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The quantum component in uncertainty relation can be naturally characterized by the
quantum coherence of a quantum state, which is of paramount importance in quantum
information science. Here, we experimentally investigate quantum uncertainty relations
construed with relative entropy of coherence, l1 norm of coherence, and coherence of
formation. Instead of quantum state tomographic technology, we employ the classical
shadow algorithm for the detection of lower bounds in quantum uncertainty relations. With
an all-optical setup, we prepare a family of quantum states whose purity can be fully
controlled. We experimentally explore the tightness of various lower bounds in different
reference bases on the prepared states. Our results indicate that the tightness of quantum
coherence lower bounds depends on the reference bases and the purity of the
quantum state.

Keywords: quantum uncertainty relation, quantum coherence measures, classical shadow, purity of quantum
states, photonic quantum information processing

1 INTRODUCTION

The uncertainty principle lies at the heart of quantum mechanics, which makes it different
from classical theories of the physical world. It behaves as a fundamental limitation describing
the precise outcomes of incompatible observables, and plays a significant role in quantum
information science from quantum key distribution [1–4] to quantum random number
generation [5, 6], and from quantum entanglement witness [7–9] to quantum steering [10,
11] and quantum metrology [12, 13] (also see Ref. [14] for the review of uncertainty relation
and applications).

The seminal concept of uncertainty relation was proposed by Heisenberg in 1927 [15], in
which he observed that the measurement of position x of an electron with error Δ(x) causes the
disturbance Δ(p) on its momentum p. In particular, their product has a lower bound set by
Planck constant, that is, Δ(x)Δ(p) ~ Z. Later, Robertson generalized the Heisenberg’s
uncertainty relation to two arbitrary observables by ΔAΔB≥ 1

2|〈[A, B]〉|, with ΔA (ΔB)
being the standard deviation of observable A (B), [A, B] = AB− BA being the commutator
of A and B, and 〈·〉 being the expected value in a given state ρ [16]. Indeed, such an uncertainty
relation has a state-dependent lower bound so that it fails to reveal the intrinsic
incompatibility when A and B are noncommuting.

To address the issue of state-independence of Robertson’s uncertainty relation, the entropic
uncertainty relation has been developed by Deutsch [17], Kraus [18], and Maassen and Uiffink [19]:
Consider a quantum state ρ and two observablesA and B; the eigenstates |ai〉 and |bi〉 of observable A
and B constitute measurement bases A � {|ai〉} and B � {|bi〉}. The probability of measuring A on
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state ρ with ith outcome is pi = Tr[ρ|ai〉〈ai|], and the
corresponding Shannon entropy of measurement outcomes is
H(A) = −∑ipi log2pi. Then, H(A) + H(B) is lower bounded by
H(A) + H(B) ≥− log2c with c = maxi,j|〈ai|bj〉|2 the maximal
overlap between |ai〉 and |bj〉. According to the definition of
Shannon entropy, H(A) quantifies the uncertainty or lack of
information associated to a random variable, but does not
indicate whether the uncertainty comes from classical or
quantum parts. For instance, the measurement of Pauli
observable Z on states | + 〉 � (|0〉 + |1〉)/ �

2
√

and I/2 = (|0〉〈0|
+ |1〉〈1|)/2 both lead to H(Z) = 1.

It is natural to consider quantum coherence, which is one of
the defining features of quantum mechanics, to quantify the
quantum component in uncertainty [20–22]. Along with this,
rigorous connections between quantum coherence and
entropic uncertainty have been established [23, 24] based
on the framework of coherence quantification [25], and the
quantum uncertainty relations (QURs) have been
theoretically constructed with various coherence measures
[26]. On the experimental side, the QURs using relative
entropy of coherence have been demonstrated to
investigate the trade-off relation [27] and connection
between entropic uncertainty and coherence uncertainty
[28]. Still, there are several unexplored matters along the
line of experimental investigations. First, although various
QURs have been theoretically constructed with relative
entropy of coherence, the experimental feasibility and
comparison have not been tested. Second, the experimental
realizations of QURs using other coherence measures beyond
relative entropy of coherence are still lacking. Finally, the
lower bounds in QURs are generally obtained with quantum
state tomography (QST) [27, 28], which becomes a challenge
when the dimension of quantum state increases.

In this study, we experimentally investigate QURs
constructed with three coherence measures, relative
entropy of coherence, l1 norm of coherence, and coherence
of formation, on a family of single-photon states. The lower
bound of the QURs is indicated with classical shadow (CS)
algorithm [29]. We show that the tightness of coherence
lower bounds depends on the reference bases and the
purity of quantum state.

This article is organized as follows: In Section 2, we introduce
the basic idea of QUR using quantum coherence measures. In
Section 3, we briefly introduce the CS algorithm to detect the
purity of a quantum state. In Sections 4 and 5, we present the
experimental demonstration and results. Finally, we draw the
conclusion in Section 6.

2 QUANTUM UNCERTAINTY RELATIONS

A functional C can be regarded as a coherence measure if it
satisfies four postulates: nonnegativity, monotonicity, strong
monotonicity, and convexity [25]. The different coherence
measure plays different roles in quantum information
processing. For instance, the relative entropy of coherence
plays a crucial role in coherence distillation [30], coherence

freezing [31, 32], and the secret key rate in quantum key
distribution [33]. The coherence of formation represents
the coherence cost, that is, the minimum rate of a
maximally coherent pure state consumed to prepare the
given state under incoherent and strictly incoherent
operations [30]. The l1-norm of coherence is closely
related to quantum multi-slit interference experiments [34]
and is used to explore the superiority of quantum algorithms
[35–37]. We refer to Ref. [38] for the review of resource
theory of quantum coherence. In the following, we give a brief
review of QURs constructed with coherence measures of
relative entropy of coherence, l1-norm of coherence, and
coherence of formation [26].

2.1 Quantum Uncertainty Relations Using
Relative Entropy of Coherence
The relative entropy of coherence of state ρ is defined as [25]:

CJ
RE ρ( ) � SJVN ρd( ) − SVN ρ( ), (1)

where J � {|j〉} denotes the measurement basis of observable J,
SVN(ρ) = −Tr [ρ log2ρ] is the von Neumann entropy, and ρd is the
diagonal part of ρ in measurement basis J. Note that
H(J) � SJVN(ρd). The QUR using relative entropy of coherence
[26] is

CA
RE ρ( ) + CB

RE ρ( )≥ h

������
2P − 1

√
2

�
c

√ − 1( ) + 1
2

( ) − SVN ρ( ), (2)

where h(x) = −x log2x − (1 − x) log2 (1 − x) is the binary entropy
and P � Tr[ρ2] is the purity of state ρ. Similarly, the entropic
uncertainty relations proposed by Sánches-Ruiz [39], Berta et al.
[3], and Korzekwa et al. [22] can be expressed in terms of relative
entropy of coherence by (see Supplementary Material for
detailed derivations)

CA
RE ρ( ) + CB

RE ρ( )≥ h 1 + �����
2c − 1

√
2

( ) − 2SVN ρ( ), (3)

CA
RE ρ( ) + CB

RE ρ( )≥ − log2c − SVN ρ( ), (4)
CA

RE ρ( ) + CB
RE ρ( )≥ − 1 − SVN ρ( )[ ]log2c. (5)

Consider a qubit state ρ in spectral decomposition ρ = λ|ψ〉〈ψ|
+ (1 − λ)|ψ⊥〉〈ψ⊥| with λ(1 − λ) being the eigenvalue associated
with eigenvector |ψ〉(|ψ⊥〉); we have SVN(ρ) = −λ log2λ − (1 − λ)
log2 (1 − λ) where the purityP is related to λ byP � 2λ2 − 2λ + 1.

2.2 Quantum Uncertainty Relations of the ll1
Norm of Coherence Norm of Coherence
The l1 norm of coherence in fixed measurement bases J is defined
in the form of

CJ
l1

ρ( ) � ∑
k≠l

|〈jk|ρ|jl〉|, (6)

where the QUR using l1 norm of coherence is [26]

CA
l1

ρ( ) + CB
l1

ρ( )≥ 2 ��������������
2P − 1( )c 1 − c( )√

. (7)
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2.3 Quantum Uncertainty Relations Using
Coherence of Formation
The coherence of formation in fixed measurement bases J is
defined in the form of

CJ
f ρ( ) � inf

pi,|φi〉{ } ∑i piC
J
RE |φi〉〈φi|( ), (8)

where the infimum is taken over all state decomposition of
ρ = ∑ipi|φi〉〈φi|. The QUR using coherence of formation is [26]

CA
f ρ( ) + CB

f ρ( )≥ h 1 +
����������������������
1 − 2 2P − 1( ) �

c
√

1 − �
c

√( )√
2

⎛⎜⎜⎝ ⎞⎟⎟⎠. (9)

3 CLASSICAL SHADOW

From Section 2, it is obvious that the purity P of ρ is the key
ingredient in the experimental testing of various QURs. The
purityP can be calculated by reconstructing the density matrix of
ρ with QST, which is very costly as the Hilbert space of ρ
increases. Another protocol employs two copies of ρ for the
detection of P, that is, P � Tr[Πρ ⊗ ρ], with Π being the local
swap operator of two copies of the state [40, 41].

Very recently, the CS algorithm has been theoretically
proposed for efficient quantum state detection [29], and has
been experimentally realized in the detection of purity of
unknown quantum states [42, 43]. In CS algorithm, a
randomly selected single-qubit Clifford unitary U is applied on
ρ, and then the rotated state UρU† is measured in the
Pauli-Z basis, that is, Z � {|z0〉 � |0〉, |z1〉 � |1〉}. With the
outcome of |zi〉, the estimator ρ̂ is constructed by
ρ̂ � 3U†|zi〉〈zi|U − I. It is equivalent to measure J = U†ZU (J �
{U|0〉, U|1〉}) on ρ, and the measurement basis J is randomly
selected from the Pauli observable basis set J ∈ {X,Y,Z}, with a
uniform probabilityK(J) � 1/3. The estimator ρ̂ can be rewritten
as ρ̂ � 3|k〉〈k| − I, where |k〉 ∈ {|x0〉, |x1〉, |y0〉, |y1〉, |z0〉, |z1〉}. In
particular, |x0〉 � | + 〉 � (|0〉 + |1〉)/ �

2
√

and |x1〉 � | −
〉 � (|0〉 − |1〉)/ �

2
√

are the eigenvectors of Pauli observable X
and |y0〉 � |L〉 � (|0〉 + i|1〉)/ �

2
√

and |y1〉 � |R〉 �
(|0〉 − i|1〉)/ �

2
√

are the eigenvectors of Pauli observable Y. It is
worth noting that the construction of estimator ρ̂ only requires
one sample. In our demonstrations, one sample is one two-
photon coincidence. For a set of estimators {ρ̂i} constructed
with Ns samples, the purity of state ρ can be estimated by two
randomly selected independent ρ̂i and ρ̂j, that
is, P̂ � ∑i≠jTr[Πρ̂i ⊗ ρ̂j]/Ns(Ns − 1).

4 EXPERIMENT REALIZATIONS

To test the aforementioned QURs of various coherence measures,
we consider the following single-qubit state:

ρ τ( ) � τ| + 〉〈 + | + 1 − τ( ) I
2
, (10)

with 0 ≤ τ ≤ 1. Note that τ = 1 corresponds to the pure state | + 〉
and τ = 0 corresponds to the maximally mixed state I/2. The
experimental setup to generate state in Eq. 10 is shown in
Figure 1A. Two photons are generated on a periodically poled
potassium titanyl phosphate (PPKTP) crystal pumped by an
ultraviolet CW laser diode. The generated two photons are
with orthogonal polarization denoted as |HV〉, where |H〉 and
|V〉 denote the horizontal and vertical polarization,
respectively. Two photons are separated on a polarizing
beam splitter (PBS), which transmits |H〉 and reflects |V〉.
The reflected photon is detected to herald the existence of
transmitted photon in state |H〉, which is then converted to
| + 〉 � (|H〉 + |V〉)/ �

2
√

by a half-wave plate (HWP) set at
22.5°. We sent the heralded photon into a 50:50 beam
splitter (BS1), which transmits (reflects) the single photon
with a probability of 50%. The photons in transmitted and
reflected mode are denoted as |t〉 and |r〉, respectively. Two
tunable attenuators are set at modes |t〉 and |r〉 to realize the
ratio of transmission probability in |t〉 and |r〉 of τ

1−τ. The
photon in |r〉 passes through an unbalanced Mach–Zehnder
interferometer (MZI) consisting of two PBS and two mirrors,
which acts as a completely dephasing channel in polarization
degree of freedom (DOF), that is, | + 〉〈 + |→ I/2. Finally, the
two beams are incoherently mixed on BS2 to erase the
information of path DOF, which leads to the state ρ(τ) in
both output ports. A step-by-step calculation detailing the
evolution of the single-photon state through this setup is
given in Eq. 11:

|H〉 ����������→HWP@22.5° | + 〉 � 1�
2

√ |H〉 + |V〉( )

����→BS1 | + 〉⊗ 1�
2

√ |t〉 + |r〉( )
������������→two attenuators

at |t〉 and |r〉
| + 〉⊗

�
τ

√ |t〉 + ����
1 − τ

√ |r〉( )
�������������→unbalancedMZI

at |r〉
τ| + 〉〈 + |⊗|t〉〈t| + 1 − τ( )I/2 ⊗|r〉〈r|

������������������→BS2

incoherently combined
τ| + 〉〈 + | + 1 − τ( )I/2. (11)

In our experiment, we set the parameter τ = 0 to τ = 1, with an
increment of 0.1, and totally generated 11 states. For each
generated state, we detect the QURs with the setup shown in
Figure 1B. The lower bound in QURs related to purity PCS is
measured with CS algorithm. CJ

RE is detected with projective
measurement on basis J, along with the measured purity. CJ

l1(CJ
f) is calculated with reconstructed ρ(τ). All the measurement

bases are realized with a HWP, a quarter-wave plate (QWP), and
a PBS.

5 EXPERIMENTAL RESULTS

To investigate the accuracy of estimated purity PCS with CS
algorithms, we also calculate the purity PQST with reconstructed
density matrix of ρ(τ) from QST with NS = 2000. The results of
|PQST − PCS| are shown in Figure 2A. Themore the samples used

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8738103

Liu et al. Experimental Quantum Uncertainty Relations

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


in CS algorithm, the smaller |PQST − PCS| is. We observe
|PQST − PCS|< 0.1 when Ns ≥ 600. Especially, |PQST − PCS| �
0.0036 when Ns = 2000. In Figure 2B, we show the results of
PCS and PQST with NS = 2000 on 11 prepared ρ(τ), in which
the experimental results of PCS and PQST have good
agreements with the theoretical predictions. In the
following, all the results with CS algorithm are obtained
with 2000 samples. We also compare the accuracy of
estimated purity P from CS algorithm and QST with the
same Ns (see Supplementary Material for the results).

We first focus on the lower bounds in QURs using relative
entropy of coherence, that is, Eqs 2–5. We calculate the lower
bounds in Eqs 2–5 with the estimated PCS on ρ(τ = 1), ρ(τ =

0.894), ρ(τ = 0.688), and ρ(τ = 0.291), respectively. As shown in
Figure 3A, we observe that the lower bounds in Eqs 4, 5 have the
same value and outperform others when A and B are mutually
unbiased (c = 0.5).When c becomes larger, lower bounds in Eqs 2,
3 are stricter than those in 4 and Eq. 5. However, the situation is
quite different when the purity becomes smaller. As shown in
Figure 3B–D, the values of lower bounds in Eqs 3, 4 are negative
(we denote them as 0) when c is larger than certain values, which
means that the lower bounds are loosened asCA

RE(ρ) + CB
RE(ρ)> 0

for all ρ.
To investigate the tightness of various lower bounds, we

measure CA
RE(ρ) + CB

RE(ρ) in different reference bases. We
select observables A and B from set J(θ) = cos θZ + sin θX.
Specifically, we fix A = J (0°) and choose B = J (90°), J (66.42°),
and J (36.86°), which correspond to c = 0.5, 0.7, and 0.9. For each
observable J(θ), we perform the projective measurement on basis
J(θ), and calculate the Shannon entropy of measurement
outcomes H (J(θ)). Thus, we obtain
CJ(θ)
RE (ρ(τ)) � H(J(θ)) − SVN(ρ(τ)), where SVN(ρ(τ)) can be

calculated from PCS. The results of QURs using relative
entropy of coherence are shown in Figure 4. As shown in
Figure 4A, the lower bounds in Eqs 4, 5 have the same values
as CA

RE(ρ) + CB
RE(ρ) is lower bounded by 1 − SVN(ρ), when c = 0.5

according to the definitions in Eqs 4, 5. When c is larger, the lower
bound in Eq. 2 is stricter than others as reflected in Figure 4B and
Figure 4C.

Next, we investigate the QURs using l1-norm of coherence and
coherence of formation as described in Eqs 7–9. We choose
observables A = J (0°) = Z and B = J (90°) = X in the coherence
measure, which corresponds to c = 0.5. The CZ

l1
(ρ) and CX

l1
(ρ) are

calculated according to Eq. 7 with the reconstructed density
matrix of ρ(τ). Thus, CZ

f(ρ) and CX
f(ρ) can be calculated

with CZ
l1
(ρ) and CX

l1
(ρ) as Cf(ρ) � h(1+

������
1−Cl1(ρ)

√
2 ) [26]. The

results of QURs using l1 norm of coherence and coherence of
formation are shown in Figure 5A and Figure 5B, respectively, in
which the measured coherence is well bounded by the measured
lower bounds.

FIGURE 1 | Schematic illustration of the experimental setup. (A) The setup to generate the family of states ρ(τ) � τ| + 〉〈 + | + (1 − τ) I
2. (B) Experimental setup to

implement the measurements with CS algorithm and QST. (C) Symbols used in (A) and (B). Laser diode (LD); single-photon detector (SPD); attenuator (AT); long-wave
pass filter (LP); narrow-band filter (NBF).

FIGURE 2 | (A) Average estimated PCS of 11 prepared states with
different Ns. (B) The results of PCS (blue dots) and PQST (red dots). The black
line is the theoretical prediction of purity of ideal ρ(τ).
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6 CONCLUSION

In this study, we experimentally investigate quantum uncertainty
relations using various coherence measures. The lower bounds in
quantum uncertainty relations are detected with the classical
shadow algorithm, in which the measurement cost is quite small

and independent of the dimension of quantum states. For the
quantum uncertainty relation using relative entropy of coherence,
we show that the tightness of lower bounds is highly related to the
reference basis and purity of quantum state. Moreover, we test the
quantum uncertainty relation using l1 norm of coherence and
coherence of formation.

FIGURE 3 | Results of estimated lower bounds in Eqs 2–5 with different c on state (A) ρ(τ = 1), (B) ρ(τ = 0.894), (C) ρ(τ = 0.688), and (D) ρ(τ = 0.291), respectively.

FIGURE 4 | Results of QURs in Eqs 2–5 on 11 prepared states with (A) c = 0.5, (B) c = 0.7, and (C) c = 0.9. The dashed lines are the measured lower bounds and
the shadow area represents the statistical error by repeating CS measurement for 20 times.

FIGURE 5 | Results of (A) QUR with l1 norm of coherence and (B) QUR with coherence of formation with c = 0.5.
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Our results confirm that the tightness of lower bound in quantum
uncertainty relations is related to the purity of quantum states and the
reference bases, which can benefit the choice of quantum uncertainty
relations when considering the experimental imperfections in
practice. For instance, the imperfections in state preparation and
measurement apparatus correspond to the purity and reference bases
in the lower bound, respectively. More importantly, our method can
be generalized to multipartite states while it keeps its efficiency. The
multipartite coherence could be efficiently estimated using the
stabilizer theory [44, 45] and the classical shadow algorithm to
detect that the purity of multipartite state is efficient as well [43].
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