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From simple physical systems to full production lines, numerical models could be used to
minimize downtime and to optimize performances. In this article, the system of interest is the
SPIRAL2 heavy ion accelerator cryogenic system. This article illustrates three different
applications based on a SPIRAL2 cryostat model: optimal controller synthesis, virtual sensor
synthesis, and anomaly detection. The two first applications have been deployed on the
system. Experimental results are used to illustrate the benefits of such applications. The third
application is a case study based on data generated from a thermodynamic twin model.
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1 INTRODUCTION

SPIRAL21 is a heavy ion accelerator located in Caen, France. Its main part is a linear superconducting
accelerator (LINAC) [1] composed of 26 bulk niobium radio-frequency (RF) resonators that
accelerate charged particles by the mean of electromagnetic fields [2]. To be operated, those
resonators need to be maintained in their superconducting state. As the niobium
superconducting transition temperature at atmospheric pressure reaches 9.2 K, a cryogenic
system is required. The resonators, also called SRF2 cavities, are coupled to the RF system, as
well as vacuum and cryogenic components. The assembly of these subsystems forms a cryomodule.

The cooling power is provided by a cryoplant with a maximal capacity of 1300W at 4.2 K. A cold
box coupled with a 5000 L Dewar provides the necessary liquid helium to all the cryomodules
through a cryodistribution. Inside the cryomodules, the liquid helium evaporates to extract heat from
the resonator, and cold gaseous helium is returned to the cold box. More details on the cryogenic
system can be found in [3,4]. As a perturbation in the cooling systemmight lead to a shutdown of the
accelerator, it is mandatory to develop a highly reliable operation and control system. To achieve this,
modeling tools are developed to improve the control robustness, predict valuable information, and
detect faults or anomalies.

The present article mainly focuses on the cryomodules and not on the overall cryogenic system.
The first section is dedicated to the modeling of the cryomodules. In the second section, an optimized
control law is proposed. The third section details the synthesis of a virtual sensor used to predict
unmeasured parameters. The last section is dedicated to fault detection using machine learning
techniques.
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2 MODELING OF THE CRYOMODULES

2.1 Description
There are two types of cryomodules, namely, type-A and type-B.
The main difference between them lies in the fact that type-A
contains one resonating cavity, whereas type-B contains two of
them. For more details concerning the cryomodules design and
performance, please refer to [5,6].

In terms of thermodynamics, both types of cryomodules
undergo different heat loads. First is the static heat load
induced by the heat transfer between the cold and their
surrounding parts. Second is the dynamic heat load due to the
RF resistive losses in the resonating cavity. Heat load amplitudes
are different for the two types of cryomodules. For the 4.4°K bath,
those characteristics as well as the volumes are given in Table 1.

The cryogenic system is in charge of keeping the superconducting
RF cavities under their superconducting critical temperature at all
times. This requirement is achieved by keeping the cavities submerged
in a liquid helium bath. As the cavities are fed with RF power, a liquid
helium bath ensures the resistive heat loads extraction at the cavity’s
surface walls. As a consequence, the temperatures of the cavities are
kept uniform and stable at 4.4°K far beyond their superconducting
critical temperature of 9.2°K. Would the cavity be partially exposed out
of the liquid helium bath, it would undergo a quench3. Three main
elements, shown in Figure 1, insure this constraint: a phase separator

filled with liquid helium at 4.4°K and 1,200mbar, a thermal shield that
surrounds the phase separator and is kept at 60°K, and finally a valves
box containing all the valves used to control cryogenics operation. As
the phase separator is themost critical element of the cryogenic system,
we will only focus on that element and its associated valves. The
Figure 1 presents a simplified scheme with the subsystems of interest.

The phase separator is fed with liquid helium through the
input valve, which is used to regulate the level of liquid. Due to
thermal heat load, liquid helium evaporates and is returned to the
cold box. In that process, gas goes through the output valve,
which is used to regulate the pressure within the phase separator.

Both the valves and the phase separator have been modeled.
The equations governing the operation of the valve are the ones
given in the standard ISA [7], whereas the phase separator
dynamics are described through energy and mass balance. The
equations have been implemented in the Simcryogenics library
[8] of MATLAB®, which is a modeling tool used to simulate and
optimize cryogenic systems. Helium properties are extracted
from tabulated data using the HEPAK® package. As those
equations have been extensively described in [9–11], they will
not be discussed in this article. Rather, the comparison between
experimental and simulation results will be emphasized.

2.2 Model vs. Data
The simulation results for both cryomodule types have been
compared to experimental data. For each of the cryomodules, an
operating scenario has been performed starting from stable
operating conditions4. This scenario is a series of steps applied
to the input and output valve opening command. The same values
have been applied to the model and to the real process in an open-
loop manner. The comparison obtained for cryomodule 1 (the
first one on the line considering the beam direction) is shown in
Figure 2. The comparison shows a good agreement between
experimental and simulated data for both level and pressure
dynamics. It is worth mentioning that the uncertainty of the
modeled liquid helium level increases with time as the level is an
integrator system. Furthermore, the high uncertainty on the
pressure at time t = 1,500 s is mostly due to the valve position
uncertainty: an error of ±1% on valve position could lead to a
pressure uncertainty up to 10mbar. Finally, the pressure peak
occurring at t = 1,200 s is due to a pressure oscillation in the
cryodistribution (i.e. the inlet boundary of the model).

Similar results have been observed on all other cryomodules.
The following criteria have been calculated for each comparison:

Cr � 100 · ∫tfinal

tinit
Vmes t( ) − Vsim t( )( )2dt
Vinit

moy · ttotal
, (1)

where Cr is the criteria representing the integral of the error
between measured and simulated data. tinit, tfinal , and ttotal are,
respectively, the initial time, the final time and the overall
duration of the scenario, whereas Vmes(t) and Vsim(t) are,

TABLE 1 | Main thermal differences between type-A and type-B cryomodules.

Characteristic Type-A Type-B

Helium bath volume [L] 20.5 91.5
Static heat load [W] 3.5 ± 1.4 12.5 ± 1.8
RF heat load [W] 5.8 ± 2.2 12.1 ± 2.6

FIGURE 1 | Representation of a type-A cryomodule. On the left is a
simplified scheme. On the right is a 3D cut view. LT and PT are, respectively,
level transmitter and pressure transmitter.

3Loss of the superconducting state.

4Operating conditions mean the internal thermal conditions (heat load), the
external hydraulic and pneumatic conditions (set by the cryoplant), and the
operation set-points (typically liquid helium bath pressure and level).
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respectively, the measured and simulated values. Finally, Vinit
moy

designates the mean value at the beginning of the scenario.
Normalizing by the overall duration and the mean value
makes it possible to compare multiple scenarios with different
durations and operating conditions. The criteria values obtained
for the scenario shown in Figure 2 and applied to all cryomodules
are plotted in Figure 3. The latter plot gives an important insight
into the usability of such a model in a generic way for all
cryomodules across the LINAC. In fact, obtained Cr values
give a deviation sufficiently small to be considered for
applications such as control and fault detection. The next
sections will investigate this feasibility.

3 OPTIMAL CONTROLLER SYNTHESIS

3.1 Problem Overview
Cryogenic system control loops are critical items that can affect
the overall accelerator. Two requirements are to be met in order

to allow the nominal operation of the RF cavity. The first is to
ensure that the temperature of the cavity remains below its critical
value. Otherwise, the cavity could quench5. To do so, the cavity is
submerged in a liquid helium bath, and the level of liquid helium
is regulated through a PID (Proportional–Integrator Derivative)
controller acting on the input valve (see Figure 1). The goal is to
maintain a level at 90% ± 5% which is high enough to maintain
the overall cavity fully submerged with a comfortable operating
margin. The second is to ensure that the shape of the cavity does
not change as the performances of the resonator are intrinsically
linked to the cavity shape. This could be seen in the expression of
its unloaded quality factor:

Qf0 � G

Rs
, (2)

FIGURE 2 |Model vs. measurement for the first type-A cryomodule. Measurement and associated uncertainty are, respectively, represented by black line and gray
background. Simulation value and uncertainty are, respectively, represented by green lines and magenta dash-dotted lines.

5Fast transitions between superconducting state and normal conducting state that
can lead, in the worst case, to irreversible mechanical damages.
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where Qf0 is the unloaded quality factor, Rs is the surface
resistance, and G is the geometric factor that depends on the
surface and the volume of the cavity. As the cavity is
submerged in liquid a helium bath, any pressure variation
(ΔP) in the separator will induce a mechanical force on the
cavity walls that slightly deforms the cavity. This results in a
variation of the geometric factor that can lead to a drop in the
cavity quality factor, hence significantly reducing the nominal
cavity accelerating gradient.

Considering the bandwidth of the cavity and its associated
RF system, a pressure variation limit of ΔP = ±5 mbar has
been set up for the SPIRAL2 cryomodules. It is worth
mentioning that the nominal pressure of the helium bath
is 1,200 mbar, which means that a ΔP of ±5 mbar represents a
tolerance of ±0.41%. Both the level and the pressure are
regulated through PID controllers. Although the PID
performance is enough to achieve the level requirement, it
is not the case for the pressure requirement. Even using a
state-of-the-art [12] PID (Proportional, Integral Derivative)
tuning tool, we were not able to maintain the pressure
variation within a range of ±5 mbar for long periods of
time (i.e., more than a few hours) without having
significant overshoots. This is probably due to the fact that
the two regulation loops are coupled: an action on the input
valve influences the level and the pressure. A similar
statement is also true for the output valve: an action on
the output valve has an impact on both on the pressure
and the level. As PID controllers are more suitable in the
case of linear SISO6 system, another control algorithm is
necessary to achieve the project requirement.

3.2 Synthesis of a LQ Regulator
Few parameters have to be considered while choosing the most
suitable solution for the cryomodules control loops. First, the
cryomodule cryogenic system is a multiple inputs multiple
outputs (MIMO) system with two valves as inputs and the level
and pressure as outputs. As there is internal coupling between all
inputs and outputs, a controller that can handle this coupling is
mandatory. Second, as the accelerator will be used for many years,
it must be a solution proven on multiple systems with full
documentation. Third, the controller has to be implemented in
a dedicated PLC (Programmable Logical Controller) with a limited
amount of calculation capacity. Considering those parameters, an
LQ (Linear Quadratic) controller seems to be a good candidate.
The block diagram of such controller applied to our system is given
in Figure 4. The mathematical development of this controller has
already been described in [9,11]. In this section, we will only recall
the main equations of the discrete LQ controller and focus on
experimental results.

The principle of a LQ controller is to synthesize a state
feedback gain such that the command input is given by:

u k( ) � −K · x k( ), (3)
where K is the state feedback gain and x the state of the system. K
is calculated so that it minimizes the following quadratic cost:

J � ∑
∞

i�k
x i( )T · Q · x i( ) + u i( )T · R · u i( ), (4)

where J is the cost, and Q and R are respectively state and input
weights. As for gain and integral time for a PI controller, the goal
is to tune the matricesQ and R to fulfill the process specifications.
Details about the way to tune those gains are given in [9].

The calculation of the state feedback gain K requires the state-
space model of the system which could be directly generated with
the previously described model and a linearization algorithm
such that the one described in [13]. To allow a comparison
between the existing PID and the proposed regulation law, the LQ
controller has been implemented on the existing PLC of each
cryomodule. Even if they have a limited calculation capacity (a
workmemory of 192 Ko), it is more than enough for the proposed
LQ controller which only requires around 30 multiplications/
additions per sampling time. This is due to the fact that only the
control law described in Eq. 3 and its associated Luenberger
observer [14] have been implemented. The calculation of the state
feedback gain K that minimizes the cost Eq. 4 could be carried out
offline using dedicated optimizers.

FIGURE 3 | Evaluation of the criteriaCr on each cryomodule. The type-A
and type-B cryomodule are, respectively, plotted in blue and red. The blue
highlighted element corresponds to the cryomodule investigated in Figure 2.

FIGURE 4 | Block diagram of the synthesized LQ regulator. SP
designates the setpoint.

6Single Input Single Output.
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3.3 Experimental Results
Classical tests like set point variation and output disturbance test
(using electrical heaters as disturbance sources) have been
performed on both PID and LQ controllers. The results of
those tests show that the LQ regulator is slightly better in
terms of robustness and speed than the PI controller.
Nevertheless, our main interest is to see which controller is
able to respect the level and pressure requirements during a
long period of operation. To check this, the following experiment
has been realized for two nights7. During the first night (12 h), all
cryomodules are regulated by PID controllers. During the second
night, they are regulated by LQ controllers. For both cases, the
level requirement has been respected, but not the pressure
requirement. To illustrate this, the number of times the
pressure overshoots the threshold of ±5mbar has been used as
a metric to compare the two controllers. The result of the
comparison is given in Figure 5. The LQ controller shows no
pressure overshoot at all, whereas the PID controller shows
multiple ones. However, the LQ controller could not perfectly
dump pressure oscillations. To illustrate this, a counter of
overshoot with a tightened pressure threshold of ±3mbar (in
comparison with the specification of ±5mbar) has also been
plotted in Figure 5. Nevertheless, the results obtained with the LQ
regulator are satisfying considering process requirements. As the
algorithm has been deployed in the PLCs for the purpose of the
test, it is already available for the current operation. This new
control strategy is an important improvement that could reduce
the accelerator downtime as one pressure overshoot may arise
safety chains that shuts down the accelerator beam. One
drawback of such method is the knowledge of the thermal set
point of operation. This setpoint depends on static load, RF losses,
and other effects such as beam loading. A deviation from the
setpoint due to isolation vacuum leaks or field emitters in the
cavity might make the LQ control worse than a simple PID8. In
this matter, having state observers able to monitor the thermal
behavior of a cryomodule is vital. Such an observer could drive

the change of the thermal operation set point and LQ inputs to
automatically adapt to the real state of the system. The synthesis
of precision state observers using supervised learning will be the
subject of future studies. The next section is the first study of a
thermal load observer based on a twin model synthesis as a
starting point for future planned studies.

4 VIRTUAL SENSOR

4.1 Problem Overview
As the RF signal injected in the resonator is sinusoidal, it
generates energy dissipation in the cavity walls called AC
losses [15]. Those losses are considered an indicator of the
cavity state: an abrupt raise of those losses can indicate that a
part of the cavity is no more in a superconducting state. This
could be the premise of a global quench of the cavity. On another
timescale, a slow increase of the dissipated AC losses can indicate
a pollution of the cavity with non-superconducting elements. In
the case of SPIRAL2, there is no continuous measurement of
these AC losses. Measurements can only be performed when the
cavity is not in operation as the measurement method is intrusive
[16]. There is no operating solution in the case of SPIRAL2 that
would allow us to perform such measurements online and
without disturbing the process.

To solve this problem, we proposed a method to estimate these
losses based on the phase separator model and an extended
Kalman filter (EKF) [17].

4.2 Synthesis of an Extended Kalman Filter
From the phase separator point of view, the AC losses represent
an external thermal heat load. The more AC losses, the more heat
has to be extracted through the evaporation of liquid helium.
Equations that link the AC losses to the thermal heat load are
given in [18]. Knowing this, measuring the AC losses is equivalent
to measuring the heat load extracted by the liquid helium bath.
Nevertheless, as for the AC losses, there is no continuous
measurement of the heat load dissipated in each cavity in the
SPIRAL2 cryogenic system. Discontinuous measurement can be
made bymeasuring the evaporating rate of the liquid helium [19],
but once again it is an intrusive method that could not be realized
during operation. This is where the cryomodule model becomes
very useful: using the model and process measurements such as
phase separator level and pressure as well as valve opening, it is
possible to predict the current heat loads. Therefore, the idea is to
synthesize an observer (also called a virtual sensor in that case) of
the heat load.

An extended Kalman filter seems to be the best choice as it is
designed to work with nonlinear processes and has been
successfully used in many applications [20,21]. The process
diagram of such an observer applied to our process is
described in Figure 6 where it is decomposed into elementary
steps represented as a number in green circles:

• 1: calculate phase separator internal energy (e) and density
(ρ) through property interpolation using bath pressure and
liquid level.

FIGURE 5 | LQ vs. PID pressure overshoot number for one night.

7Night is chosen to avoid daily operations that could induce comparison bias.
8See [10] for thermal set points for both type A and type B cryomodules.
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• 2: define model boundary pressures (pin and pout) using the
closest available pressure transmitters. This is equivalent to
calculating a pressure drop between the closest sensors and
the model boundaries based on the current mass flows and
temperatures.

• 3: calculate input ( _min) and output ( _mout) mass flows
through valves considering valve pressure drop, valves
opening, and valves input quality (χin).

• 4: define phase separator input (φin) and output (φout)
energy flux.

• 5: apply the extended Kalman filter algorithm using model
parameters (i.e., valves coefficients, bath volume, and bath
static heat loads) to estimate the heat loads dissipated in the
phase separator.

In a nutshell, we use the difference between estimated values
based on the model (i.e., eest and ρest) and values (e and ρ) directly
calculated from measurement (tabulated data in HEPACK), to
correct the estimated heat load based on themodel equations. The
complete algorithm is being deployed in cryomodule PLCs. The
following results were obtained using an external computer
connected to the data acquisition system of the process. In
that way, it was possible to directly get sensor process values
but with a delay of few seconds.

4.3 Experimental Results
To evaluate the estimation capacity of the extended Kalman filter,
a reference was needed. A controllable resistive heater thermally
linked to the liquid helium phase separator was used for this
purpose. Actual power dissipated in the helium bath9 showed
good agreement with the electrical power of the heater (within

1Watt). Stepped variations of the heater power were used to test
the synthesized virtual sensor. The results of Figure 7 showed an
exceptionally good prediction of the heater power. The actual
dynamics precision was better than 2Watts for heat loads lower
than 20Watts. The absolute average estimation error was equal to
0.7Wwhich represents about 3% of the maximal tested heat load.
This means that the estimation precision could reach 1W if the

FIGURE 6 | Block diagram of the virtual sensor and its associated model schematic view. f designates different functions depending on the associated bloc
number. LT and PT are, respectively, level and pressure transmitters. Numbers within green circles are explained in the text.

FIGURE 7 | Estimated heat loads (green) and uncertainty (magenta) vs.
electrical heater setpoint (black).

9Measured by liquid helium level decay while the inlet valve is closed.
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estimation is averaged on a sufficiently long timescale. Above
20Watts, the method used to measure the actual heat load
dissipation of the heater introduces a bias higher than 2Watts
which limits the interpretability of the results. However, the
presented virtual sensor10 shows its capability to predict heat
load in real-time with a precision of few Watts. This is enough to
detect anomalies during operation.

5 ANOMALY DETECTION

5.1 Problem Overview
“Anomaly detection” is used to designate algorithms capable of
identifying events or items differing from the majority of the
events/items. For the case of plant monitoring these algorithms
could be used to address the problem of continuous fault
detection on process actuators or transmitters. These kinds of
algorithms are particularly suitable for large processes which
contain thousands of actuators and transmitters because it is
almost impossible for a single operator to continuously check the
functioning of each element within the process. For example, in
the SPIRAL2 cryogenic system, there are more than 70 control
valves and 300 transmitters.

In such a case, we demonstrate the possibility to use the
cryomodule model to perform actuator malfunction detection.
To be more specific, we try to predict if the output value of one
cryomodule (see Figure 1) is undergoing a deadband11 problem.
We use machine learning (ML) algorithms to predict the
malfunction.

This section is decomposed into two parts. First, the
generation of the dataset used to train ML algorithms is
explained. Then, the ML algorithms themselves are described
as well as their performances.

5.2 Dataset Creation
Nowadays, the main concern when working with ML algorithms
is the generation of a clean dataset rather than the algorithm itself.
Why so? Because it exists many libraries that already contain
codes for all the commonly used ML algorithms. In Python, some
of the most popular libraries are TensorFlow [22], PyTorch [23],
and Skitlearn [24].

In the present work, the MATLAB statistics and ML toolbox
[25] are used. All the data used for the anomaly detection problem
are simulated data. Nevertheless, white noise has been added to
each input and output of the model. The amplitude of this noise
has been defined such that the simulated data look like the real
measurements. Furthermore, slow fluctuations have been added
to the input and output boundaries pressures in order to mimic
the real operating conditions. To a naked eye, it is almost
impossible to differentiate simulated data from measured data.

Before generating a dataset for valve anomaly detection, it is
required to model the deadband problem on the output valve. In

our case, the deadband has been set to random values between 1%
and 4% to generate different test cases. The following signals have
been recorded:

• phase separator pressure
• phase separator liquid level
• input and output valves command

Only the valve command (and not the real position) is
considered. It mimics the case where valves are not equipped
with a position indicator. In total, 500 time series of 60 s have
been simulated. The dataset has been perfectly balanced: in
half of the cases, the valve was subject to deadband, and in the
other half it was not. For the two ML algorithms described in
the next sub-sections, we used a standard cross-validation
method. So, the overall dataset has been decomposed into a
training set (60% of the data), a validation set (20% of the
data), and a testing set (20% of the data). Thus we are able to
perform hyper-parameters12 tuning for each tested ML
algorithm.

5.3 Solution 1: Classification Learner
The first solution is to use a classification learner to determine
if a valve is faulty or not. This kind of algorithms require
features as input and not time series. So, features were
extracted from each time series of the dataset. As we do
not know which features would be most suitable to identify a
deadband problem, we calculate all the most common ones
(i.e., variance, peak to peak, skewness, and kurtosis, etc.). In
our case, we define 36 features which are few enough not to be
concerned with limitations due to computer performances.
But if it was the case, it would still be possible to use the same
brute force approach and apply a principal component
analysis [26,27] to reduce the number of features.
Consequently, for all the time series of the dataset, each of
the 4 measured signals has been transformed into a list of 9
features that could be used as input for a classification
learner13.

Once again, as there is no methodology to choose the best
classification algorithm, we trained multiple ones and selected the
one with the highest accuracy. Thanks to parallel computing it
takes less than a few minutes to train multiple algorithms
including decision trees, support vector machine (SVM),
logistic regression, and nearest neighbors.

It appears that SVM with Gaussian kernel [28,29] gets the best
performance among the other algorithms. SVM with Gaussian
kernel is particularly suitable for our problem as we have a small
number of features (less than 1,000) and not too much data to get
concerned with the computation time issue.

The final results obtained with the SVM are given in Table 2.
They are compared to the results obtained with another method:
a deep neural network presented in the next section.

10The overall synthesis of this virtual sensor has been patented [18].
11A deadband is a range of input control that does not result in any output on the
valve position.

12A hyper-parameter is a parameter whose value is set before the learning process
begins. By contrast, the values of other parameters are derived via training.
13Weighted average of the precision and recall.

Frontiers in Physics | www.frontiersin.org September 2022 | Volume 10 | Article 8754647

Vassal et al. SP2 CM Models: Proc. Contr. & ML

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


5.4 Solution 2: Deep Network
The second idea while developing the valve anomaly detection
consists of a Long Short Term Memory (LSTM) network [30].
The main advantage of this deep learning algorithm is the fact
that time series signals could be directly used as network inputs. It
means that there is no need to calculate features in that case.
Nevertheless, it generally requires more data to train this kind of
network than for an SVM.

The architecture of the LSTM network is given in Figure 8. As
one can see, the network is decomposed into five layers:

• The sequence input layer used to sequence data to the
network.

• The LSTM layer that learns long-term dependencies
between time steps in sequence data.

• The fully connected layer that applies weight and bias to the
LSTM output in order to predict the right label.

• The softmax layer that applies a SoftMax function to
calculate the probability associated to each case (in our
case normal operation of the deadband problem).

• The classification output layer that provides the final
prediction depending on the probability calculated in the
previous layer.

In total, it took 200 training epochs with a constant learning
rate of 0.001 to train the network. This took less than 1 min of
computation time.

5.5 Prediction Results
In this section, we compare the performances of the synthesized
SVM and the LSTM algorithm. The comparison is based upon
usual ML metrics: accuracy, precision, recall, and F1 score. More

details about those metrics are available in [31]. Comparison is
performed on a test set of 100 time series used only for this purpose
(and not for training). Results are given in Table 2.

As one can see, both SVM and LSTM algorithms show good
results in terms of error predictions. Nevertheless, the SVM
results are slightly better. As the implementation complexity of
those two algorithms is quite similar, the best option would be to
deploy an SVM algorithm on the system to get an online anomaly
detector. It is worth mentioning that anomaly detection has been
tested on the cryomodules only to remain consistent with the rest
of the article. Nevertheless, it would be more interesting to
generate an anomaly detector for process-critical elements
such as rotating machines of the cryogenic system: the
turbines and the compressors.

6 CONCLUSION

Advanced operation and diagnostics tools are slowly becoming
a vital part of the operation of large infrastructures such as
particle accelerators. While sub-systems such as cryogenics are
not usually studied and documented in that perspective, they
can be critical in maintaining a high beam availability. Working
on a twin model of the cryomodules opens a gate that allows a
control and operation method that otherwise would be difficult.
It also introduces the possibility to use machine learning
techniques for synthesizing monitoring proxies and smart
fault detection observers. The premises of such observers
have been studied and is in the process of being
implemented in the SPIRAL2 control system. Developed
modeling allows us to generate training data sets for machine
learning algorithms. Future work will include the extension of
the thermodynamic models to its radio-frequency counter-part
and the application of SVM-based algorithms on actual
machine data.
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