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By using quantum renormalization group (QRG) approach, we first derive the effective
Hamiltonian and QRG equations of the two-dimensional (2D) Ising models with two
different time-dependent transverse magnetic fields analytically. Then we examine the
nonanalytic and scaling behaviors of the linear-entropy-based uncertainty relation and
quantum entanglement of the models near the critical point through numerical analysis.
Moreover, we investigate the relation between the quantum critical point and the external
magnetic field. Our results show that both the uncertainty relation and the quantum
entanglement are feasible to detect the quantum phase transition (QPT), and the
uncertainty relation may be a better indicator of QPT than quantum entanglement. Our
findings could shed new light on the observable of the QPTs of the solid-state system with
the uncertainty relation.
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1 INTRODUCTION

Quantum entanglement is one of the most astonishing notions of quantummechanics [1, 2] and is at
the centre of the large amount of applications in quantum sciences and technologies, such as
quantum cryptography [3], quantum teleportation [4], superdense coding [5], and telecloning [6].
Negativity as the witness of the bipartite entanglement was introduced by Życzkowski et al [7] and
then proven by Vidal and Werner [8] to be a monotone under the local operation and classical
communication.

As we know, the relation between quantum entanglement and quantum phase transition (QPT)
[9] is of considerable interest [10]. QPT is induced by the change of external parameters or
interaction coupling constants. The divergence of the correlation length in the vicinity of the
quantum critical points (QCP) indicates that the different components of the quantum system are
strongly correlated. Quantum entanglement can be used as a way to measure quantum correlations
and to indicate the behavior of QPT such as discontinuity close to the QCP [11, 12]. In the past few
years the behavior of entanglement near QCP in different spin systems [13–15] was considered as a
subject of profound significance [16–19]. Recently, A lot of work was devoted to the study of
Heisenberg spin chains, particularly the one-dimensional (1D) spin chains, which can be given
quantitative results and be exactly solvable [20–25]. The QPT of Heisenberg spin chains is caused by
quantum fluctuations, which is essentially induced by quantum uncertainty relation of the
system. Up to now, quantum uncertainty relation has gone through considerable development.
Nevertheless, to our knowledge there are few studies on the relation between the uncertainty and
QPT [26–29].
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The quantum uncertainty relation is deemed one of the
most unique and fundamental features in quantum mechanics,
which states that it is impossible to simultaneously determine
the definite measurement outcomes of noncommutative
observables. Based on the distributions of measurement
results, the uncertainty relation can be depicted in different
ways [30–33]. Historically, the uncertainty principle was
originally formulated by Heisenberg [34] for the coordinate
and the momentum in an infinite dimensional Hilbert space.
Later, Robertson generalized Heisenberg uncertainty
inequality to arbitrary pairs of observables [30]. Instead of
the standard deviation, the uncertainty relation can also be
delicately given in terms of Shannon entropies associated with
the measurement bases [35]. By considering the quantum
entanglement with a memory system [36], an entropic
uncertainty relation in the presence of quantum memory
was proposed and attracted wide attentions [37, 38]. Taking
the entangled quantum memory into account, these
uncertainty relations have potential applications in quantum
key distributions and entanglement witnessing [37, 39, 40].
However, all the uncertainty relations proposed above involve
the measurement between only two observations and are
expressed in the form of inequality. Very recently, Wang
et al. [41] put forward a novel entropic uncertainty relation
for bipartite systems composed of a measured subsystem A and
a quantum memory B, in which projection measurements is
based on a complete set of mutually unbiased bases (MUBs).
By means of the complete set of MUBs, an uncertainty equality
based on conditional linear entropy was derived [42, 43]. The
uncertainty equality implies that the sum of uncertainties is
exactly equal to the fixed quantity related to the initial bipartite
state which was confirmed experimentally with optical systems
[41, 44]. This uncertainty relation can be applied to quantum
random number generation and quantum guessing games. On
the other hand, quantum renormalization group (QRG) is one
of the conceptual pillars of quantum field theory and
statistical mechanics, which revolves around the idea of
rescaling transformations and coarse-graining of a large-
scale system [45].

The QRG method is widely used to solve exactly the 1D Ising,
XXZ, XYZ and XY models [20, 46, 47]. At zero temperature, the
QRG method provides insights into how the block uncertainty
and entanglement change as the size of the system becomes large
in 1D spin chains. On the basis of the 1D case, some further
contributions on two-dimensional (2D) and higher-dimensional
systems have been recently made [48–53]. In this work, we
introduce two different types of the time-dependent magnetic
fields into the 2D Ising models, and obtain the effective
Hamiltonian of the models by employing the QRG method.
Moreover, we investigate the evolution of the uncertainty in
contrast to the quantum entanglement in terms of the
magnetic field to characterize the QPT.

This paper is structured as follows. In Section 2, we first derive
the QRG equations for the 2D models with the time-dependent
magnetic fields. And in Section 3, the evolutions of the
uncertainty and quantum entanglement are discussed in the
2D model. A conclusion is given in Section 4.

2 QRG FOR THE TRANSVERSE-FIELD
ISING MODELS

The QRG method can effectively process large-scale quantum
spin systems [45]. The key of the QRG method is the mode
thinning of the degrees of freedom followed by iterations which
reduces the number of parameters step by step until reaching a
fixed point. In this section, we derive the QRG equation for 2D
Ising models with time-dependent magnetic fields following the
method of 1D QRG.

The Hamiltonian of the 1D Ising model with N sites can be
expressed as

H1 t( ) � −J1 ∑N
i�1

σzi σ
z
i+1 − Bp t( )∑N

i

σxi , (1)

where J1 > 0 is the exchange coupling constant, σαi (α � x, y, z) are
the Pauli matrices at site i, Bp(t) (p = 1, 2) denote the time-
dependent magnetic field strengths. Here, we define

B1 t( ) � kt, (2)
B2 t( ) � �

2
√

sin ωt( ). (3)
Clearly, B1(t) denotes the magnetic field strength with the linear
coefficient k, while B2(t) is the sinusoidal magnetic field strength
with the frequency of ω.

Similarly, the Hamiltonian of a spin-1/2 2D Ising model with
the transverse magnetic field is given by:

H2 t( ) � −J2 ∑N
〈i,j〉

σzi σ
z
j − Bq t( )∑N

i

σx
i , (4)

where the coupling constant J2 > 0, the first sum contains all the
nearest-neighbor interactions, and Bq(t) (q = 3, 4) are the time-
dependent linear and sinusoidal magnetic field strengths
defined by

B3 t( ) � kt, (5)
B4 t( ) � 1.835 4

�
2

√
sin ωt( ), (6)

FIGURE 1 | The procedure of the 1D model partitioning.
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respectively. Here the coefficient 1.835 4
�
2

√
is chosen for easier

analysis of numerical results, as 1.8354 is the critical point of the
2D Ising model described in the following text.

The QRG procedure of the 1D Ising model is started by
decomposing the system into isolated blocks (Figure 1) and
accordingly the Hamiltonian H1(t) is divided into two parts.

H1 t( ) � Hk t( ) +Hkk t( ). (7)
Here Hk(t) and Hkk(t) are the block and interblock

Hamiltonian, respectively, which are given by

Hk t( ) � ∑N/2

I

hIk t( ),
hIk t( ) � −J1σz

I,1σ
z
I,2 − Bp t( )σxI,1,

Hkk t( ) � ∑N/2

I

hI,I+1kk t( ),
hI,I+1kk t( ) � −J1σzI,2σz

I+1,1 − Bp t( )σx
I,2,

(8)

where hIk(t) and hI,I+1kk (t) are respectively the Ith block
Hamiltonian and the interblock Hamiltonian between the
blocks I and I + 1.

Next we focus on the effect of magnetic field strength on
QPT and do not care about the specific details of the evolution
of the system. Therefore, we can make the magnetic field
strength change very slowly over time, where the process
coincides with the idea of quantum adiabatic
approximation. The strict derivation of the quantum
adiabatic theorem was first mentioned by [54]. Later,
quantum adiabatic approach was extended to the
degenerate case, and the quantum adiabatic condition for
the degenerate case was obtained [55, 56]. The theorem
states that when the time-varying rate of the Hamiltonian
approaches to zero, the probability of the system leaving the
instantaneous eigenstates of the Hamiltonian can be
considered to be zero. In the degenerate case, the
Hamiltonian hIk(t) of the system depending on parameter
t = [t1, t2, t3, . . ., tN] have degenerate eigenstates |n, α〉 ≡|n,
α(t)〉(α = 1, 2, . . ., dn), corresponding to the eigenvalues En(t)

with dn being degeneracy. The adiabatic approximation
condition can be written as

〈n, α d
dt

∣∣∣∣ ∣∣∣∣n′, α′〉
En − En′

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣≪ 1 n ≠ n′( ). (9)

A detailed analysis are further performed on the left hand
side (LHS) of Eq. 9 with different magnetic field parameters as
shown in Figure 2. From Figure 2A, we can see that for
different values of k, the LHS of the adiabatic approximation
condition versus time t in linear magnetic fields B3(t) have the
similar trend, i.e., it first increases to the maximum value and
then gradually decreases to 0. However, the maximum value of
LHS diminishes rapidly from 0.2052 to approximately 0
(much less than 1) as k decreases from 1 to 0.01.
Figure 2B shows that the maximum values of LHS appear
periodically over time for the sinusoidal magnetic fields B4(t).
Our primary concern is that when the value of ω decreases to
0.01, the value of LHS is approximate to 0. As discussed above,
we can set the values of magnetic field parameters k and ω as
0.01 to satisfy the adiabatic approximation condition. On the
basis of the approximation condition, the transitions between
energy levels of the systems can be ignored, so we can
complete the subsequent QRG process by solving the
stationary Schrodinger equation hIk(t)|ψj〉 � Ej|ψj〉 (j � 1, 2).

After solving the Schrodinger equation at a certain time t, we
obtain two degenerate ground states |ψ1〉 and |ψ2〉, which can be
used to construct the projection operator as follows

P � ⊗N/2
I�1PI, PI � ψ1

∣∣∣∣ 〉〈↑| + ψ2

∣∣∣∣ 〉〈↓∣∣∣, (10)
where |↑〉 and |↓〉 are the eigenstates of σz, and PI is the projection
operator of hIk(t). Using the above formulas, we can obtain the
following effective Hamiltonian Heff given by

Heff1 � P†HP � P† Hk +Hkk( )P
� J1′∑N/2

I

σz
Iσ

z
I+1 − Bq′ t( )∑N/2

I

σx
I .

(11)

where

FIGURE 2 | LHS of the adiabatic approximation condition versus time t for different magnetic fields: (A)B3(t) and (B)B4(t).
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J1′ � J21���������
J21 + B2

q t( )
√ ,

B′ t( ) � B2
q t( )���������

J21 + B2
q t( )

√ ,

(12)

which are called QRG equation. Notably, we define the
effective magnetic field h1 = Bq(t)/J1. Then QRG equation
can be written as

h1′ � h21, (13)
where h1 becomes h1′ after one QRG iteration. The stable and
unstable fixed points h1 = (0, 1, ∞) of the QRG equations are
obtained by solving h1 � h1′ � h1*, where h1 = 1 is an unstable
fixed point and the QCP of the 1D system.

Using the similar QRG method of 1D model [48, 49, 51, 52],
now we turn to investigate the related properties of the 2D square
lattice. As previously discussed, the values of k and ω are
theoretically set to be 0.01 in the rest of this paper. To study
the ground state phases of the Hamiltonian in Eq. 4, we partition
the square lattice into blocks of two sites in horizontal and vertical
directions as depicted in Figure 3A.

In Figure 3A, Jh and Jv represent the ferromagnetic exchange
coupling constants in the horizontal and vertical directions
respectively, and Jh = Jv = J2. Similar to the 1D case, we first
perform the horizontal transformation

Jh′ � J2h���������
J2h + B2

q t( )
√ ,

Bq′ t( ) � B2
q t( )���������

J2h + B2
q t( )

√ ,

Jv′ � Jv 1 + J2h
J2h + B2

q t( )
⎛⎝ ⎞⎠,

(14)

and then the vertical transformation as follows,

Jh″ � Jh′ 1 + J′2v
J′2v + B′2

q t( )
⎛⎝ ⎞⎠,

B′′
q t( ) � B′2

q t( )���������
J′2v + B′2

q t( )
√ ,

Jv″ � J′2v���������
J′2v + B′2

q t( )
√ .

(15)

To preserve the symmetry of the system, the geometric mean idea
[57] is applied to the entire transformation process J′′2 �

����
J′′hJ

′′
v

√
.

Then the effective Hamiltonian Heff2 of the 2D model can be
expressed as follows

Heff2 t( ) � −J2″ ∑N
〈i,j〉

σz
i σ

z
j − Bq″ t( )∑N

i

σxi . (16)

The effective magnetic field is set to h2 = B2(t)/J2. After the
horizontal and vertical transformations, the QRG equation for
the 2D model can be obtained as

h2′ �
h42 1 + h22( )3 4 + 4h22 + 2h42 + h62( )( )1/4

2 + h22( ) 8 + 8h22 + 3h42 + h62( )1/2 , (17)

where h2 becomes h2′ after one QRG iteration. By solving
h2 � h2′ � h2*, we can get three fixed points h2 = (0, 1.835 4,
∞), where h2 = 1.835 4 is QCP of the ferromagnetic paramagnetic
phase transition of the 2D system. Considering the symmetry of
the 2D system, we select a basic cluster as the research object
shown in Figure 3B, and the corresponding Hamiltonian Hc is
given by

Hc � −J2″ σz2σ
z
1 + σz

2σ
z
3 + σz2σ

z
4 + σz

2σ
z
5( )

−Bq″ t( ) σx1 + σx2 + σx
3 + σx

4 + σx5( ).
From the ground state |ψg〉 of Hc, we can construct the density
operator ρ = |ψg〉〈ψg|. Then by tracing the density matrix of the
subsystems 3, 4 and 5, the reduced density matrix between the
sites 1 and 2 is written as

ρ12 � Tr345ρ. (18)

FIGURE 3 | (A) The process of the 2Dmodel partitioning, with first horizontal transformation and then vertical transformation. (B) The basic cluster with the nearest
neighbor interaction in the 2D model.
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As a result, after the QRG iterative process, the relation between
the local and global properties of the 2D system is built. By means
of the reduced density matrix ρ12, we can analyze the quantum
property of the 2D Ising models by calculating uncertainty
relation, quantum entanglement, and so on.

3 UNCERTAINTY RELATION AND
QUANTUM ENTANGLEMENT OF THE 2D
ISING MODELS
In this section, we first use the quantum entanglement to gain a
preliminary understanding of the long-range properties and the
critical behavior in the 2D Ising model. We adopt the negativity
proposed by Vidal and Werner [8] to measure quantum
entanglement, which is described by

N ρ12( ) � ∑
i

λi ρT1
12( )∣∣∣∣ ∣∣∣∣ − 1, (19)

where ρ12 is the reduced density matrix of subsystems 1 and 2, ρT1
12

is the partial transpose matrix about particle 1, and λi denotes the
ith eigenvalue of ρT1

12 . The subsystem 1 and 2 are maximally
entangled for N(ρ12) � 1, and partially entangled for N(ρ12)< 1.

In Figure 4, we plot the properties of negativity and its first
derivative for the 2D transverse-field Ising model. As seen from
Figure 4A, as kt increases, N first increases gradually from zero to
the maximum Nmax = 0.243 7 for each QRG iteration, then

decreases to zero monotonically. When kt = 1.835 4, the effective
magnetic field h2 is equal to 1.8354, which is the QPT point of the
2D system. For higher QRG iterations, the space in which N can
exist gradually becomes smaller and the maximum occurring ofN
is closer to the QCP at kt = 1.835 4.

As shown in Figure 4B, the negativity maximums Nmax =
0.243 7 display periodicity versus ωt with the magnetic field B4(t).
As the size of the system increases,Nmax appears approximately at
ωt � π

4,
3π
4 ,

5π
4 . . ., and herein the corresponding effective magnetic

field strength satisfies h2 = 1.835 4, which is the QCP of 2D
models.

As we know, the divergence of the first derivative of N means
that the system has nonanalytic behavior. From Figure 4Cwe can
see that maxima and minima of N are almost symmetric. The
maxima exhibit at the critical point of kt = 1.835 4 and become
larger under the system size increasing.

We also note that the entanglement in the vicinity of the QCP
shows scaling behavior [58]. Figure 4D plots the logarithm of the
absolute value of minimum of dN/dh versus the system scale
ln( ~N), displaying a standard linear relation, where ~N represents
the size of the system. From the linear relation, a formula between
|dN/dg|min and ~N can be obtained as |dN/dg|min � ~N

0.796 0
,

which reflects the scaling behavior of entanglement.
In general the quantum entanglement of a system is closely

related to its uncertainty. To compare with quantum
entanglement, in the following we investigate the uncertainty
equality and inequality based on linear entropy [41]. Suppose that

FIGURE 4 | (A) The evolution of negativity of the 2D model versus kt with B3(t), and (B) that versus ωt with B4(t) in terms of QRG iterations. (C) The evolution of first
derivative of N in terms of QRG iterations with B3(t). The upper and lower insets show the maximum and minimum of dN/dg at the critical point respectively. (D) The
scaling behavior of ln(|dN/dg|min) with respect to the system size ln( ~N).
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there is a bipartite quantum state ρ12 consisting of subsystems 1
and 2 in a d1 × d2 (d1 < d2) dimensional Hilbert space. First,
subsystem 1 is performed a local projection measurement with
the eigenstates {|m〉}. Then, the bipartite state can be expressed as
ρm12 � (|m〉1〈m|⊗ I2)ρ12(|m〉1〈m|⊗ I2)/pm, where I2 represents
the identity operator of subsystem 2 and pm �
Tr[(|m〉1〈m|⊗ I2)ρ12] is the measurement probability. As a
result, the overall state of the system after the local
measurement on subsystem 1 is given by

ρM2 � ∑d1
m�1

pmρm � ∑d1
m�1

|m〉1〈m|⊗ 〈m ρ12
∣∣∣∣ ∣∣∣∣m〉1. (20)

To quantify the uncertainty of the composite system, we
introduce conditional linear entropy SL(M|2) as follows,

SL M | 2( ) � SL ρM|2( ) − SL ρ2( ) � Tr ρ22( ) − Tr ρ2M2( ), (21)
where ρ2 = Tr1(ρ12) is the reduced density matrix of subsystem 2
and SL(ρ) � 1 − Tr(ρ2) is the linear entropy. For the density
matrix ρ12, if a complete set of MUBs Mθ(θ � 1, 2, . . . , d1 + 1){ }
are performed, the uncertainty equality is

∑d1+1
i�1

SL Mθ | 2( ) � d1 Tr ρ22( ) − 1
d1

Tr ρ212( )( ). (22)

For a two-dimensional subsystem 1, the simplest complete set of
MUBs is

M1 � |↑〉, |↓〉{ },M2 � |↑〉 + |↓〉�
2

√ ,
|↑〉 − |↓〉�

2
√{ },

M3 � |↑〉 + i|↓〉�
2

√ ,
|↑〉 − i|↓〉�

2
√{ }, (23)

whereM1,M2,M3 are the eigenvectors of σx, σy, σz respectively. If
an incomplete set of d (d < d1 + 1) MUBs (for example, M2 and
M3) are performed on the d1 × d2 dimensional Hilbert space, the
uncertainty satisfies the uncertainty inequality

∑d
i�1

SL Mi | 2( )P d − 1( ) Tr ρ22( ) − 1
d
Tr ρ212( )[ ]. (24)

For the 2D Ising system, the uncertainty equality and
inequality are plotted in Figure 5 under different magnetic
fields. For each QRG iteration, the uncertainty first decreases
to the minimum of 0.5 and then increases to the maximum of
1.0 with the growth of kt in Figure 5A. The change tendency
of uncertainty is opposite to that of entanglement in
Figure 4A, which indicates that quantum entanglement
might suppress the uncertainty of the system. As the size
of the system becomes larger, the uncertainty minimum
occurs at kt = 1.835 4 near QCP, where the decay from
maximum to minimum is very rapid and accompanied by
intensive oscillations, which means that this uncertainty can
precisely describe the critical behavior of the system due to the

FIGURE 5 | The evolution of the uncertainty of the 2D Ising model. The uncertainty equality (A) and inequality (B) versus kt with the magnetic field B3(t), the
uncertainty equality (C) and inequality (D) versus ωt with the magnetic field B4(t).
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sensitivity of this uncertainty. The uncertainties shown in
Figure 5B and Figure 5A have the similar evolution trend,
implying that the uncertainty can characterize the QPT even
without choosing the complete set of MUBs.

From Figure 5C and Figure 5D, we can see that the
behaviors of uncertainty against ωt in each half cycle are almost
consistent with those against kt in Figure 5A and Figure 5B,
respectively. With the system size increasing, the uncertainty
minima appear nearly at ωt � π

4,
3π
4 ,

5π
4 . . ., and the corresponding

effectivemagnetic field h2 = 1.835 4 is theQCP of the 2Dmodel. Thus
the application of the periodic magnetic field B4(t) reveals the close
relation between QPT and the effective magnetic field, i.e., QPT
depends on the magnetic field strength rather than how themagnetic
field evolves.

Through the first derivative of the uncertainty dU/dg, we
can analyze its nonanalytic behavior at the QCP. For
simplicity, in Figure 6 we only plot the first derivative of
the uncertainty of the 2D Ising model under B3(t) versus kt,
where dU/dg denotes the first derivative of the right hand side
of Eq. 22 and Eq. 24. Surprisingly, the extreme values of the
first derivative of the uncertainty can reach up to about 105 for
each iteration, which are almost three order of magnitude
larger than those of negativity. This shows that the linear-
entropy-based uncertainty relation might be a better indicator
of QPT than quantum entanglement. Clearly, we can see from
Figure 6 that dU/dg oscillates at a high frequency between the
maximum and the minimum in a very narrow range near the
critical point kt = 1.835 4, which can illustrate the rapidly
oscillating behavior of the uncertainty in Figure 5A and
Figure 5B. Moreover, with the increase of QRG iterations,
the range where the maxima and minima of dU/dg can exist
becomes smaller and is approximate to the critical point.
Thus, the QPT occurs very fast near the QCP for the large
QRG iterations, which can also be exhibited from the rapid
variation tendency of the uncertainty with respect to the
magnetic field strength. These results indicate that the
QRG implementation of uncertainty really captures the
QPT behavior of the 2D Ising model.

4 CONCLUSIONS

To summarize, we have analytically derived the effective
Hamiltonian and QRG equations by employing the QRG
approach. Then the behaviors of the linear-entropy-based
uncertainty relation and the quantum entanglement for 2D
Ising models with linear and sinusoidal transverse fields are
investigated through numerical analysis. Under the linear
magnetic field B3(t), we found that the range where the
maxima of entanglement and the minima of the
uncertainty can exist becomes smaller and appears near the
critical point as the size of the system increases. The
entanglement shows an opposite evolution trend to that of
the uncertainty. The evolutions of the first derivatives of the
uncertainty and the entanglement in terms of QRG iterations
indicate a nonanalytic behavior at the QCP. Furthermore, the
absolute value of the minimum derivative of negativity against
the size of the system exhibits a nice linear relationship. The
uncertainty given by Eqs 22, 24 and its first derivative are
more sensitive to changes of the magnetic field, resulting in
oscillations at high frequency and the uncertainty derivative
maxima up to 105, compared with the negativity derivative
maxima (~ 102), in the vicinity of QCP. Therefore, the
uncertainty may be used as a better indicator to
characterize QPT than quantum entanglement. Under the
sinusoidal magnetic field B4(t), the maxima of the
entanglement and the minima of the uncertainty appear
periodically versus the magnetic field, but as the system
size increases, they can still gradually approach the QCP.
The strong dependence of QPT on the magnetic field strength
is clearly illustrated in the case of the sinusoidal
magnetic field.

Our findings might be helpful to use the linear-entropy-
based uncertainty relation as the indicator for the detection of
the QPT, and to reveal the nature of uncertainty relation and
quantum entanglement in the 2D Ising model with time-
dependent transverse magnetic fields. We expect our results
to be of interest for a wide range of applications in other

FIGURE 6 | First derivative of the uncertainty equality (A) and inequality (B) versus kt with the increasing number of QRG iterations.
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meaningful high-dimensional spin models with the QRG
method.
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