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Efficient navigation in complex flows is of crucial importance for robotic applications. This
work presents a numerical study of the point-to-point navigation of a fish-like swimmer in a
time-varying vortical flow with a hybrid method of deep reinforcement learning (DRL) and
immersed boundary–lattice Boltzmann method (IB-LBM). The vortical flow is generated by
placing four stationary cylinders in a uniform flow. The swimmer is trained to discover
effective navigation strategies that could help itself to reach a given destination point in the
flow field, utilizing only the time-sequential information of position, orientation, velocity and
angular velocity. After training, the fish can reach its destination from random positions and
orientations, demonstrating the effectiveness and robustness of the method. A detailed
analysis shows that the fish utilizes highly subtle tail flapping to control its swimming
orientation and take advantage of the reduced streamwise flow area to reach it destination,
and in the same time avoiding entering the high flow velocity area.

Keywords: vortical flow, immersed boundary-lattice Boltzmann method, deep reinforcement learning, point-to-
point navigation, robotic fish, target-directed swimming, fish swimming

1 INTRODUCTION

To find the timely optimal path between two given points in a complex flow is known as Zermelo’s
navigation problem [1]. This problem is a key issue for many robotic and engineering applications,
including micro-swimmers [2,3], fish-like underwater vehicles [4], unmanned drones [5], and weather
balloons [6]. In realistic environments, different structures interact with disturbances like wind, waves and
currents, generating abundant vortices that could significantly effect the operation of these robotics [7],
making the predefined control algorithms ineffective. In this work, we tackle the Zermelo’s problem for the
point-to-point navigation of a fish-like swimmer in a vortical flow environment. Typical application
scenarios include oceanic supervision [8], fishery conservation and intervention on offshore structures [9].

Naive control strategies are usually ineffective or inefficient in vortical environments [10], since the
vortices could easily deviate the vehicles away from their desired path [11]. Numerous methods have
been trying to design a customized optimal path for a given environment, ranging from the classical
optimal control theory [12] to modern optimization approaches [13,14]. An important feature of these
methods is that they require the knowledge of the dynamics of the background flow [15]. However, in
real world applications, it is impractical to measure the entire flow environment in advance, as ocean
and air currents are too variable to be fully measured [15]. In addition, the vehicles themselves can also
significantly alter the surrounding flow fields, making them more unpredictable [15].

Reinforcement learning (RL) offers a promising alternative for solving Zermelo’s navigation
problem in complex time-varying environments. Compared to the classical methods, RL possesses
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two main advantages. The first advantage is that it does not
require any prior knowledge of the environment [16]. Instead, it
automatically develops an understanding of the dynamics of the
environment through trial and error. The other advantage is that
the influence of the historical states can be easily taken into
consideration [17]. Therefore, the correlation between action and
its effect can be accurately captured even when there is a delay
between them and there are measurable impacts from the
historical actions. Colabrese et al. [3] first demonstrated that
reinforcement learning is an efficient way to address Zermelo’s
Problem. They adopted this method to train a point-like
swimmer in an Arnold-Beltrami-Childress (ABC) flow to
navigate vertically as quickly as possible. The swimmer was
assumed to swim with constant speed and its direction was
decided by the combined effect of a shear-induced viscous
torque and a torque applied by the swimmer to orient itself to
a desired direction. And a torque on the swimmer was designed
by measuring its instantaneous swimming direction and the local
flow vorticity. The authors found that smart swimmer can take
advantage of upwelling flows to accelerate upward navigation and
avoid being trapped in the vortices. This work motivated a series
of studies, investigating the point-to-point navigation in different
flows, as well as different actions [7,10,15,18–26].

The above studies demonstrated the potential of reinforcement
learning in solving the navigation problems in complex flows.
However, several simplifications are used for a better comparison
with the traditional control methods. Firstly, most of these studies
adopted simplified flow models to avoid the actual complexity and
unpredictability of a time-varying fluid flow. Secondly, idealized
model of the swimmer and their actions are utilized. In most of
studies, the swimmers are considered to be an infinitely small
point, which has negligible influence on the background flow.
Moreover, the propellers of those swimmers are not modeled.
Instead, it is assumed that the swimmers have full control of their
own velocities. Those assumptions neglect the complex interaction
between the swimmers and the environmental flows, such as time
delays between sensing, actions and rewards. In this work, we
investigate the point-to-point navigation of a fish-like swimmer in
a vortical flow with a hybrid method of deep reinforcement
learning (DRL) and immersed boundary–lattice Boltzmann
method (IB-LBM). Compared with previous works, the present
work utilizes a full model of both the flow and the swimmer.
Specifically, the vortical flow is numerically generated with IB-LBM
by putting four cylinders in a uniform flow, and the fish-like
swimmer propels itself by periodically undulating its fish-like body
to push the surrounding flow afterwards. This setup retains the
complex nonlinear interaction between the swimmer and the flow.

The rest of the paper is organized as follows. Numerical
methods are simply introduced in Section 2. The results of
the simulation are discussed in Section 3. The conclusions are
provided in Section 4.

2 METHODOLOGY

The methodology used here is almost the same as that in our
previous work [27]. Here briefly describe it for complicity. More

details of the method and its validations can be found in our
previous work.

2.1 Kinematic Model of the Fish
The half thickness of the body is mathematically approximated by
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where l is the arc length along the mid-line of the body, and L is
the body length which is a constant during the swimming [28].

The motion of the fish body is composed of the translation of
the mass center, the body rotation around the mass center and the
body undulation in the local coordinate system (Figure 1). The
translational and rotational motion of the fish are determined by
the FSI in the global coordinate system according to the Newton’s
laws of motion. The FSI equations are solved by an explicit FSI
coupling method as in Ref. [27,30]. The undulatory motion is
controlled by the fish itself, which can be taken as the superposition
of different waves propagating from head to tail. A polynomial-
based waveform is adopted for each wave and the kinematics of the
newest generated waves can be changed every half cycle. In the nth
half cycle, the mid-line lateral displacement is determined by

θl l, t( ) � l

L
h
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L
[ ], hl l, t( ) � ∫l

0
sin θl( )dl, (2)

where θl is the deflection angle of the mid-line with respect to axis
xl as shown in Figure 1, λn is the wavelength, Tn is the period, t is
the time, t0n = 0 for n = 1 and ∑n−1

i�1 Ti for n > 1, and h is the
waveform function described by

h ζ( ) � c0 + c1ζ + c2ζ
2 + c3ζ

3 + c4ζ
4 + c5ζ

5, (3)
where c0−5 can be determined by
h(0) � (θlmax)n−1, h(λn/2) � (θlmax)n,h′(0)=h′(λn/2)=0,
h′′(0) � −h(0)(2π/λn−1)2, and h′′(λn/2) � −h(λn/2)(2π/λn)2.
(θlmax)n is the maximum deflection angle at the tail tip of
the nth half wave.

2.2 Immersed Boundary–Lattice Boltzmann
Method
The lattice Boltzmannmethod (LBM) is used to simulate the fluid
dynamics [31,32]. Instead of solving the Navier-Stokes equations,
the LBM solves the discrete lattice Boltzmann equation which
governs the kinematics of the mesoscopic particles,

fi r + ciΔt, t + Δt( ) − fi r, t( ) � Ωi r, t( ) + ΔtGi r, t( ), i � 0, . . . , 8

(4)
where f is the particle density distribution function, r = (x, y) is the
space coordinate, ci is the discrete lattice velocity, Δt is time step,
Ωi is the collision operator, and Gi is the source term representing
the body force. A detailed description of this equation can be
found in Ref. [33]. f in the whole flow field can be acquired from a
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well-defined boundary condition, such as the no-slip velocity
condition on the boundary of the swimmer model. Once f is
known, the macroscopic physical quantity such as fluid density,
pressure and velocity can be computed from

ρ � ∑fi, p � ρc2s , u � 1
ρ

∑fici + Δtg
2

( ), (5)

where cs is the lattice speed of sound in the fluid, and g is the body
force. Then the force and torque on the swimmer model can be
computed from those macroscopic physical quantity.

In addition, a diffusion immersed boundary method (IBM)
[32,34–36] is utilized to handle the boundary condition at the
fluid-structure interface. In this method, the influence of the
boundary on the fluid is represented by a distribution of body
force on the background Eulerianmesh nodes. Compared to body
conformal methods [37–39], the grid generation in IBM is much
easier for complicated shapes [32,40,41]. And a multi-block
geometry-adaptive Cartesian grid is coupled with the IB–LBM
to accelerate the computation. A detailed description of this
numerical scheme and its validation can be found in Refs.
[27,31,34,42–44]. The current method is first-order in accuracy.

2.3 Deep Reinforcement Learning
DRL is a machine learning method combining reinforcement
learning with an artificial neural network. DRL has gained
extensive attention due to its success in complex real-world
problems [45]. In this study, a specific DRL method called
deep recurrent Q-network (DRQN) [46] is adopted, in which
a long-short-term-memory recurrent neural network (LSTM-
RNN) is used to process time-sequential data. The method
includes two basic elements: a learning agent and its
environment [3]. The agent interacts with the environment in
a trial-and-error fashion to collect observation of the
environment state (denoted by s), control actions (denoted by
a), and rewards (denoted by rd) [47]. The goal of the agent is
learning to find a control policy (denoted by π(s, a)) that enables
it to collect highest rewards in a single try.

The interaction procedure between the environment (IB-
LBM) and the agent (DRL) is shown in Figure 2. The
interaction is divided into a sequence of discrete steps n = 0,
1, 2, 3, . . .. At steps n, the agents detect state sn, and select action
an, based on policy π(s, a). Then the environment is changed
under the influence of the action. At step n + 1, in response to the
change of the environment, the agent receives reward rdn+1, and

find itself in a new state sn+1. A detailed explanation of the
procedure can be found in Refs. [27,48]. Validations of the
current solver can be found in Ref. [27] for the hybrid method
of DRL and IB-LBM.

3 RESULTS AND DISCUSSION

3.1 The Hydrodynamics of a Uniform Flow
Over Four Stationary Cylinders
A uniform flow over four stationary cylinders is conducted to
produce a large-scale vortical flow environment as an initial flow
for the fish to swim in. The diameter of the cylinders is D = 0.8L,
which is slightly smaller than the body length of the fish. The
centers of the cylinders are respectively placed at (−3L, 0.7L),
(−3L, − 2.1L), (0L, − 0.7L) and (0L, 2.1L), as shown in Figure 3.
Such arrangement is used in order to generate a complex vortical
flow via the interaction of the vortices shedding from the leading
two cylinder with the trailing cylinders.

The simulation is performed for a Reynolds number of Re =
ρUL/μ = 400 or Recylinder = ρUD/μ = 320, where ρ is the density of
the fluid, U is the incoming fluid velocity, and μ is the dynamic
viscosity of the fluid. This Reynold number is used because it is
able to generate sufficiently complex flows with reasonably low
computational costs. The computational domain of 50L × 50L is
divided into seven blocks with 98,373 grids. The minimum
nondimensional grid spacing is Δx/L = Δy/L = 0.01 near the
inner boundaries and the nondimensional time step size is ΔtU/
L = 0.0004. Validation has been performed to ensure the
numerical results are independent of mesh size, domain size
and time step size.

Figure 4 shows the vorticity contour and flow velocity
distribution behind the cylinders at four different instants (the
animation of the movement of the vortices can be found in the
Supplementary Materials). It can be seen that abundant vortices
are generated in the wake flow of the cylinders, and the strength
and moving velocity of the vortices are diversified. Those vortices
interact with each other and the trailing cylinders, forming a
highly dynamic and unpredictable flow field. Two basic types of
vortices are identified: clockwise vortices (blue) and counter-
clockwise vortices (red). The clockwise vortices accelerate the
flow above it and decelerate the flow below it, and induce upward
flow in its left side and downward flow in its right side. On the
contrary, the counter-clockwise vortices accelerate the flow below

FIGURE 1 | A schematic illustration of the motion of the fish (Adapted from Ref. [27,29]).
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it and decelerate the flow above it, and induce upward flow in its
right side and downward flow in its left side. As a result, the flow
velocity in the field is vastly altered. In next section, tL/U = 50 is
used as an initial flow field for the swimming training.

3.2 Learning to Navigate in the Vortical Flow
In this section, a fish is trained to navigate in a flow field as in the
last section. The cases are conducted with four computational
cores on a workstation with Intel Xeon CPU E5-2678 and
OpenMP. The computational domain of 50L × 50L is divided
into seven blocks with about 120,000 grids. The simulation
requires about 21.0 s of CPU time per nondimensional time
unit t/T = 1.0. For simplicity, the fish is restricted to swim in
a rectangular area of 12L × 6L, as shown in Figure 3. The goal of
the fish is to swim towards a given destination at (1L, 0.7L) from
different initial positions. The goal is reflected by defining a
reward as

rd � −
�������������������������
xtip/L − 1( )2 + ytip/L − 0.7( )2√

, (6)

where xtip and ytip are the space coordinates of the head tip of the
fish. In addition, if the fish swims out of the boundary of the
confined area, it is given a strong penalty of rd = −100.

The swimmer propels itself by generating a travelling wave
propagating from head to tail, as defined by Eq. 2. In order to
achieve high maneuverability, the swimmer can change the wave
amplitude every half swimming cycle. Each selected set of parameters
is considered as an action. In this case, the period isfixed atTU/L=0.4;
the amplitude action base is defined as θlmax = 0°, 10°, 20°, 30°, 40°, 50°,
60°, 70° and 80°; and the wavelength is fixed at λ = L. This parameter
set forms an action base of nine components.

A comprehensive representation of the environment state is
very important for the accurate motion control. Specifically, the
historical evolution of the sensory information should be

FIGURE 2 | The interaction procedure between IB-LBM and DRL (Adapted from Ref. [29]).

FIGURE 3 | The confined domain of the swimming.
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considered throughly. Zhu et al. [27] conducted tests with
different environment information and found that only
considering the actions and body kinematics in the last four
periods could provide environmental information with enough
accuracy for motion control. Therefore, a similar way to consider
the environment information is adopted here, in which the state is
defined by a tuple.

sn �
x( )n, y( )n, θ( )n, �ux( )n, �uy( )

n
, �ωn,

x( )n−1, y( )n−1, θ( )n−1, �ux( )n−1, �uy( )
n−1, �ωn−1, an−1

. . . , . . . , . . . , . . . , . . . , . . . , . . . ,
x( )n−8, y( )n−8, θ( )n−8, �ux( )n−8, �uy( )

n−8, �ωn−8, an−8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
(7)

where x, y and θ are respectively the space coordinates and
orientation angle of the fish, and �ux, �uy and �ω are respectively
the average swimming speed in x − and y − directions and the
angular speed in each half period.

The learning process is divided into a series of episodes. In
each episode, the initial x coordinate x0 is randomly chosen
between 3 and 7L, the initial y coordinate y0 is randomly chosen
between −1.5 and 1.5L, and the initial orientation angle θ0
randomly varies between −30° and 30°. The subsequent
positions and orientations of the swimmer are then determined
by the FSI with the actions. Once the swimmer exceeds the
confined area or reaches a small circle area near the destination
with radius 0.3L, the episode ends and another starts. The fish is
trained for 3,000 episodes and 126,893 periods. Figure 5 shows the
traces of the head tip during different learning stages. In episode 99,
the fish is not able to maintain in the vortical flow area for a
prolonged time and swims out of the confined area quickly.
Nevertheless, after a trial-and-error exploration period (episode
565), it learns to hold position in the area for longer time instead of
being washed away. At last, it has learned how to directly swim
towards its destination. After learning for 990 episodes, it
successfully finds a path leading it to close area of the
destination, but ending up with a collision with one of the

cylinders. Then it struggles and learns to reach the destination
without hitting the cylinders (episode 1,604). Finally, after learning
for about 3,000 episodes, it could accurately reach the destination.

In order to test the robustness of the control strategy, we
investigated 100 different cases with different initial positions and
orientation angles using the same control strategy after learning for
3,000 episodes. In 9 of the 100 tests, the fish loses its balance and
eventually swam out of the confined area. In those cases, the relative
angle of the fish with respective to the incoming flow grows so large
that the fish could not restore its orientation in time. In 15 of the 100
tests, the fish ends up with a collision with the cylinders. In those
cases, the fish could not resist the strong suction force behind the
cylinders. In the other 76 cases, the fish successfully reach the
destination. Figure 6 presents the traces when the fish swims to
its destination with different initial positions. 5 cases are studied, in
which the initial orientation angle is fixed at 0° while the initial
position of the head tip (rtip)0 takes on the values (6L, − 1.5L), (6L,
1.5L), (6L, 0L), (3L, − 1.5L) and (4.5L, − 1.5L). Figure 7 presents the
traces when the fish swims to its destination with different initial

FIGURE 4 | Vorticity contour and flow velocity distribution behind the cylinders at four different instants: (A) tU/L = 22.7, (B) tU/L = 24.7, (C) tU/L = 26.7, and (D) tU/
L = 28.7.

FIGURE 5 | The traces of the head during different learning stages.
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orientation angles. 5 cases are studied, in which the initial position is
fixed at (6L, − 1.5L) while the initial orientation angle θ0 takes on the
values 0°, 30°, 15°, −15° and −30°. In all cases, the fish reaches its
destination successfully but the path varies a lot. However, twomain
paths can be identified. The first path is to approach the destination
from the above and the other is to approach from the bottom.

In order to understand the hydrodynamics underlying the
behaviors, we investigate a typical case in details, in which the
initial orientation angle is 0° and the initial position is (6L, − 1.5L).
The time change of the lateral tail tip movement is shown in
Figure 8. The vorticity contour and flow velocity distribution in
several typical instants are shown in Figure 9 (the animation of the
fish swimming can be found in the Supplementary Materials). It is
noted that the fish is forced to hold still in the flow field for 50
periods until the vortex street is fully developed. Then it is allowed to
swim freely in the flow. Its goal is to swim upstream and reach its

destination (green circle in Figure 9). Figure 9A shows the body
gesture of the fish and the ambient flow field at instant t/T = 50. It
can be seen that an area of reduced streamwise flow (denoted as RSF
in the figure) is formed in the right side of the fish. It will be easier if
the fish can take advantage of this area to move upstream. However,
the surrounding flow is trying to push the fish leftwards to the high
flow velocity area. Without active control, the fish will be washed
downstream quickly. Therefore, the fish adopts a large-amplitude
right flapping to turn right towards the reduced flow area
(Figure 9B). At instants t/T = 53 and t/T = 54 (Figures 9C,D),
the fish is oriented at the reduced streamwise flow area. Meanwhile,
the clockwise flow induced by Vortex 1 (denoted by V1 in the figure)
has a tendency to turn it right (rotating clockwise) and draw it
backwards to the downstream area. And large-amplitude right
flapping will accelerate this process. Therefore, the fish adopts a

FIGURE 6 | The traces of the head for different initial positions.

FIGURE 7 | The traces of the head for different initial orientation angles. FIGURE 8 | The time change of the lateral tail tip movement in the local
coordinate system.
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large-amplitude left flapping to resist this tendency and restore its
swimming orientation. In the following several periods, a similar
strategy is adopted by the swimmer to take advantage of the reduced
streamwise flow area and keep balance (see details in the
Supplementary Video S6). From instant t/T = 61.5 to t/T = 65.0
(Figures 9E–H), a strong counter-clockwise vortex (V2) is at the
right side of the fish, inducing strong rightward flow and reduce
streamwise flow in the right side of the fish. Therefore, the fish
adopts two large-amplitude right flapping motions to swim
rightwards and three compensate left flapping motions to hold
stability. Those motions are of crucial importance for the fish to
make the most use of the flow to swim upstream while keeping
perfect balance. From instant t/T = 72.5 to t/T = 75.9 (Figures 9I–L),
the fish is very close to the destination and located in a strong
streamwise flow that could wash it away from the destination.
Therefore, the fish adopts a sequence of high-amplitude right
flapping motions to fast reach the destination. It is noted that the
fish chooses to approach the destination from the counterflow
direction instead of the downstream direction, since the high
flow velocity makes it extremely hard to swim upstream.

4 CONCLUSION

The point-to-point navigation of a fish-like swimmer in a vortical
flow is numerically studied with a hybrid method of deep
reinforcement learning and immersed boundary–lattice
Boltzmann method. The goal of the swimmer is to swim
upstream through the vortical area to its destination. The vortical
area is generated by placing four stationary cylinders in a uniform
flow. The function of the vortices is twofold. It not only induces
reduced streamwise flow to make swimming upstream easier, but
also induces strong streamwise and lateral flow to deviate the

swimmer from its desired path. The swimmer utilizes only the
time-sequential information of position, orientation, velocity and
angular velocity to learn to navigate to its destination. By considering
the time-sequential information, the swimmer learns to reach its
destination from different initial positions and orientations,
demonstrating the effectiveness and robustness of the method. A
detailed analysis shows that the fish utilizes highly subtle tail flapping
motions to control its swimming orientation and take advantage of
the reduced streamwise flow area to reach it destination, and in the
same time avoiding entering the high flow velocity area.
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