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Recently, it was shown that the gravitational field undergoes exponential cutoff at large
cosmological scales due to the presence of background matter. In this article, we
demonstrate that there is a close mathematical analogy between this effect and the
behavior of the magnetic field induced by a solenoid placed in a superconductor.
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1 INTRODUCTION

It seems quite natural that the presence of the medium influences the propagation of fundamental
interactions. The simplest example is the Debye screening of the electric field of an individual particle in a
plasma by particles of opposite sign. Here, the potential produced by an external point charge has the
form of the Yukawa potential (but not the Coulomb one) with the Debye screening length (see, e.g. [1]). A
similar screening mechanism of the electron charge due to vacuum polarization takes place in quantum
electrodynamics (see, e.g. [2]). TheAnderson-Higgsmechanism is another example of the influence of the
medium on fundamental interactions, which are carried by gauge fields. In this case, after symmetry
breaking, the Higgs vacuum field acts as a medium [3–5]. As a result of interaction with this medium, the
initially massless gauge fields gain mass [6]. It is also known that medium in the form of the
superconductor affects the electromagnetic interaction. For example, external magnetic field
undergoes the exponential cutoff inside the superconductor due to the Meissner effect (see, e.g. [7]).

The examples above did not concern the gravitational interaction between massive bodies. It is known
that in a vacuum in the weak field limit the gravitational potential satisfies the Poisson equation and has the
form of Newton’s potential [8]. From a naive point of view, since all masses have the same sign and are
attracted to each other, one should hardly expect a screening of the gravitational interaction, as, for example,
for electric charges in a plasma. However, it was demonstrated recently [9–11] that medium in the case of
gravity also plays important role. It was shown that, due to the interaction of the gravitational potential with
background matter, there is an exponential cutoff of the gravitational interaction at large cosmological
scales. In section 2 we reproduce this result. For many, this result turned out to be rather unexpected.
Therefore, in this paper, in section 3, we present a close mathematical analogue of this phenomenon by the
example of the magnetic field induced by a solenoid placed in a superconductor.

2 SCREENING OF THE GRAVITATIONAL INTERACTION IN
COSMOLOGY

We consider the Universe containing the cosmological constant Λ and filled with discrete point-like
gravitating sources (galaxies and the group of galaxies) with comoving mass density
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ρ � ∑
n

ρn � ∑
n

mn δ r − rn( ), (1)

Where r = (x1, x2, x3) is comoving distance. This is our medium.
Such matter has a dust-like equation of state and the average
energy density �ε � �ρc2/a3 where comoving averaged mass density
�ρ � const, c is the speed of light and a is the conformal factor. The
corresponding background metric is described by Friedmann-
Lemâıtre-Robertson-Walker (FLRW) one.

The discrete inhomogeneities perturb the FLRW metric
[12, 13]:

ds2 � a2 1 + 2Φ( )dη2 − 1 − 2Φ( )δαβ dxαdxβ[ ], (2)
Where we restrict ourselves to scalar perturbations in conformal
Newtonian gauge. Scalar function Φ(η, r) is the gravitational
potential created at the point with the radius-vector r by all
gravitating masses in the Universe [8]. The perturbed Einstein
equations are [12, 13]:

ΔΦ − 3H Φ′ +HΦ( ) � 1
2
κa2δε, (3)

Φ′ +HΦ � −1
2
κa2�εv, (4)

Φ″ + 3HΦ′ + 2H′ −H2( )Φ � 0, (5)
Where Δ ≡ δαβzαzβ is the Laplace operator, the prime denotes the
conformal time η derivative, H ≡ (da/dη)/a � (a/c)H and H ≡
(da/dt)/a is the Hubble parameter, v(η, r) is the peculiar velocity
potential and κ ≡ 8πGN/c

4, where GN is the gravitational constant.
The energy density fluctuation reads [14, 15]:

δε � c2

a3
δρ + 3�ρc2

a3
Φ, (6)

Where δρ(η, r) ≡ ρ − �ρ is the fluctuation of the mass density (1)
around its constant average value �ρ.

Equation 4 demonstrates that the peculiar velocities affect the
gravitational potential. If we neglect this influence (i.e.
Φ′ +Hϕ � 0), then Eq. 3 takes the form

ΔΦ − a2

λ2
Φ � κc2

2a
δρ, (7)

Where the screening length

λ ≡

�����
2a3

3κ�ρc2

√
. (8)

With the help of the transformation (to remove the �ρ
contribution on the RHS of Eq. 7)

ϕ � c2aΦ − 4πGN�ρ

a2
λ2 � c2aΦ − c2a

3
(9)

Equation 7 is reduced to

Δϕ − a2

λ2
ϕ � 4πGNρ. (10)

For the mass density (1), we can easily solve this Helmholtz
equation, and applying transformation (9) obtain:

Φ � 1
3
− κc2

8πa
∑
n

mn

|r − rn| exp −a|r − rn|
λ

( ). (11)

It is worth noting that the physical distance is R = ar. The term
1/3 (which is due to �ρ in δρ) plays an important role since only
with this term the averaged over all volume value of the
gravitational potential �Φ is equal to zero as it should be for
fluctuations [9].

In Eq. 11, we neglect the peculiar velocities of the
inhomogeneities. However, they also play an important role
[16, 17] and must be taken into account. For the considered
model, as was shown in [16], it is sufficient in (7, 9–11) to replace
λ with λeff and additionally in (11): 1/3 → 1/3(λeff/λ)2 where

λeff �
������������
c2a2H

3
∫ da

a3H3

√
. (12)

To get this result, we should take into consideration Eq. 5. This
screening length (as well as λ) depends on time. For example, for
the standard ΛCDM model at present time λeff � 2.57 Gpc [16].

Therefore, the gravitational potentialΦ satisfies the Helmholtz
equation, not the Poisson equation. This is due to the interaction
of the gravitational potential with the medium. We can see it
directly from Eq. 6 where the term ~ �ρΦ describe this interaction.
Due to the peculiar velocity, Eq. 3 also acquires an additional
term proportional to Φ [16]. If the medium is absent that
corresponds to the limit �ρ → 0, v → 0, then the screening
lengths λ and λeff tends to infinity, and the Yukawa potentials
in (11) are reduced to the Newton’s ones without screening of the
gravitational interaction.

3 SOLENOID IN A SUPERCONDUCTOR.
SCREENING OF THE INDUCED MAGNETIC
FIELD
In this section, in order to present the mathematical analog of the
screening effect described above, we render some of equations of the
paper [18] in a form suitable for our purpose. Following this paper,
we consider a thin solenoid placed in a superconductor. Thin means
that the diameter of the solenoid is much smaller than the magnetic
field penetration length λm. It is well known that themagnetic field of
the solenoid Bsol is absent from the outside it, but the vector
potential Asol is not equal to zero. The interaction of this potential
with the superconducting medium induces a current Jsc, which, in
turn, leads to the appearance of an inducedmagnetic fieldBsc. Thus,
the Maxwell equation has the form1

curlBtot � curl Bsc + Bsol( ) � Jsc + Jsol. (13)
Since outside the solenoid Bsol, Jsol � 0, we get

curlBsc � Jsc, (14)
Where in the London limit the superconducting current density is
[7, 18]

1In this section, we use the system of units adopted in book [7].
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Jsc � − 1

λ2m

1
q
∇θ + Atot( ). (15)

Here, Atot � Asc + Asol, θ is the phase of the order parameter
and the magnetic field penetration length

λm � 1
q

��
ns

√ , (16)

Where ns is the superfluid density, parameter q defines the
superconducting flux quanta (see, e.g., Eq. 19 below) and in
the real superconductor q = 2e/(Zc) [7]. The absence of a
superconducting medium corresponds to the limit
ns → 00λm → ∞. Expression (16) is an analogue of
cosmological formula (8) (and, accordingly, formula (12)). In
Eq. 15 the term λ−2m Asol ~ nsAsol describes the interaction of the
solenoid magnetic field with the superconducting medium just as
the term ~ �ρΦ on the RHS of Eq. 6 describes the interactions of
the gravitational potential with the cosmological medium.

Now, applying curl operation to both sides of (15), we obtain

Bsc − λ2mΔBsc � 0, (17)
Where we took into account that outside of the solenoid
curl∇θ � 0 and Bsol � 0. Δ is the Laplace operator in flat
space. To solve this equation, we need to define the boundary
conditions. Let the solenoid be extended along the z-axis.
Obviously, due to the cylindrical symmetry the induced
magnetic field inside the superconductor is also parallel to the
z-axis: Bsc(r) � Bsc(r)ẑ, where ẑ is the unit vector along z-axis.
In cylindric coordinates, r is the radius-vector in the xy-plane (it
is worth noting that in the previous section r denotes the
comoving three-dimensional radius-vector). At distances
r≫ λm, the superconducting current goes to zero: Jsc → 0.
Therefore, at this distances Eq. 15 reads

Atot � −1
q
∇θ. (18)

Integrating both sides of this equation over an area inside the
contour r = const, and performing the Stokes area-to-contour
transformation for the RHS, we find

Φtot � −2π
q
N ≡ − Φ0N, N � 0, 1, 2, . . . , (19)

Where Φtot � Φsc +Φsol is the total magnetic flux consisting of
the sum of the magnetic fluxes of the induced magnetic field and
the magnetic field inside the solenoid. Φ0 is the superconducting
flux quanta. Therefore,

Φsc � Φtot −Φsol. (20)
This is our boundary condition. We can include it directly into

Eq. 17:

Bsc − λ2mΔBsc � Φscδ r( ), (21)
Where we took into account 2D cylindrical symmetry of the
problem and, consequently, Δ is a radial Laplace operator.

Obviously, integrating this equation over an area inside the
contour r = const we arrive at identity. Equation 21 is the
Helmholtz one (similar to Eq. 10), and has the decreasing
solution

Bsc � Φsc

2πλ2m
K0

r

λm
( ), (22)

Where K0 is the modified Bessel function. The induced magnetic
field behaves asymptotically as follows:

Bsc r → 0( ) ~ − ln r( ), Bsc r → ∞( ) ~ 1�
r

√ exp −r/λm( ) (23)

This behavior reflects the cylindrical symmetry of the
model. For example, Yukawa’s potential has been
transformed: (1/r) exp(−r/λm) → (1/ �

r
√ ) exp(−r/λm). As

expected, the screening length coincides with the magnetic
field penetration length λm. Formula (23) is 2D analog of
Eq. 11.

4 CONCLUSION

In this paper, we have touched upon the problem of the
influence of the medium on fundamental interactions. First,
on the basis of articles [9–11], we showed that as a result of the
interaction of the gravitational field with the cosmological
medium, the gravitational potential is subject to exponential
screening on large cosmological scales. Then, following the
model considered in paper [18], we have traced a close analogy
between the interaction of the gravitational field with the
cosmological medium and the interaction of the magnetic
field of a solenoid with a superconducting medium. As a
result of this interaction, the induced magnetic field in the
superconductor undergoes exponential screening at distances
exceeding the magnetic field penetration length.
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