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Optical sorting, as one kind of optical tweezers, is used to separate mixed particles in a
background environment. This unusual tool has a wide application prospect because the
non-contact and non-destructive advantages ideally suit the pressing need of bio-
technology. However, most sorting methods and devices have been accomplished
based on real-time one-by-one sorting, which ignored the sorting efficiency and is not
applicable to high-capacity particles. Although more and more structured light beams are
proposed to enhance the sorting efficiency, it is still not enough for desired applications.
Here, we propose a method for the massive parallel sorting of particles: polygonal optical
vortex (OV) beams are unwound by a geometric transformation to produce linear OV
beams with kinked distributions. This structured light is used to greatly enhance the sorting
efficiency. We adopt the fractal theory to illustrate the increase of the region over which the
beam can interact with particles. We demonstrate that the gradient force of this beam is
large enough to manipulate spherical particles in the Rayleigh regime of scattering. These
results introduce new possibilities for high-capacity particle sorting.

Keywords: optical vortex beam, high-capacity particle sorting, fractal theory, optical sorting, geometric
transformation

1 INTRODUCTION

For decades, optical tweezers have been used to sort cells in a fluid environment [1, 2]. Tweezers use a
single focused beam to trap and manipulate high-refractive-index particles [3]; the technique was a
natural evolution of the early work of Ashkin using dual beams for trapping [4]. Optical tweezers are
an ideal tool for micromanipulation because they are non-contact and non-destructive; therefore,
they are widely used in life sciences [5], biology [6], biophysics [7], and colloidal sciences [8, 9].

In practice, many varieties of optical tweezers have been realized [10–16], such as plasmonic
tweezers [10], non-linear tweezers [11], vortex tweezers [12, 13], optical trap arrays [14–16], and
more [17–21]. But single function tweezers designed to trap an object cannot satisfy all desired tasks
[12, 22–28], such as the transportation [12], micromachining [22], and sorting [23–27] of multiple
particles.

Mixed particles in a background environment can be separated by optical sorting [1, 2, 29].
Optical sorting selects target particles from a mixed distribution of particles using their differing
responses to optical forces [16, 23–27, 30, 31]. Microscopic particles are sorted by an optical lattice,
which has a high sorting efficiency [16]. Living and dead cells have been massively parallel separated
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by optical imaging, with live cells trapped in an optical ring [24].
Yeast cells of different sizes have been effectively separated and
transported by dual-channel line optical tweezers [30]. The Junin
virus particles were successfully sorted based on the light
scattering parameters of fluorescent channels, which also can
compare particles secreted by virus and human primary
macrophages [27]. Nanoscale particles with sizes from 20 to
110 nm have been separated by nanoscale deterministic lateral
displacement arrays [25]. Soft particles can be sorted from rigid
particles using a microfluidic device, which can realize real-time
one-by-one sorting and a sorting purity of 88% [26]. Although
some devices have been made that can enhance the sorting
efficiency [23, 24, 30, 31], it is often not enough for desired
applications.

Beams with vortex structures have been shown to be quite
versatile in trapping applications, both in the trapping of low-
index particles [32] and in the rotation of particles [33]. Optical
vortex (OV) beams have an azimuthal phase factor exp(ilθ),
where θ denotes the azimuth angle and l is an integer known
as the topological charge. Traditional vortex beams are symmetric
around their central axis [34–37]; modulated vortex beams with a
specific polygon shape can be generated by manipulating the
vortex phase function, and the utility of such beams in optical
manipulation has been demonstrated experimentally [38, 39]. An
OV beam can be transformed into a linear intensity distribution
by a geometric transformation, and this is now a standard method
to spatially sort beams with different topological charges [40].
Laguerre–Gaussian (LG) beams are the archetypical class of OV
beams [41].

In this paper, we modulate an LG beam to obtain a linear OV
beam with a kinked distribution to realize massively parallel
sorting of particles. The kinked distribution increases the size of
the region in which the particles interact with light, significantly
improving the sorting capabilities of the system.

2 METHODS

The field of an OV beam of radial order n and azimuthal order l in
the waist plane may be written as

U ρ, θ( ) � Anl ρ( )exp ilθ( ), (1)
where (ρ, θ) are polar coordinates, Anl(ρ) represents the
amplitude of the beam, and exp (ilθ) is the vortex phase term
with topological charge l [41]. The intensity distribution is the
number of circular rings equal to the order n + 1.

If one replaces the vortex phase with a term exp[iϕ(θ)], then
the shape of the OV beam is determined by the function ϕ(θ) [38].
A polygon OV beam can be generated in the far field by
manipulating the function ϕ(θ) of an LG beam with radial
order n = 0. Then, the field can be expressed as follows:

U ρ, θ( ) � A0

w

�
2

√
ρ

w
( ) l| |

exp − ρ
2

w2
( )exp iϕ θ( )( ), (2)

where A0 is a constant and w denotes the beam width. The phase
ϕ(θ) is written as

ϕ θ( ) � 2π l + b( ) ∫
θ

0
R φ( )dφ

∫2π

0
R φ( )dφ − bθ, (3)
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, (4)

where b is a constant, R(φ) is the mathematical expression for the
side of a convex polygon, and (ri, φi) represents the polar
coordinates of the vertices of the polygon. For simplicity, the
starting vertex (r1, φ1) is fixed at φ = 0. The geometric distribution
of the intensity can be designed by modulating the piecewise
function R(φ).

By sending a polygon OV beam through the aforementioned
geometric transformer, we can unwind it into a linear OV beam;
the corners of the polygon are mapped into kinks in the linear
beam. The transformation phase function is [40, 42]

Ψ x, y( ) � 2πa1
λf

y arctan
y

x
( ) − x ln

������
x2 + y2

√
a2

( ) + x[ ], (5)

and the output field is

U u, v( ) � ∫∞

−∞
∫∞

−∞
U x, y( )exp iΨ x, y( )[ ] × exp −i2π ux + vy( )[ ]

dxdy, (6)
where (x, y), (u, v) are the Cartesian coordinates in the polygon
OV field and the Fourier plane, respectively. U(u, v) is the electric
field of the linear OV beam with a kinked distribution, and f
denotes the focal length of the lens. Here, a1 and a2 are
independent constants which determine the size and the
position of the transformed field. Figure 1 displays the
intensity distributions of the input and linear OV beams with
parameters f = 50mm, w = 0.1mm, l = 25, b = −0.4 × l, 2πa1 =
1mm, and a2 = 4.5 mm.

Applying Eqs 2–4, the shapes of polygon OV beams are
chosen as circular, triangular, and pentagonal (see Figures
1A–C); the corresponding unwound intensity distributions
of the linear OV beams can be seen in Figures 1D–F. They all
have the same extension h in the v direction. Figure 1D is a
beam without kinks; Figure 1E and Figure 1F are beams with
the intensity distribution carrying kinks. It is obvious that
the kinks are related to the shape of the polygonal OV beams.
We use these beams to enhance the efficiency in particle
sorting.

Based on the fractal theory, the kinked profile of the intensity
pattern is a non-rectifiable curve [43, 44]. Cut the curve into N
integer segments (N > 1), and the fractal dimension D can be
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expressed asD = − lnN/ln r(N), where r(N) is the similarity ratio
[43]. The length of the curve for Figure 1 is defined as L =
hN1−1/D. D will be more accurate with the smaller value of r(N),
and the length L will be longer. In Figures 1D–F, the fractal
dimension D is determined by the kinks (see Figure 1E and
Figure 1F). The linear OV beam with kinked distribution
satisfies D > 1; as a result, L is larger than h. To the same
extent h, the more the kinks are, the longer the L will be.
Therefore, the length of the pattern in Figure 1F is the longest
compared to that in Figure 1D and Figure 1E.

Because of the kinks, the length of the intensity pattern is
longer than the spatial extent h of the beam, increasing the region
over which the beam can interact with particles. This
enhancement can be used in particle sorting to enhance the
sorting efficiency.

In the sorting platform, two kinds of particles with different
refractive indices are mixed in a fluid environment. For
example, the power A2

0 � 0.1 W/um2 [13], the particles have

the same sphere radius a = 10nm, and the refractive index of
fluid media is nm = 1.33 (water). The refractive indices of
particles are nph = 1.59 (red), npl = 1 (blue), respectively. There
are 180 spheres in total, and each color has 90 spheres. In
Figure 2, the sorting platform is put in the focal plane of the
lens. When the beam is fixed, we move the platform, and the
particles with a higher refractive index can be arranged to
move with the beam stably. Thus, two kinds of particles can be
sorted. Figure 2 shows how the unwound circular and
polygonal OV beams are used to sort particles. In
Figure 2A, 26 red spheres are missed by the sorting process
(see Supplementary Movie S1). The sorting efficiency of this
beam approaches 71.1%. In Figure 2B, there are 10 particles
left unsorted (seeSupplementary Movie S2) with an increasing
efficiency of 88.9%. In Figure 2C, all the particles are sorted
successfully (see Supplementary Movie S3). In this case, the
sorting efficiency reaches 100%. From Figure 2, one can see
that the unwound polygonal OV beams sort more particles

FIGURE 1 | Intensity distribution of polygon OV beams: (A) circular, (B) triangle, and (C) pentagon. (D–F) Linear OV beams with kinked distribution corresponding
to (A–C).

FIGURE 2 | Particles with a higher refractive index (red spheres) and lower refractive index (blue spheres) are sorted by the optical sorting platform. A linear OV
beam (A)without kinks (see Supplementary Movie S1), (B)with kinks corresponding to a triangle (see Supplementary Movie S2), and (C) with kinks corresponding
to a pentagon (see Supplementary Movie S3). (D) Optical lattice (see Supplementary Movie S4).
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compared to the unwound circular OV beam. The sorting
efficiency is increased nearly 18% (see Figure 2A and
Figure 2B). Comparing Figure 2B with Figure 2C, one can
see that more kinks lead the sorting efficiency rise to 100%
from 88.9%. As a result, there is a higher efficiency for particle
sorting when increasing the length of the linear OV beam.
Therefore, this setup can realize massively parallel sorting of
particles.

To analyze the sorting capacity of the generated beam, we
consider the force acting on the particles. The radiation force
consists of the scattering force Fscat and the gradient force Fgrad.
According to the theory of Rayleigh scattering, when the radius
of a spherical nanoparticle a≪ λ, the two kinds of forces can be
calculated separately [45]. In order to stably manipulate
particles, Fgrad is supposed to be large enough to overcome
Fscat. The buoyancy, gravity, and Brownian forces can be
neglected by decreasing temperature and increasing light
intensity [46]. The expressions of the gradient force Fgrad and
scatter force Fscat are

Fgrad � 2πnmβ∇I/c, β � a3 m2 − 1( )/ m2 + 2( ), (7)
Fscat � nmαI/c, α � 8/3( )π ka( )4a2 × m2 − 1( )/ m2 + 2( )[ ]2,

(8)
where I = |U(u, v)|2 is the intensity of the focused beam, a
represents the particle size, c is the light speed, and m = np/nm, in
which nm, np are the refractive indices of the environment and the
Rayleigh particles, respectively. We calculate the gradient force
and the scatter force in the horizontal direction (v = 0). Figure 3
shows the radiation forces of the particles in a linear OV beam

without kinks (see Figure 3A1, Figure 3B1), with kinks
corresponding to a triangle (see Figure 3A2, Figure 3B2) and
a pentagon (see Figure 3A3, Figure 3B3). The red and blue curves
represent the radiation force of particles with higher and lower
refractive indices, respectively. Comparing the three cases, as the

FIGURE 3 | Radiation forces of the two kinds of particles in linear OV beams. The blue dashed lines and the red solid lines represent the particles with low and high
refractive indices, respectively. (A1–A3) Scattering force with different numbers of kinks. (B1–B3) Gradient force with different numbers of kinks.

FIGURE 4 | Intensity distribution of the Gaussian lattice with the same
beam size and different numbers of arrays. (A) 35×35 array; (B) 45×45 array;
(C) 55×55 array; (D) 60×60 array.
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kinks increase, the maximum value of the radiation forces is
slightly different. By comparing Figure 3A with Figure 3B, it is
obvious that the gradient force Fgrad is about 10 orders of
magnitude larger than the scatter force Fscat in each case.
From Figure 3B, one can see that the direction of the gradient
force Fgrad of the two kinds of particles is different. The sign of the
gradient force Fgrad denotes the direction of the force. The positive
Fgrad represents that the gradient force is along the positive u
direction, and the negative value represents that the force is along
the negative u direction. In Figure 3B, there is only one stable
equilibrium point for the particles with high refractive index,
which is marked by a solid black dot. Therefore, only the particles
with a higher refractive index can be stably manipulated. This
theoretical analysis demonstrates that only the particles with a
higher refractive index can move with the unwound polygonal
OV beam.

We give the simulation analysis of the microfluidic sorting
system [16]. We use the Gaussian beam with the beam waist
size w = 0.1 mm, the power A2

0 � 0.1 W/um2, and the focal lens
f = 50 mm. In the back focal plane, the Gaussian lattices with
different numbers of arrays are shown in Figure 4. It is shown
that the array is not infinite for the same beam size because the
lattice structure is disappearing when the number of arrays is
increasing. We analyze the radiation forces of particles with
higher refractive indices in Gaussian lattices with different
numbers of arrays. We define m � Fgrad

Fscat
to show the order of

magnitude between the gradient force Fgrad and the scatter
force Fscat. According to the theory of Rayleigh scattering, the
particles can be stably trapped when the gradient force Fgrad is
about one orders of magnitude larger than the scattering force
Fscat. The optimum value of m is nearly 10. In Figure 5, we
display the order of magnitude m with different numbers of
arrays. It is shown that as the number of arrays increases, the

order of magnitudem is decreasing and gradually less than 1. It
is demonstrated that the particles cannot be trapped when
there are too much arrays in a finite space. It means the
number of arrays cannot be infinitely increasing. Therefore,
the sorting lattice is finite in a finite space.

From the above analysis, it is obvious that the space interval
of the adjacent array needs to be sufficient to stably trap

FIGURE 5 | Order of magnitude m with different numbers of Gaussian
lattices n.

FIGURE 6 | Intensity distribution of the Gaussian lattice with different
numbers of arrays. (A) 35×35 array; (B) 45×45 array; (C) 55×55 array; (D)
60×60 array.

FIGURE 7 | Sorting time (s) in the optical lattice with different numbers of
arrays n.
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particles. Therefore, we simulate the Gaussian lattice with
different arrays when the order of magnitude m is about 10
(see Figure 6). One can see that the beam size increases with
the increasing number of arrays. In Ref. [16], the sorting path
of particles combines the length of the sorting platform and the
beam size. Therefore, the beam size plays an important role in
sorting time. The larger the beam size, the more the sorting
time. In Figure 7, we display the sorting time in an optical
lattice with different numbers of arrays when the speed is
2 mm/s and the length of the platform is 5 mm. It is obvious
that more arrays bring more sorting time. In contrast, in our
strategy, the sorting path is just the length of the sorting
platform. Thus, we added the blue dashed line to represent
the sorting time in our strategy. It is obvious that our strategy
can save sorting time of particles. In Supplementary Movie S4,
it can be seen that the sorting efficiency of the lattice is much
less than that of the unwound OV beams (see Figure 2D). In
other words, we can sort more particles in the same time than
the strategy proposed by M. P. MacDonald.

3 CONCLUSION

In conclusion, through the use of unwound polygonal OV
beams, we propose a new method for massively parallel
sorting. Such unwound polygonal OV beams can be
generated by a geometric transformation. The sorting area
is greatly enlarged, and the sorting efficiency is enhanced by
increasing the region in which the light and particles interact.
Our results are of significant interest to researchers engaged in
high-capacity particle sorting in many disciplines, such as
biomedical science and colloid physics.
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