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The dynamics of complex networks are closely related to the topological structure. As an
important research branch, the problem of network consensus has attracted more
attention. In this paper, the first-order coherence of three kinds of symmetric star
topology networks are studied by using the theory of network science. Firstly, three
kinds of symmetric star topology network models are given. Secondly, the first-order
coherence of these networks are calculated by using matrix theory. The relationships
among the first-order coherence of the network and branch length and the number of
branches change are obtained by numerical simulation. Finally, we found that the third
network has the best consensus, and the change of branch length has more effective
impact on network consensus.
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1 INTRODUCTION

Complex networks take the networks topology and the dynamic models of networks nodes as the
main research object. With the help of mathematical science and information science, complex
networks are widely applied in neural networks, social networks, control theory, and consensus
[1–4]. The problem of networks consensus means that networks reach a common decision on a
certain issue. It can be quantified by network coherence. Examples of consensus widely exist in real
life, such as groups of animals will produce consensus behavior in one direction after being disturbed.
The consensus of complex network have many potential applications, such as information control
and decision, load balancing [5–7].

Scholars take common networks topology as the main research object, and have achieved
abundant theoretical results [8–16]. Y. Yi et al. took Koch Network as the research object to
study the first-order coherence of Koch network with leaderless and one leader [8]. M. Dai et al.
investigated the first-order coherence of a class of weighted fractal networks, and further
analyzed the relationships between iterative parameters and first-order coherence [9]. X. Wang
et al. obtained the first-order coherence of 5-rose network and further analyzed the
relationships between the first-order coherence and the number of nodes [13]. T. Jing
et al. studied the first-order coherence of ring-trees networks and recursive trees, and
found that the first-order coherence of ring-trees networks are better than that of recursive
trees [16].

As a common computer local area network structure, star topology networks have simple
structure and only one central node, which are convenient for management and maintenance,
and have strong expansibility. Each node is directly connected to the central node. The fault is
easy to detect and isolate, and the faulty nodes can be easily eliminated. They have a wide range

Edited by:
José Tadeu Lunardi,

Universidade Estadual de Ponta
Grossa, Brazil

Reviewed by:
Yilun Shang,

Northumbria University,
United Kingdom

Antonio Marcos Batista,
Universidade Estadual de Ponta

Grossa, Brazil

*Correspondence:
Jian Zhu

zj17@xjie.edu.cn

Specialty section:
This article was submitted to

Statistical and Computational Physics,
a section of the journal

Frontiers in Physics

Received: 16 February 2022
Accepted: 15 March 2022
Published: 05 May 2022

Citation:
Gao H, Zhu J, Chen X, Zhang L and

Li X (2022) Coherence Analysis of
Symmetric Star Topology Networks.

Front. Phys. 10:876994.
doi: 10.3389/fphy.2022.876994

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8769941

BRIEF RESEARCH REPORT
published: 05 May 2022

doi: 10.3389/fphy.2022.876994

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.876994&domain=pdf&date_stamp=2022-05-05
https://www.frontiersin.org/articles/10.3389/fphy.2022.876994/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.876994/full
http://creativecommons.org/licenses/by/4.0/
mailto:zj17@xjie.edu.cn
https://doi.org/10.3389/fphy.2022.876994
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.876994


of applications in physics, computer and other disciplines
[17–19]. S. Jafarizadeh et al. studied the optimization of
synchronizability of symmetric star topology networks with
different intra-layer coupling strength [20]. S. Patterson et al.
studied the consensus dynamics of various networks,
including star networks, and obtained the coherence of
various networks [21]. J. Chen et al. proposed graph
operation method to construct the network models of book
graph on the basis of star networks, and analyzed the influence
of network internal parameters on its coherence. It is found
that the more nodes in the star graph, the better the consensus
of the book graph network [22]. D. Huang et al. studied the
Laplacian spectrum of several double-layer star-like networks,
and analyzed and compared the coherence of these
networks [23].

In this paper, the consensus of symmetric star topology
networks are studied by using the spectrum theory. The
innovations of this paper are as follows:

1. We proposed three new connection modes of symmetric star
topology networks with the same number of nodes, which
provided a research basis for comparing the coherence of the
three networks.

2. According to the topology of three kinds of networks, the
corresponding Laplacian characteristic polynomial is
obtained, and then the specific expressions of first-order
coherence are given.

3. The relationships between the coherence of star networks and
parameters are analyzed by numerical simulation. It is found
that no matter how the branch length and the number of
branches change, only one of the three kinds of network
models has the best consensus, and the change of branch
length has more effective impact on consensus.

This paper is organized as follows: the preliminaries are given
in Section 2. The analytical formula of the first-order coherence
of three kinds of symmetric star networks are given in Section 3.
Numerical simulation experiments and analysis are given in
Section 4. Section 5 gives the conclusion.

2 PRELIMINARIES

2.1 The Laplacian Matrix and Eigenvalue
Spectrum of Networks
Let G = (V, E) be a undirected and connected network, where V =
{1, 2, 3, . . . , n − 1, n} is the network vertex set and E = {e1, e2, e3,
. . . , em−1, em} is the network edge set. The adjacency matrix of the
network is denoted as A � (aij)n×n. When i is connected to j, aij =
1, otherwise, aij = 0. The degree matrix of the network is written as
W � (wii)n×n, where wii � ∑n

j�1aij is the degree of node i. The
Laplacian matrix of the network is denoted by L =W − A, and the
root of the corresponding characteristic polynomial det(λI − L) is
called the Laplacian eigenvalue of the network. According to the
semi-positive property of the Laplacian matrix, all eigenvalues λ1,
λ2, λ3, . . . , λn−1, λn of the matrix are non-negative. Moreover, the
multiplicity of the zero eigenvalue of the matrix is the same as the

number of connected branches of the network, Therefore, it is
assumed that the eigenvalues satisfy 0 = λ1 < λ2 ≤ λ3 ≤/ ≤ λn−1 ≤
λn for connected network G.

2.2 The Relationships Among Network
Coherence and Laplacian Eigenvalues
The network dynamics model with noise interference is written as
follows [21].

dx(t)
dt

� −Lx(t) + σ(t), (1)

L is the Laplacian matrix of the network, σ(t) represents the
interference of Gaussian white noise on all nodes of the network
at t. In the case of σ(t) = 0, the networks are not interfered by
noise, which tends to be consensus at this time. In the case of σ(t)
≠ 0, the network is interfered, which can not be completely
consensus and will change around the average value of the
network.

Definition 1. The concept of first-order network coherence is the
steady-state variance deviating from the average value of all
nodes [21].

H(1) � 1
n
∑n
i�1

lim
t→∞

var{xi(t) − 1
n
∑n
j�1

xj(t)}. (2)

The first-order coherence of the network can be derived by the
non-zero eigenvalues of the Laplacian matrix [21], the specific
relationship is as follows:

H(1) � 1
2n

∑n
i�2

1
λi
. (3)

According to the definition of first-order coherence, the
smaller H(1) is, the better the consensus of the network is.

2.3 Compute the Required Lemmas
In order to get the main conclusions of this paper, the following
lemmas are given.

Lemma 1. Let the corresponding characteristic polynomial of
matrix Bn be Fn(λ) = |λI − Bn| = anλ

n + / + a2λ
2 + a1λ + a0,

Bn �

2 −1 0 0 / 0 0
−1 2 −1 0 / 0 0
0 −1 2 −1 / 0 0
0 0 −1 2 / 0 0
..
. ..

. ..
. ..

.
1 ..

. ..
.

0 0 0 0 / 2 −1
0 0 0 0 / −1 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

then a0 = (−1)n(n + 1), a1 � (−1)n−1n(n+1)(n+2)6 , a2 �
(−1)n−2(n−1)n(n+1)(n+2)(n+3)120 .

Proof. According to the relationships among the coefficients
of characteristic polynomial and the principal minors of matrix,
a0 = (−1)n|Bn|, then a0 � (−1)n(n + 1)(22)n � (−1)n(n + 1).
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Just for the sake of proof, let the diagonal elements of matrix
Bn be bii(1 ≤ i ≤ n), then

a1 � −1( )n−1 ∑n
i�1

b11 −1 / 0 0 0 / 0
−1 b22 / 0 0 0 / 0
..
. ..

.
1 ..

. ..
. ..

. ..
. ..

.

0 0 / bi−1,i−1 0 0 / 0
0 0 / 0 bi+1,i+1 −1 / 0
0 0 / 0 −1 bi+2,i+2 / 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 / 0 0 0 / bnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� −1( )n−1 ∑n

i�1

d11 −1 / 0
−1 d22 / 0
..
. ..

.
1 ..

.

0 0 / di−1,i−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

di+1,i+1 −1 / 0
−1 di+2,i+2 / 0

..

. ..
.

1 ..
.

0 0 / dnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
� −1( )n−1 ∑n

i�1
i n − i + 1( ) � −1( )n−1n n + 1( ) n + 2( )

6

When n = 1, a2 = 0, conclusion is tenable. We assume that n ≤
i, conclusion is tenable. When n = i + 1, Fi+1(λ) = (λ − 2)Fi(λ) −
Fi−1(λ). Let Fi(0), Fi(1) and Fi(2) be the constant term, first-order
coefficient and quadratic coefficient of the characteristic
polynomial of Bi, Fi+1(2) � Fi(1) − 2Fi(2) − Fi−1(2) �
(−1)i−1i(i+1)(i+2)(i+3(i+4))120 , conclusion is tenable.

Lemma 2. Let the corresponding characteristic polynomial of
matrix Cn be Qn(λ) = |λI − Cn| = bnλ

n + / + b2λ
2 + b1λ + b0,

where,

Cn �

2 −1 0 0 / 0 0
−1 2 −1 0 / 0 0
0 −1 2 −1 / 0 0
0 0 −1 2 / 0 0
..
. ..

. ..
. ..

.
1 ..

. ..
.

0 0 0 0 / 2 −1
0 0 0 0 / −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
n×n

then b0 = (−1)n, b1 � (−1)n−1n(n+1)2 , b2 � (−1)n−2(n−1)n(n+1)(n+2)24 .
Proof. Let Qi(0), Qi(1) and Qi(2) be the constant term, first-order

coefficient and quadratic coefficient of the characteristic polynomial
of Ci. Qn(λ) = Fn(λ) + Fn−1(λ), using Lemma 1, b0 = Qn(0) = Fn(0) +
Fn−1(0) = (−1)n(n + 1) + (−1)n−1n = (−1)n, b1 � Qn(1) � Fn (1) +

Fn−1(1) � (−1)n−1n(n+1)(n+2)6 + (−1)n−2(n−1)n(n+1)6 � (−1)n−1n(n+1)2 ,
b2 � Qn(2) � Fn(2) + Fn−1(2) � (−1)n−2(n−1)n(n+1)(n+2)24 .

3 THE FIRST-ORDER COHERENCE OF
THREE KINDS OF SYMMETRIC STAR
TOPOLOGY NETWORKS

3.1 The First-Order Coherence of
Symmetric Star Topology Networks Sa(m, n)
Let the star network with m branches be Sa(m, 1), and
appropriately extend its branch length to increase its length
from 1 to n form a symmetric star topology network Sa(m, n)
[20]. As is shown in Figure 1A.

Let the Laplacian matrix of Sa(m, n) be L1, the characteristic
polynomial is P1(λ) = |λI − L1|. |λI − L1| =

λ −m 1 0 0 / 0 0 1 0 0 / 0 0 / 1 0 0 / 0 0
1 λ − 2 1 0 / 0 0
0 1 λ − 2 1 / 0 0
0 0 1 λ − 2 / 0 0
..
. ..

. ..
. ..

.
1 ..

. ..
.

0 0 0 0 / λ − 2 1
0 0 0 0 / 1 λ − 1
1 λ − 2 1 0 / 0 0
0 1 λ − 2 1 / 0 0
0 0 1 λ − 2 / 0 0
..
. ..

. ..
. ..

.
1 ..

. ..
.

0 0 0 0 / λ − 2 1
0 0 0 0 / 1 λ − 1
..
.

1
1 λ − 2 1 0 / 0 0
0 1 λ − 2 1 / 0 0
0 0 1 λ − 2 / 0 0
..
. ..

. ..
. ..

.
1 ..

. ..
.

0 0 0 0 / λ − 2 1
0 0 0 0 / 1 λ − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

We use elementary row transformation to transform it into the
lower triangular determinant,

* 0 0 0 / 0 0 0 0 0 / 0 0 / 0 0 0 / 0 0
1 pn λ( ) 0 0 / 0 0
0 1 pn−1 λ( ) 0 / 0 0
0 0 1 pn−2 λ( ) / 0 0

..

. ..
. ..

. ..
.

1 ..
. ..

.

0 0 0 0 / p2 λ( ) 0
0 0 0 0 / 1 p1 λ( )
1 pn λ( ) 0 0 / 0 0
0 1 pn−1 λ( ) 0 / 0 0
0 0 1 pn−2 λ( ) / 0 0

..

. ..
. ..

. ..
.

1 ..
. ..

.

0 0 0 0 / p2 λ( ) 0
0 0 0 0 / 1 p1 λ( )
..
.

1
1 pn λ( ) 0 0 / 0 0
0 1 pn−1 λ( ) 0 / 0 0
0 0 1 pn−2 λ( ) / 0 0

..

. ..
. ..

. ..
.

1 ..
. ..

.

0 0 0 0 / p2 λ( ) 0
0 0 0 0 / 1 p1 λ( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where p = λ −m −m/pn(λ), p1(λ) = λ − 1, pi(λ) = λ − 2–1/pi−1(λ) (2
≤ i ≤ n).

FIGURE 1 | (A) Sa(5, 4), (B) Sb(5, 4), (C) Sc(5, 4).
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Therefore, P1(λ) � [H1(λ)]m−1J1(λ), where H1(λ) = p1(λ)
p2(λ)/pn(λ) = Qn(λ), J1(λ) = [(λ − m)Qn(λ) − mQn−1(λ)].

According to the preliminaries, the zero eigenvalue of P1(λ)
appears J1(λ), let 0 < γ1 ≤ γ2 ≤ γ3 ≤ / ≤ γn be the Laplacian
eigenvalues of H1(λ), 0 = δ1 ≤ δ2 ≤ δ3 ≤ / ≤ δn ≤ δn+1 be the
Laplacian eigenvalues of J1(λ).

Theorem 1. The first-order coherence of Sa(m, n) is

H(1a) � 1
2(mn + 1) [

(m − 1)n(n + 1)
2

+ n(n + 1)(mn −m + 3)
6(mn + 1) ].

Proof. It can be inferred from preliminaries

H(1a) � 1
2(mn + 1) [(m − 1)∑n

i�1

1
γi
+∑n+1

i�2

1
δi
].

We first calculate by the Vieta theorem and Lemma 2 [16],

∑n
i�1

1
γi
� −b1

b0
� n(n + 1)

2
.

We further calculate ∑n+1
i�2

1
δi
.

Let J1(λ) = cn+1λ
n+1 + cnλ

n/ + c2λ
2 + c1λ, then

J1(λ)
λ

� cn+1λ
n + cnλ

n−1/ + c2λ + c1.

We use the Vieta theorem again, ∑n+1
i�2

1
δi
� −c2

c1
. Because of

J1(λ) = [(λ − m)Qn(λ) − mQn−1(λ)], therefore,

c1 � Qn(0) −mQn(1) −mQn−1(1) � (−1)n(mn + 1),
c2 � Qn(1) −mQn(2) −mQn−1(2) � (−1)n−1n(n + 1)(mn −m + 3)/6.

Then,

∑n+1
i�2

1
δi
� −c2

c1
� n(n + 1)(mn −m + 3)/6(mn + 1).

Therefore,

H(1a) � 1
2(mn + 1) [

(m − 1)n(n + 1)
2

+ n(n + 1)(mn −m + 3)
6(mn + 1) ].

3.2 The First-Order Coherence of
Symmetric Star Topology NetworksSb(m, n)
Consider adding the connection relations of nodes of symmetric
star topology networks Sa(m, n). The symmetric star topology
networks with fully connected nodes at the second layer are
denoted as Sb(m, n). As is shown in Figure 1B.

Let the Laplacian matrix of Sb(m, n) be L2, the characteristic
polynomial is P2(λ) = |λI − L2|. |λI − L2| =

λ −m 1 1 / 1
1 ⊗ 1 / 1 1 0 0 / 0
1 1 ⊗ / 1 1 0 0 / 0
..
. ..

. ..
.
1 ..

.
/

1 1 1 / ⊗ 1 0 0 / 0
1 λ − 2 1 0 / 0
0 1 λ − 2 1 / 0
0 0 1 λ − 2 / 0
..
. ..

. ..
. ..

.
1 ..

.

0 0 0 0 / λ − 1
1 λ − 2 1 0 / 0
0 1 λ − 2 1 / 0
0 0 1 λ − 2 / 0
..
. ..

. ..
. ..

.
1 ..

.

0 0 0 0 / λ − 1
..
.

1
1 λ − 2 1 0 / 0
0 1 λ − 2 1 / 0
0 0 1 λ − 2 / 0
..
. ..

. ..
. ..

.
1 ..

.

0 0 0 0 / λ − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where ⊗ = λ − m − 1.

Similar to Theorem 1, P2(λ) � [H2(λ)]m−1J2(λ), where
H2(λ) = (λ − m − 2)Qn−1(λ) − Qn−2(λ), J2(λ) = [(λ2 − (m +
2)λ + m)Qn−1(λ) − (λ − m)Qn−2(λ)].

FIGURE 2 | Comparison of three networks H(1) with m.

FIGURE 3 | Comparison of three networks H(1) with n.
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The zero eigenvalue of P2(λ) appears J2(λ), let 0 < ω1 ≤ ω2 ≤ ω3

≤/ ≤ ωn be the Laplacian eigenvalues of H2(λ), 0 = ψ1 ≤ ψ2 ≤ ψ3
≤ / ≤ ψn ≤ ψn+1 be the Laplacian eigenvalues of J2(λ).

Theorem 2. The first-order coherence of Sb(m, n) is.
H(1b) � 1

2(mn+1) [(m−1)[2+(n−1)(mn+n+2)]
2(m+1) +

6+3(n−1)(mn+n+2)+m(n−2)(n−1)n
6(mn+1) ].

Proof. Similar to Theorem 1,

H(1b) � 1
2(mn + 1) [(m − 1)∑n

i�1

1
ωi

+∑n+1
i�2

1
ψi

].

First, we calculate ∑n
i�1

1
ωi
.

LetH2(λ) = (λ −m − 2)Qn−1(λ) − Qn−2(λ) = dnλ
n +/ + d2λ

2 +
d1λ + d0, then,

d0 � −(m + 2)Qn−1(0) − Qn−2(0) � (−1)n(m + 1),
d1 � Qn−1(0) − (m + 2)Qn−1(1) − Qn−2(1) � (−1)n−1 + (−1)n−1(n − 1)(mn + n + 2)

2
.

Based on the Vieta theorem,

∑n
i�1

1
ωi

� −d1

d0
� 2 + (n − 1)(mn + n + 2)

2(m + 1) .

Second, we calculate ∑n+1
i�2 1

ψi
.

Let J2(λ)
λ � en+1λn + enλ

n−1/ + e2λ + e1. We use the Vieta
theorem again, ∑n+1

i�2 1
ψi
� −e2

e1
. Because of J2(λ) = (λ2 − (m + 2)λ

+m)Qn−1(λ) − (λ −m)Qn−2(λ), therefore, e1 = (−1)n−2(mn + 1), e2
= (−1)n−1 + (−1)n−1(n − 1) (mn + n + 2)/2 + (−1)n−3m(n − 2) (n −
1)n/6. Then,

∑n+1
i�2

1
ψi

� [6 + 3(n − 1)(mn + n + 2) +m(n − 2)(n − 1)n]/6(mn + 1).

Therefore, H(1b) � 1
2(mn+1) [(m−1)[2+(n−1)(mn+n+2)]

2(m+1) +
6+3(n−1)(mn+n+2)+m(n−2)(n−1)n

6(mn+1) ].

3.3 The First-Order Coherence of
Symmetric Star Topology Networks Sc(m, n)
The symmetric star topology networks with fully connected
nodes at the third layer are denoted as Sc(m, n). As is
shown in Figure 1C. Let the Laplacian matrix of Sc(m, n)
be L3, the characteristic polynomial is P3(λ) = |λI − L3|. |λI −
L3| =

λ −m 1 1 / 1
1 λ − 2 0 / 0 1
1 0 λ − 2 / 0 1
..
. ..

. ..
.

1 ..
.

1
1 0 0 / λ − 2 1

1 ⊗ 1 / 1 1
1 1 ⊗ / 1 1

1 ..
. ..

.
1 ..

.
1

1 1 1 / ⊗ 1
1 λ − 2 0 / 0 1

1 0 λ − 2 / 0 1

1 ..
. ..

.
1 ..

.
1

1 0 0 / λ − 2 1
1 λ − 2 0 / 0

1 0 λ − 2 / 0

1 ..
. ..

.
1 ..

.

1 0 0 / λ − 2
1

λ − 1 0 / 0
0 λ − 1 / 0
..
. ..

.
1 ..

.

0 0 / λ − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

where ⊗ = λ − m − 1.
Similar to Theorem 1, P3(λ) � [H3(λ)]m−1J3(λ), where H3(λ)

= (λ2 − (m + 4)λ + 2m + 3)Qn−2(λ) − (λ − 2)Qn−3(λ), J3(λ) �
[(λ3 − (m + 4)λ2 + (3m + 3)λ −m)Qn−2(λ) − ((λ2 − (m + 2)λ +
m)Qn−3(λ)].

The zero eigenvalue of P3(λ) appears J3(λ), let 0 < θ1 ≤ θ2 ≤ θ3 ≤
/ ≤ θn be the Laplacian eigenvalues ofH3(λ), 0 = ]1 ≤ ]2 ≤ ]3 ≤/
≤ ]n ≤ ]n+1 be the Laplacian eigenvalues of J3(λ).

Theorem 3. The first-order coherence of Sc(m, n) is
H(1c) � 1

2(mn +1) [(m−1)[2(m+3)+(n−2)(2mn+n−2m+3)]
2(2m+1) +

6(m+3)+3(n−2)(2mn+n+3)+m(n−3)(n−2)(n−1)
6(mn+1) ].

Proof. Similar to Theorem 1,

H(1c) � 1
2(mn + 1) [(m − 1)∑n

i�1

1
θi
+∑n+1

i�2

1
]i
].

First, we calculate ∑n
i�1 1θi.

LetH3(λ) = [(λ2 − (m + 4)λ + 2m + 3)Qn−2(λ) − (λ − 2)Qn−3(λ)]
= fnλ

n + / + f2λ
2 + f1λ + f0, then, f0 = (−1)n−2(2m + 1), f1 �

(−1)n−1(m + 3) + (−1)n−3(n−2)(2mn+n−2m+3)
2 .

By the Vieta theorem,

∑n
i�1

1
θi
� −f1

f0
� 2(m + 3) + (n − 2)(2mn + n − 2m + 3)

2(2m + 1) .

Second, we calculate ∑n+1
i�2 1

]i . Let J3(λ)
λ � gn+1λn+

gnλ
n−1/ + g2λ + g1, then g1 = (−1)n−2(mn + 1), g2 �

(−1)n−1(m + 3) + (−1)n−3(n−2)(2mn+n+3)
2 + (−1)n−3m(n−3)(n−2)(n−1)

6 .
Then,

FIGURE 4 | The relationship among H(1a) and m, n.
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∑n+1
i�2

1
]i
� −g2

g1
� 6(m + 3) + 3(n − 2)(2mn + n + 3) +m(n − 3)(n − 2)(n − 1)

6(mn + 1) .

Therefore, H(1c) � 1
2(mn+1) [(m−1)[2(m+3)+(n−2)(2mn+n−2m+3)]

2(2m+1) +
6(m+3)+3(n−2)(2mn+n+3)+m(n−3)(n−2)(n−1)

6(mn+1) ].

4 NUMERICAL SIMULATION EXPERIMENT
AND ANALYSIS

When n = 20, Figure 2 shows the relationships among the first-
order coherenceH(1a)(H(1b),H(1c)) of Sa(m, n) (Sb(m, n), Sc(m, n))
and m. As m increases to 50, H(1a) increases from 3.4146 to
5.1731,H(1b) increases from 3.2520 to 4.6932,H(1c) increases from
3.0390 to 4.2402. The smaller H(1) is, the better the consensus of
the network is. Therefore, when n is fixed, the consensus of three
networks get weaker with the increase of m. The consensus of
Sa(m, n) is the worst, Sc(m, n) is the best. Further, when m is
sufficiently large, the first-order coherence of three networks are
close to the fixed value, and the consensus of three networks will
not weaken with the increase of m.

When m = 20, Figure 3 shows the relationships among the
first-order coherence H(1a)(H(1b), H(1c)) and n. As n increases to
50, H(1a) monotonically increased from 0.702 to 12.3089, H(1b)

monotonically increases from 0.2606 to 11.8569, H(1c)

monotonically increases from 0.1368 to 11.3969. Therefore,
when m is fixed, the consensus of three networks get weaker
with the increase ofm, and the consensus of Sa(m, n) is the worst,
Sc(m, n) is the best.

Figure 4 shows the relationships among the first-order
coherence H(1a) of Sa(m, n) and the parameters m and n as a
special case. When m and n increase to 100, the consensus of
network continues to weaken. We find that the effect of n on
consensus is much stronger than m.

5 MAIN RESULTS

This paper studies the consensus of three kinds of symmetric star
topology networks. Based on the relationships between Laplacian
eigenvalues and characteristic polynomial coefficients, the
specific expressions of three kinds of network coherence are
calculated. Numerical simulation experiments verify the
validity of the theoretical results. When the length of the path
n in the symmetric star topology networks are fixed, with the
increase of the number of branches m, the consensus of three

kinds of networks first weaken and then remain unchanged,
the consensus of Sa(m, n) is the worst, Sc(m, n) is the best.
When the number of branches m in the networks are fixed, the
consensus of the three kinds of networks become weaker with
the increase of the length of the path n, the consensus of Sa(m,
n) is the worst, Sc(m, n) is the best. Whenm and n change at the
same time, the effect of n on consensus is much stronger
than m.
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