
Tunable Electronic Structure in
Twisted Bilayer WTe2
Zi-Si Chen1,2, Lu Huang1,2, Wen-Ti Guo1,2, Kehua Zhong1,2*, Jian-Min Zhang1,2* and
Zhigao Huang1,2

1Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian
Normal University, Fuzhou, China, 2Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting
Materials and Engineering, Fuzhou, China

The moiré pattern restricts the electronic states of transition metal bilayers, thus extending
the concept of themagic angle found in twisted bilayer graphene to semiconductors. Here,
we have studied the electronic structure of the twisted bilayer WTe2 using first-principle
calculations. Our result shows that a twist significantly changes the band structure,
resulting in the bandgap engineering when the twisted bilayer of WTe2 is turning to a
specific angle. The electronic structure is changed by the change of the twist angle.
Interestingly, a semiconductor-to-metal phase transition is found at a twist angle of 15°.
Our results provide a reference for the regulation of two-dimensional band structures.
These results are important for understanding the electronic structure of twisted systems
and for future applications in electronic devices.
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INTRODUCTION

Twisted bilayer graphene (TBG) has been investigated in recent years to find the existence of strongly
correlated [1–5] insulating insulators [6] and superconducting states [4] in magic angle [7]. The
combination of theory and experiment has facilitated the development of research in this area. The
emergence of insulator behavior and unconventional superconductivity in magic-angle twisted
bilayer graphene (TBG) has attracted great interest in this field of research [8–10].

In recent years, the extended family of transition metal dichalcogenide (TMDC) [10–17] has
provided a wide range of possible rotational stacked bilayer systems. TMDC has prompted a large
number of experimental [18, 19] and theoretical [20, 21] studies to understand such limited moiré
states in semiconductor materials, especially in WTe2. Recently, it has been reported that the
bandgaps of both monolayer and bilayer twisted 2H-MoTe2 from indirect bandgap to direct bandgap
transitions, and also, semiconductor-to-metal phase transitions occur [22]. Lately, the effect of the
stacking mode on the electronic structure of the multilayer MoSe2 has been emphasized. Then, it has
been reported that the photoluminescence intensity ratio of ions and excitons reaches a maximum at
a twist angle of 0 or 60° for twisted bilayer MoSe2/WSe2 [21]. Twisted bilayer MoS2 was found to
show flat bands at the twist angles of 5 and 6°, and the average velocity disappears at a twist angle of 2°

[18, 23]. The presence of flat bands has also been found in twisted bilayer WSe2. For example, it has
been recently reported that the electronic structure of twisted bilayer WSe2 samples was found to
have flat bands at the twist angles of 3 and 57.5° by scanning tunneling spectroscopy [24]. The optical
detection of strongly correlated phases in the WS2/WSe2 superlattice reveals Mott insulator states at
one cavity at each superlattice position and surprising insulating phases of 1/3 and 2/3 filling of the
superlattice. It is found that the transport of WSe2/WS2 is also dependent with distortion [25]. For
example, by transient absorption microscopy combined with first-principle calculations to study the
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WS2/WSe2 heterogeneous bilayer interlayer exciton dynamics
and transport in the time, space and momentum domains of
the molecular layers are studied. It was found that exciton motion
around 100 meV is modulated by a moiré potential dependent on
the twist [26].

WTe2 is a type-II Weyl semi-metal (WSM). The topologically
protected valence bands and conduction bands lead to contacting
points between electrons and holes near the Fermi level. WTe2
has promising applications in the fields of low dissipation
electrons, semiconductors, spintronics, optoelectronics,
thermodynamics, and catalysis [27, 28]. However, WTe2 has
been less studied so far and has not been fully investigated.
Theoretical guidance is also needed for conductivity, unlike
some 2D materials such as graphene [29]. A recent theoretical
work [30–33] predicts that WTe2 is a new type ofWeyl half-metal
with a strongly tilted Weyl cone. This Weyl cone arises from the
crossover with excellent properties such as chiral anomaly, non-
saturable large magnetoresistance (MR), pressure-induced
superconductivity, and ultra-low thermal experiments.

Previous studies have not made a systematic pattern of
bandgap evolution with a twist angle. Here, our studies have
made a systematic pattern of bandgap evolution with a twist
angle. The study of twisted bilayer WTe2 confirms that it is
possible to modulate the electronic structure by twisting to make
the electrons correlate stronger. These findings serve as a
sufficient theoretical basis for guiding experiments and provide
a highly tunable experimental platform for strong correlation
physics.

METHOD AND MODELS

The density functional theory (DFT)-based Vienna ab initio
simulation package (VASP) [34] is used for the theoretical
calculations with the projector augmented wave (PAW)
method [35]. The generalized gradient approximation (GGA)
with the Perdew–Burke–Ernzerhof (PBE) function [36, 37] is
used for the exchange and correlation potential. The experimental
crystal constants for non-twisted bilayer WTe2 are a = b =
3.550 Å, c = 15 Å, α = β = 90°, and γ = 120° [38]. To study
the electronic structure of the twisted bilayer WTe2 system, we
constructed a supercell containing two 3 × 3 WTe2 monolayers
with 54 atoms, where the first layer is stationary and the other
layer is rotated by an angle, and a vacuum region of 15 Å, which is
added in the vertical direction of the WTe2 layer. We sampled a
range of interlayer orientation angles from 0 to 15°. The space
group of all twisted systems was P63/mmc. In the relaxation of
non-twisted and twisted bilayer WTe2 structures, all atoms are
relaxed until the force on each atom is 0.02 eV Å−1 and the energy
convergence criteria of 1 × 10–6 eV is met. A plane wave cutoff
energy of 500 eV was used. The Brillouin zone (BZ) was sampled
by using 12 × 12×1 Monkhorst–Pack grids for non-twisted and
twisted bilayer WTe2 structures. Because van der Waals
correction is important for the bilayer WTe2 system, the DFT-
D3 van der Waals correction was taken into account. Spin-orbit
coupling (SOC) is considered in the calculation of electronic
properties [39].

RESULTS AND DISCUSSION

AB stacking is the most stable form of stacking [38]. We used the
AB stacking form when calculating the twisted bilayer WTe2
structure, as shown in Figure 1A. With the increase of the twist
angle, the symmetry and periodicity of the system inevitably
break. The inevitable breaking of symmetry and periodicity of
systems lead to a change in the twisted bilayer WTe2 band
structure and the van der Waals (vdW) coupling between the
layers changes at the same time. Depending on previous studies,
the vdW interlayer interaction plays a decisive role in MX2 [25].
So the effect of DFT-D3 on the twist angle between the layers was
considered in the calculation. Figures 2A,D show the band
structure of the twisted bilayer WTe2 along with the high
symmetry point, and the bandgap of the electronic structure
shows a very interesting pattern with the variation of the twist
angle. For instance, the structure with a twist angle of 0° has a
direct bandgap, with the valence-band maximum (VBM) and the
conduction-band minimum (CBM) are all located at the G point.
For the structure with a twist angle of 0°, the maximum bandgap
is about 0.74 eV, which is the largest bandgap from 0 to 15°.
However, the structure with a twist angle of 15° has a direct
bandgap, with VBM and CBM all locating at the G point, as
shown in Figure 2D. When the twist angle goes to 15°, VBM
increases and CBM decreases with the increase in the twist angle
and finally becomes zero. The maximum bandgap is zero, which
is the smallest bandgap from 0 to 15°, indicating that the bandgap
is very sensitive to the change in the twist angle. When the twist
angle is 14°, the bandgap is a direct bandgap. For the structure
with a twist angle of 14°, the bandgap is about 0.06 eV. Direct
bandgap semiconductors facilitate better utilization of light, as
shown in Figures 2A,D.

The valence-band maximum and conduction-band minimum
for the systems of 0, 10, 14, and 15° are located at the G point. The
bandgaps for non-twisted and twisted systems of 0, 10, 14 and 15°

are different. The results show that the bandgap changes very
significantly for larger twist angles from 0 to 15°. For example, for
structures with a twist angle of 15°, the bandgap is zero. The
change of the bandgap with the twist angle may be a common
feature of the twisted structure WTe2, and significant changes in
its luminescence properties are expected. Twists along the
superposition direction change the interlayer distance and thus
significantly alter the interlayer vdW interaction [22]. Previous
studies have also found that twists can sensitively change the
electronic properties of the edges of molybdenum disulfide
[16–19, 22, 40].

From the aforementioned band structure diagram, we observe
that the bandgap and ΔE vary with the twist angle. We present
this regularity in the following, as shown in Figures 3A,B. The
bandgap ofWTe2 is very sensitive to the change of the twist angle.
The bandgap changes accordingly as the twist angle changes
continuously. The bandgap decreases trends from 0 to 15°. The
bandgap determines the energy required for the valence-band
electrons to leap to the conduction band. The larger the bandgap,
the higher the leap energy, the less likely the electrons will be
excited. Therefore, when the twist angle is from 0 to 15°, the
bandgap shows an overall decrease tendency, which is favorable
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for the valence-band electrons to jump to the conduction band.
When the twist angle is from 0 to 15°, the bandgap shows an overall
decrease tendency, and the binding effect on the valence-band

electrons is weaker, which is favorable for the valence-band
electrons to get rid of the valence bonds and also favorable for
conductivity. When the angle is turned to a particular angle, the
appearance of the reduced bandgapmay reduce the carrier, when the
kinetic energy of the carrier is quenched, the enhanced
electron–electron interaction may lead to the appearance of a
strongly correlated phase [6, 41–44].

The ΔE varies with the twist angle trend of fluctuation and is
very large. The ΔE of the twisted bilayer WTe2 is obtained by
subtracting the energy without the twist angle from the energy
after the twist angle. As the twist angle increases, the energy
change of the twist angle also shows the result of certain changes.
When the twist angle is from 0 to 15°, the energy tends to decrease
overall. It can be seen from the relationship between ΔE and the
twist angle as described before, as shown in Figure 3B. When the
twist angle is 1°, the corresponding energy is the largest, which
means that the system is the most unstable compared to twisted
systems with other twisted angles. But when the twist angle is 15°,
the corresponding energy is the smallest, which means that the
system is the most stable compared to other twisted systems with
other twisted angles.

We explain it in terms of the projected density of states
(PDOS), as shown in Figures 4A,D. The PDOS of twisted
bilayer WTe2 mainly has the d-orbitals of W and the p-
orbitals of Te atoms as the contributions near the Fermi level.
As the twist angle increases, the density of states moves toward

FIGURE 1 | Top view of the twisted bilayer WTe2 crystal structure with twist angles of (A) 0°, (B) 10°, and (C) 15°. Side view of the twisted bilayer WTe2 corresponds
to the twist angles of 0°. Blue and purple represent W and Te atoms, respectively.

FIGURE 2 | Band structures of bilayer WTe2 with twist angles (A) 0°, (B)
10°, (C) 14°, and (D) 15°. Specific torsional values are indicated accordingly in
the plots. Light black dashed dots represent Fermi energy.

FIGURE 3 | (A) Bandgap of bilayer WTe2 as a function of the twist angles. (B) ΔE (the total energy difference that is relative to the untwisted WTe2) as a function of
the twist angles.
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the Fermi level and the bandgap of the system substantially
decreases for 10, 14, and 15°. At 14°, the system shows an
approximate zero bandgap state with a bandgap of only
0.07 eV, while at 15°, the bandgap of the system is completely
closed and the system appears metallic.

Interestingly, the PDOS are shown in Figures 4A,D. When the
twist angle is turned from 0 to 15°, we derive that the PDOS is
localized in peaks. This new localization significantly changes the
transport properties [19–21, 45, 46]. Because of the localization of
PDOS, there are sharp peaks at the Fermi level of the PDOS. The
peaks of PDOS lead to a strong change in the density of states. As
the twist angle increases, the sharp peaks move toward near the
Fermi level, with the sharp peaks of 1.4 eV for a twist angle of 0°,
1.3 eV for a twist angle of 10°, 1.0 eV for a twist angle of 14°, and

0.9 eV for a twist angle of 15°. These peaks are due to the relatively
localized electrons in the d-orbital of the W atom. We conjecture
that the change of the bandgap is influenced by the changes of
these peaks.

When the twist angle reaches 15°, the PDOS is localized
compared to 0° twisted systems. When the twist angle reaches
15°, the appearance of sharp peaks near the Fermi level and the
movement of electrons in the p-orbitals of the Te and d-orbitals of
W atomsmove toward near the Fermi level resulting in a bandgap
of 0 eV. Therefore, the bandgap changes due to the electrons of
the p-orbitals of Te and d-orbitals of W atoms move toward near
the Fermi level, and there are sharp peaks near the Fermi level.

Next, we explain it in terms of the distance between Te and Te
atoms, as shown in Figures 5A,B. As the twist angle increases, there is
an overall tendency for the distance between Te and Te atoms to
decrease when the twist angle is from 0 to 15°. The bandgap shows an
overall decrease tendency when the twist angle is from 0 to 15°.
Therefore, as the twist angle increases, the bandgap decreases as the
distance between Te and Te atoms decreases when the twist angle is
from 0 to 15°. The bandgap is affected as the overall distance between
Te and Te atoms tends to decrease.

Figure 6 depicts the charge density difference at the twisted
bilayer WTe2 interlayer, which is defined by subtracting the
charge density at the twist angle from the charge density
without the twist angle. Finally, it is explained by the charge
density difference, as shown in Figures 6A,B. With the increase
of the twist angle, the electron gaining the ability of W atoms is
enhanced, and the number of electrons gained is increased, which
affects the change of bandgap due to the transfer of electrons.
When the twist angle is 10°, the W atoms gain electrons. In the
case of equal planes, it is advantageous for the W atoms, and the
covalent bond is enhanced. When the twist angle is 15°, it is
favorable for W atoms to gain electrons more easily.

From Figure 6, we know that W atoms with 15° get more
electrons than those of 10°. The charge density overlapping at a
twist angle of 15° is more than that with the twist angle of 10°. So
the bandgap of 15° is smaller than that of 10°. The bandgap at 10°

is 0.45 eV, while the bandgap at 15° is zero. It means that the
transfer of charge affects the bandgap.

FIGURE 4 | Projected density of states (PDOS) of WTe2 with and without
twist angles. PDOS of twisted bilayerWTe2 with twist angles (A) 0°, (B) 10°, (C)
14°, and (D) 15°.

FIGURE 5 | (A) Distance between Te and Te atoms as a function of twist
angles. (B) Side view of WTe2, where d [d represents the Te–Te distance in
Figure (B)] is the distance between Te and Te atoms.

FIGURE 6 | (A,B) Charge density difference with the charge density at
10° and 15° subtracting the charge density at 0°. The isosurface value is 7 ×
10–2 e per bohr3. The yellow isosurface indicates gained electrons, while the
blue isosurface indicates lost electrons.
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CONCLUSION

In summary, we have performed first-principle calculations of
the electronic structure of twisted bilayer WTe2. The bandgap is
very sensitive to the variation of the twist angle. When the twist
angle is 0°, the bandgap is the largest compared to other twisted
systems, and the bandgap is a direct bandgap. However, when
the twist angle is 15°, the bandgap is the smallest compared to
other twisted systems, and the bandgap is a direct bandgap.
Twist significantly changes the band structure resulting in
bandgap engineering when the twisted bilayer WTe2 is
turning to a specific angle. The calculations demonstrated
that the twist significantly changes the band structure of the
bandgap. A semiconductor-to-metal phase transition is found at
15°. The same VBM/CBM and the components of the orbitals
near the Fermi level exhibit drastic change under twist. These
significant changes near the Fermi level for a twisted system will
result in a significant change in optical and electronic transport
properties. Twisted layered materials have potential
applications in future electronic devices. The realization of
twisted layered materials provided a platform in the future to
study strongly correlated superconducting behavior and the
unconventional superconductivity of insulator states.
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