the modification of the total decay rate of an
emitter placed in the vicinity of a nanostructure, P � λa+λb

γ+Γ .

FIGURE 1 | Schematic diagram of the system. Two waveguides are
chirally coupled to a Λ-type three-level system, the Λ-type three-level system
is located at x = 0, and the similar model has been considered in Ref. [17].
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Finally, λj = λjR + λjL (j = a, b), which accounts for the total decay
rate of the excited state |e〉 and intermediate state |s〉 into each of
the waveguides.

We concentrate on single-photon scattering in this system.
Suppose the atom is in the ground state |g〉 at the initial time. The
wave function of the system can be expressed as

|ψ〉 � ∑
j�a,b

∑
m�R,L

∫ dxφjm x( )C†
jm x( )|0g〉 + us|0s〉 + ue|0e〉 (3)

where φjm(x) denotes the probability amplitude of the right or left
propagating photon in waveguide a or b. us and ue are the
amplitudes of the states |s〉 and |e〉, respectively, and |0g〉
denotes the ground state, wherein there is no photon in the
waveguides and the atom is at the ground state |g〉. Suppose that
the single photon is injected from the left of waveguide a, the
probability that the photon propagates can be expressed as

φaR x( ) � e−ikx θ −x( ) + taθ x( )[ ],
φaL x( ) � e−ikxraθ −x( ),
φbR x( ) � eikxtbθ x( ),
φbL x( ) � e−ikxrbθ −x( ).

(4)

Here, ta (tb) denotes the single-photon transmission amplitude
in waveguide a(b) and ra (rb) denotes the single-photon reflection
amplitude in waveguide a(b). θ(x) is the Heaviside step function
with θ(0) = 1/2. Using the eigenequation H|ψ〉 = ω|ψ〉, we obtain

ta � λaL − λaR + λbL + λbR( ) ω − ωs + iγ/2( ) − 2i ω − ωs + iγ/2( ) ω − ωe + iΓ/2( ) + 2iΩ2

λaL + λaR + λbL + λbR( ) ω − ωs + iγ/2( ) − 2i ω − ωs + iγ/2( ) ω − ωe + iΓ/2( ) + 2iΩ2

ra � −2 ������
λaLλbR

√
ω − ωs + iγ/2( )

λaL + λaR + λbL + λbR( ) ω − ωs + iγ/2( ) − 2i ω − ωs + iγ/2( ) ω − ωe + iΓ/2( ) + 2iΩ2

tb � −2 ������
λaRλbR

√
ω − ωs + iγ/2( )

λaL + λaR + λbL + λbR( ) ω − ωs + iγ/2( ) − 2i ω − ωs + iγ/2( ) ω − ωe + iΓ/2( ) + 2iΩ2

rb � −2 ������
λaRλbL

√
ω − ωs + iγ/2( )

λaL + λaR + λbL + λbR( ) ω − ωs + iγ/2( ) − 2i ω − ωs + iγ/2( ) ω − ωe + iΓ/2( ) + 2iΩ2

(5)

The quantum routing properties of single photons in the four
ports are characterized by the transmission coefficient Ta(b) = |
ta(b)|2 and the reflection coefficient Ra(b) = |ra(b)|2. The analytic
expressions above provide a complete description of the single-
photon transport properties of the proposed network. Obviously,
the desired quantum routing can be implemented by properly
designing the relevant geometric parameter and the other
physical parameters.

3 IMPLEMENTING TUNABLE QUANTUM
ROUTING USING CHIRAL WAVEGUIDES

In order to compare with previous research works, we first discuss
the routing capability when the coupling strengths between the atom
and two waveguides are equal, so the relevant photon-atom
interactions are not chiral but symmetric, λaR = λaL = λ1, λbR =
λbL = λ2. For simplicity, we assume λ1 = λ2, thus r

a = tb = rb. WhenΩ
= 0, single photons incident from one waveguide a will be absorbed
by the atom, which transits from its ground state to excited state.
Since the excited state is coupled to a continuumof states, the excited
two-level atom will emit a photon spontaneously into the

propagating mode of either waveguide a or b. Consequently,
mediated by the atom, single photons could be routed from one
quantum channel to the other. In Figure 2A, we plot the image of
the coefficients Ta, Ra and Tb + Rb, respectively. Here, Tb and Rb

reach themaximum value of 0.25. In Figure 2B, we plot the figure of
the coefficientsTa,Ra andTb+RbwhenΩ≠ 0. The quantum routing
due to the resonant tunneling process via the two dressed states is
shown by the two peaks of the transfer rate in Figure 2B. When ω/λ
= 0, Ta = 1. This is the conventional scheme for single-photon
routing, which has an equal probability of routing the photon to
either of the two waveguides, specifically, Tb = Rb = 0.25.

When the coupling is chiral, λaR ≠ λaL, λbR ≠ λbL, we assume the
λaL= λbL= 0, λaR= λbR= λ. In this case, we find that r

a= rb= 0, which
means that the Λ-type three-level system only couples to the right-
propagating mode in the two waveguides. Figure 3 shows the
probabilities of routing the incident photon to various output
ports with respect to specific ω/λ. It indicates that the resonant
photon incident from the left of waveguide a can output from the
right of waveguide b with a probability of 100% whetherΩ = 0 orΩ
≠ 0. But when Ω ≠ 0, Tb has two peaks centered at ω = ±Ω. If λaL =
λbR = 0, λaR = λbL = λ, we can obtain ra = tb = 0, this means that the
photon incident from the left of the waveguide a may output from
the right of the waveguide a or the left of the waveguide b. Whenω =
±Ω, Rb = 1, this means that the single photon is transferred to
waveguide b and output from the left of waveguide b with a

FIGURE 2 | (A,B) The coefficients Ta, Ra and Tb + Rb as functions of the
ωwithΩ = 0 (Ω ≠ 0). Other parameters are set as follows: ωs = ωe = 0, λ1 = λ2 =
λ, γ = Γ = 0.
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probability of 100%. In Figure 4, we show the probabilities of
routing the incident photon to various output ports with respect to
specific values of ω/λ, and we find that Figure 4; Figure 3 have the
same physical phenomenon.

4 INFLUENCE OF DISSIPATION

In this part, we show how dissipation affects the photon routing
probability. Here, we presume that λaL ≠ λaR ≠ 0 and λbR ≠ λbL ≠ 0.
If ta = 0 and an incoming photon in the resonance condition (ω =
ωs = ωe), we can get

λaR � λaL + λbL + λbR + Γ + 4Ω/γ (6)
Because λj = λjR + λjL (j = a, b) and P � λa+λb

γ+Γ

λb � λaR − λaL − Γ − 4Ω/γ � λa
2SaP − 1
2P + 1

− 4Ω/Γ (7)

Here, we assume that Γ = γ. Consequently, the corresponding
transmission coefficient Tb can be expressed [17].

FIGURE 3 | Transmission spectra of the waveguide with specific chiral
photon-atom interactions, λaL = λbL = 0, λaR = λbR = λ. (A–C) Ta and Tb for
differentΩ = (0, 0.5, 1.5). Other parameters are set as follows: ωs = ωe = 0, γ =
Γ = 0.

FIGURE 4 | Transmission spectra and reflection spectra of the
waveguide with specific chiral photon-atom interactions, λaL = λbR = 0, λaR =
λbL = λ. (A–C) Ta and Rb for differentΩ = (0, 0.5, 1.5). Other parameters are set
as follows: ωs = ωe = 0, γ = Γ = 0.
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Tb � |tb|2 � 1 + Sb
1 + Sa

2SaP − 1
2P + 1

(8)

Note that in the ideal case the efficiency defined above is equal
to 1, whereas in a realistic case the probability leakage into the
undesired channels will reduce this value. In Figure 5, we plot the
coefficients Tbwith different Sj as functions of the Purcell factor P.
We found that the lager Purcell factor P is, the lager coefficient Tb

is, but the last Tb can reach a fixed value.

Under the resonance conditions (ω = ωs = ωe), in order to
observe the effect of the atomic dissipation on quantum routing
more explicitly, we assume γ = Γ = 0.005. The first case is the real

FIGURE 5 | The coefficients Tb as functions of Purcell factor P. Here, Sa

= Sb.

FIGURE 6 | (A) Ta as a function of ω/λ and (B) Tb as a function of ω/λ,
here, ω = ωe = ωs, γ = Γ = 0.005, λaR = λbR = λ and λaL = λbL = 0.05λ.

FIGURE 7 | (A) Ta as a function of ω/λ and (B) Rb as a function of ω/λ,
here, ω = ωe = ωs, γ = Γ = 0.005, λaR = λbL = λ and λaL = λbR = 0.05λ.

FIGURE 8 | chematic diagram of two transmission line resonators
coupled to a superconducting qubit.
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systemwith λaR = λbR = λ and λaL = λbL = 0.05λ, and we investigate
the performance of the single-photon transport compared with
the ideal case. However, the classical optical field can still
determine the locations of the peaks of Tb. Figure 6 shows Ta

and Tb as a function of ω/λ. In Figure 6A, we find that when ω =
±Ω, Tb reaches the maximum, but the maxima is less than 1, since
the probabilities of the photon output from the left of waveguide a
and b are not zero. The other case is when λaR = λbL = λ and λaL =
λbR = 0.05λ, and we plot the figure of Ta and Rb in Figure 7. At this
point, we get the same physical phenomenon as Figure 6.

5 PHYSICAL IMPLEMENTATION

As schematically shown in Figure 8, we consider a system in
which two resonators with the same fundamental mode
frequencies ωR/2π = 4.896 GHz are coupled to a
superconducting qubit. The coupling frequencies between the
qubit and each resonator is g/2π = 96.7MHz. In addition to the
geometric coupling gab/2π = 8.4MHz there is the qubit mediated
second-order dynamic coupling which depends on the magnetic
flux applied to the qubit loop and on the qubit state, and the
dynamical coupling on the qubit state can be used to realize
switchable coupling between the two resonators [49–51]. The
Hamiltonian of the whole system for the qubit coupled to the
fundamental modes of the two resonators is (setting Z = 1)
[49, 52].

H � ωRaa
†a + ωRb

b†b + 1
2
ωQσz + ga a†σ− + aσ+( )

+gb b†σ− + bσ+( ) + gab a†b + ab†( )
whereωQ is the qubit transition frequency, σz = σ+σ− − σ−σ+ and ga
and gb are the qubit-resonator coupling, assumed to be real for
simplicity. Furthermore, we denote the annihilation (creation)
operators for the two resonators A and B as a and b (a† and b†),
respectively. Under the rotating-wave approximation, the
effective Hamiltonian is [52].

Heff � ωRaa
†a + ωRb

b†b + 1
2

ωRa + ωRb( )σz
+1
2
σz Δa + Δb( ) + ga a†σ− + aσ+( )

+gb b†σ− + bσ+( ) + gab a†b + ab†( )
where Δa � ωQ − ωRa and Δb � ωQ − ωRb. For the measurement,
the qubit is kept in the ground state and the input power is chosen
such that the mean resonator population is approximately one
photon on average [50]. For coupled microwave resonators, we
expect to observe two resonant modes corresponding to out-of-
phase and in-phase oscillating currents in the two resonators. In
this way, we can measure the transmission through the individual
resonators and the transmission from the input of one resonator
to the output of the second resonator [50, 51].

6 CONCLUSION

In summary, we implemented a targeted single-photon router by
using an effective atom-photon interface with two chiral
waveguides, and no matter a classical field is turned off or
turned on, it can always achieve quantum routing. Using a full
quantum theory, the single-photon transmission and reflection
amplitudes were analytically obtained. By the numerical method,
we analyzed the relevant transport properties in detail. When the
coupling between the Λ-type atom system and the waveguides is
non-chiral, the maximum probability for single-photon transfer
from waveguide a to waveguide b is 0.5, but at this time Tb = Rb =
0.25. In other words, we cannot directionally select quantum
channels for quantum information transport in this case. When
the coupling is chiral, the maximum transfer probability can
achieve 100% in the ideal system. What is more, we can control
single photon output from the chosen port of the waveguide b.
After that, we analyzed the performance of the quantum routing.
Whether we change the size of the directionalities Sj or give a
certain value to the dissipation of Λ-type atom, we always found
that the quantum routing has very high efficiency. Moreover, we
also use the quantum circuit of the superconducting qubit
coupled to two resonators verification the present scheme
pretty feasible for experimental implementation. Therefore, the
targeted single-photon routers we proposed here provides an
effective approach to build a promising optical quantum network.
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