
Estimation of Eigenvalues for the
ψ-Laplace Operator on Bi-Slant
Submanifolds of Sasakian Space
Forms
Ali H. Alkhaldi 1*, Meraj Ali Khan2*, Mohd. Aquib3 and Lamia Saeed Alqahtani 4

1Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia, 2Department of Mathematics,
University of Tabuk, Tabuk, Saudi Arabia, 3Department of Mathematics, Sri Venkateswara College, University of Delhi, New Delhi,
India, 4Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

This study attempts to establish new upper bounds on the mean curvature and constant
sectional curvature of the first positive eigenvalue of the ψ − Laplacian operator on
Riemannian manifolds. Various approaches are being used to find the first eigenvalue
for the ψ − Laplacian operator on closed oriented bi-slant submanifolds in a Sasakian
space form. We extend different Reilly-like inequalities to the ψ − Laplacian on bi-slant
submanifolds in a unit sphere depending on our results for the Laplacian operator. The
conclusion of this study considers some special cases as well.
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1 INTRODUCTION

It is one of the most significant aspects of Riemannian geometry to determine the bounds of the
Laplacian on a given manifold. One of the major objectives is to find the eigenvalue that arises as a
solution of the Dirichlet or Neumann boundary value problems for curvature functions. Because
different boundary conditions exist on a manifold, one can adopt a theoretical perspective to the
Dirichlet boundary condition using the upper bound for the eigenvalue as a technique of analysis for
the Laplacian’s appropriate bound on a given manifold. Assessing the eigenvalue for the Laplacian
and ψ − Laplacian operators has been progressively well-known over a long time. The generalization
of the usual Laplacian operator, which is an anisotropic mean curvature, was studied in [17]. Let K
denote a complete noncompact Riemannian manifold and B signify the compact domain within K.
Let λ1(B) > 0 be the first eigenvalue of the Dirichlet boundary value problem.

Δψ + λ/ψ � 0 in B and ψ � 0 on zB,

where Δ represents the Laplacian operator on the Riemannian manifold Km. The Reilly’s formula
deals exclusively with the fundamental geometrical characteristics of a given manifold. This is
generally acknowledged by the following statement. Let (Km, g) be a compact m − dimensional
Riemannian manifold and λ1 denote the first nonzero eigenvalue of the Neumann problem.

Δψ + λψ � 0, on K and
zψ

zη
� 0 on zK,

where η is the outward normal on zKm.
As a result of Reilly [24], we have the following inequality for a manifold Km immersed in a

Euclidean space with zKm = 0
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λ∇1 ≤
1

Vol Km( )∫Km
‖H‖2dV, (1.1)

where H is the mean curvature vector of immersion Km into Rn,
λ∇1 signifies the first nonzero eigenvalue of the Laplacian on Km,
and dV represents the volume element of Km.

Zeng and He computed the upper bounds for the ψ − Laplace
operator as it relates to the first eigenvalue for Finsher
submanifolds in Minkowski space. The first eigenvalue of the
Laplace operator on a closed manifold was described by Seto and
Wei . Nevertheless, Du et al. [16] derived the generalized Reilly
inequality and calculated the first nonzero eigenvalue of the ψ −
Laplace operator. By adopting a very similar strategy, Blacker and
Seto [3] demonstrated a Lichnero-type lower limit for the first
nonzero eigenvalue of the ψ − Laplacian for Neumann and
Dirichlet boundary conditions.

The studies [14, 15] illustrate the first nonnull Laplacian
eigenvalue, which is considered an extension of Reilly’s work .
The results of the distinct classes of Riemannian submanifolds for
diverse ambient spaces show that the results of both first nonzero
eigenvalues portray similar inequality and have the same upper
bounds [13, 14]. In the case of the ambient manifold, it is known
from past research that Laplace and ψ − Laplace operators on
Riemannian manifolds played a vital role in accomplishing
different achievements in Riemannian geometry (see [2, 5, 10,
11, 17, 22, 23,]).

The ψ − Laplacian on a m − dimensional Riemannian
manifold Km is defined as

Δψ � div |∇h|ψ−2∇h( ), (1.2)
where ψ > 1 and if ψ = 2; then, the abovementioned formula
becomes the usual Laplacian operator.

The eigenvalue of Δh, on the other hand, is Laplacian-like. If a
function h ≠ 0 meets the following equation with Dirchilet
boundary condition or Neumann boundary condition as
discussed earlier

Δψh � −λ|h|ψ−2h,
where λ is a real number called the Dirichlet eigenvalue. In the
same way, the previous requirements apply to the Neumann
boundary condition.

Looking at Riemannian manifolds without boundaries, the
Reilly-type inequality for the first nonzero eigenvalue λ1,ψ for ψ −
Laplacian was computed in .

λ1,ψ � inf
∫
K
|∇h|q

∫
K
|h|q : h ∈ W1,ψ K1( ) 0{ },∫

K
|h|ψ−2h � 0

⎧⎨⎩ ⎫⎬⎭. (1.3)

On the other hand, Chen was the first to propose the geometry
of slant immersions as a logical extension of both holomorphic
and totally real immersions. In addition, Lotta introduced the
notion of slant submanifolds within the context of almost contact
metric manifolds, and Cabrerizo et al. [9] delved more into these
submanifolds. More precisely, Cabrerizo et al. explored slant
submanifolds in the setting of Sasakian manifolds. However,
Cabrerizo et al. introduced another generalization of slant and

contact CR-submanifolds; that is, they proposed the idea of bi-
slant and semi-slant submanifolds in the almost contact metric
manifolds and provided several examples of these submanifolds.

After examining the literature, a logical question arises: can the
Reilly-type inequalities for submanifolds of spheres be obtained
using almost contact metric manifolds, as described in [1, 14, 15]?
To answer this question, we explore the Reilly-type inequalities
for bi-slant submanifolds isometrically immersed in a Sasakian
space form �M(κ) (odd dimensional sphere). To this end, our aim
is to compute the bound for the first nonzero eigenvalues via ψ −
Laplacian. The present study is led by the application of the Gauss
equation and studies carried out in [13, 14, 16].

2 PRELIMINARIES

A (2n + 1) − dimensional C∞ − manifold �K is said to have an
almost contact structure, if on �K, there exists a tensor field ϕ of
type (1, 1) and a vector field ξ and a 1-form η satisfying the
following properties:

ϕ2 � −I + η ⊗ ξ, ϕξ � 0, η°ϕ � 0, η ξ( ) � 1. (2.1)
The manifold �K with the structure (ϕ, ξ, η) is called almost

contact manifold. There exists a Riemannian metric g on an
almost contact metric manifold �K, satisfying the following
relation

η e1( ) � g e1, ξ( ), g ϕe1, ϕe2( ) � g e1, e2( ) − /η e1( )η e2( ), (2.2)
for all e1, e2 ∈ T �K, where T �K is the tangent bundle of �K.

An almost contact metric manifold �K(ϕ, ξ, η, g) is said to be
Sasakian manifold if it satisfies the following relation .

�∇e1ϕ( )e2 � g e1, e2( )ξ − η e2( )e1, (2.3)
for any e1, e2 ∈ T �K, where �∇ denotes the Riemannian connection
of the metric g.

A Sasakian manifold �K is said to be a Sasakian space form if it
has constant ϕ-holomorphic sectional curvature κ and is denoted
by �K(κ). The curvature tensor �R of the Sasakian space form �K(κ)
is given by [4].

�R e1, e2( )e3 � κ + 3
4

g e2, e3( )e1 − g e1, e3( )e2{ } + κ − 1
4

g e1, ϕe3( )ϕe2{
−g e2, ϕe3( )ϕe1 + 2g e1, ϕe2( )ϕe3 + η e1( )η e3( )e2
−η e2( )η e3( )e1 + g e1, e3( )η e2( )ξ − g e2, e3( )η e1( )ξ},

(2.4)
for all vector fields e1, e2, e3 on �K.

K is assumed to be a submanifold of an almost contact metric
manifold �K with the induced metric g. The Riemannian
connection �∇ of �K induces canonically the connections ∇ and
∇⊥ on the tangent bundle TK and the normal bundle T⊥K of K
respectively, and then the Gauss and Weingarten formulas are
governed by

�∇e1e2 � ∇e1e2 + σ e1, e2( ), (2.5)
�∇e1v � −Ave1 + ∇⊥

e1
v, (2.6)
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for each e1, e2 ∈ TK and v ∈ T⊥K, where σ and Av are the second
fundamental form and the shape operator, respectively, for the
immersion of K into �K; they are related as

g σ e1, e2( ), v( ) � g Ave1, e2( ), (2.7)
where g is the Riemannian metric on �K and the induced
metric on K.

If Te1 and Ne1 represent the tangential and normal part of ϕe1,
respectively, for any e1 ∈ TK, we can write

ϕe1 � Te1 +Ne1. (2.8)
Similarly, for any v ∈ T⊥K, we write

ϕv � tv + nv, (2.9)
where tv and nv are the tangential and normal parts of ϕv,
respectively. Thus, T (resp. N) is 1-1 tensor field on TK (resp.
T⊥K) and t (resp. n) is a tangential (resp. normal) valued 1-form
on T⊥K (resp. TK).

The notion of slant submanifolds in contact geometry was first
defined by A. Lotta . Later, these submanifolds were studied by
Cabrerizo et al. [9]. Now, we have the following definition of slant
submanifolds:

Definition
A submanifold K of an almost contact metric manifold �K is

said to be slant submanifold if for any x ∈ K and X ∈ TxK − 〈ξ〉,
where 〈ξ〉 is the distribution spanned by the vector field ξ, the
angle between X and ϕX is constant. The constant angle α ∈ [0, π/
2] is then called the slant angle ofK in �K. If α = 0, the submanifold
is invariant submanifold, and if α = π/2, then it is an anti-
invariant submanifold. If α ≠ 0, π/2, it is a proper slant
submanifold.

Moreover, Cabrerizo et al. [9] proved the characterizing
equation for the slant submanifold. More precisely, they
proved that a submanifold Nm is said to be a slant
submanifold if ∃ a constant τ ∈ [0, 1] and a (1, 1) tensor
field T, which satisfies the following relation:

T2 � τ I − η ⊗ ξ( ), (2.10)
where τ = − cos2α.

From (2.10), it is easy to conclude the following:

g Te1, Te2( ) � cos2 α g e1, e2( ) − η e1( )η e2( ){ },∀e1, e2 ∈ K.

(2.11)
Now, we define the bi-slant submanifold, which was

introduced by Cabrerizo et al. .
A submanifold K of an almost contact metric manifold �K is

said to be bi-slant submanifold if there exist two orthogonal
complementary distributions Sα1 and Sα2 such that.

1) TK � Sα1 ⊕ Sα2 ⊕ 〈ξ〉.
2) The distribution Sα1 is slant with the slant angle α1 ≠ 0, π/2.
3) The distribution Sα2 is slant with the slant angle α2 ≠ 0, π/2.

If α1 = 0 and α2 = π/2, then the bi-slant submanifold is a semi-
invariant submanifold. Now, we have the following example of a
bi-slant submanifold:

Example.
Considering the 5-dimensional submanifold in R9 with the

usual Sasakian structure, such that

x �u, �v, �w, �s, �t( ) � 2 �u, 0, �w, 0, �v cos α1, �v sin α1, �s cos α2, �s sin α2,�t( )

for any α1, α2 ∈ (0, π/2), then it is easy to see that this is an
example of a bi-slant submanifold M in R9 with slant angles α1
and α2. Moreover, it can be observed that

e1 � 2
z

zx1
+ y1 z

zz
( ), e2 � 2 cos α1

z

zy1
+ 2 sin α1

z

zy2
,

e3 � 2
z

zx3
+ y3 z

zz
( ),

e4 � 2 cos α2
z

zy3
+ 2 sin α2

z

zy4
, e5 � 2

z

zz
� ξ,

form a local orthonormal frame of TK, in which Sα1 � span{e1, e2}
and Sα2 � span{e3, e4}, where Sα1 and Sα2 are the slant
distributions with slant angles α1 and α2, respectively.

It is assumed that Kd=2p+2q+1 is a bi-slant submanifold of
dimension d in which 2p and 2q are the dimensions of the slant
distributions Sα1 and Sα2 respectively. Moreover, let {u1, u2, . . . ,
u2p, u2p+1 = v1, u2p+2 = v2, . . . , ud−1 = v2q, ud = v2q+1 = ξ} be an
orthonormal frame of vectors which form a basis for the
submanifold K2p+2q+1, such that {u1, u2 = sec α1Tu1, u3, u4 =
sec α1Tu3, . . . , u2p = sec α1Tu2p−1} is tangential to the distribution
Sα1, and the set {v1, v2 = sec α2Tv1, v3, v4 = sec α2Tv3, . . . v2q =
sec α2Tv2q−1} is tangential to Sα2. By Eq. 2.4, the curvature tensor
�R for the bi-slant submanifold N2p+2q+1 is given by the formula:

�R ui, uj, ui, uj( ) � κ + 1
4

d2 − d( )
+ κ − 1

4
3 ∑d
i,j�1

g2 ϕui, uj( ) − 2 d − 1( )⎛⎝ ⎞⎠.

(2.12)
The dimension of the bi-slant submanifold Kd can be

decomposed as d = 2p + 2q + 1; then, using the formula
(2.10) for slant distributions, we have

g2 ϕui, ui+1( ) � cos2α1, for i ∈ 1, . . . , 2p − 1{ }
and

g2 ϕui, ui+1( ) � cos2α2, for i ∈ 2p + 1, . . . , 2q − 1{ }.
Then

∑d
i, j�1

g2 ϕui, uj( ) � 2p cos2α1 + 2q cos2α2.

The relation (2.12) implies that
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�R ui, uj, ui, uj( ) � κ + 1
4

d2 − d( )
+ κ − 1

4
6p cos2α1 + 6q cos2α2 − 2 d − 1( )( ).

(2.13)
From the relation (2.13) and Gauss equation we have

κ + 3
4

d d − 1( ) + κ − 1
4

6p cos2α1 + 6q cos2α2 − 2 d − 1( )( )
� 2τ − n2‖H‖2 + ‖σ‖2

or

2τ � n2‖H‖2 − ‖σ‖2 + κ + 3
4

d d − 1( )

+ κ − 1
4

6p cos2α1 + 6q cos2α2 − 2 d − 1( )( ). (2.14)

In the study [1], Ali et al. studied the effect of conformal
transformation on the curvature and second fundamental
form. More precisely, it is assumed that �K2t+1 together with a
conformal metric g � e2ρ �g,, where ρ ∈ C∞( �K). Then, �Ωa �
eρΩa stands for the dual coframe of ( �K, �g) and �ea � eρea
represents the orthogonal frame of ( �K, �g). Moreover, we
have

�Ωab � Ωab + ρaΩb − ρbΩa, (2.15)
where ρa is the component of the covariant derivative of ρ along
the vector ea, that is, dρ = ∑aρaea.

e2ρ �Rpqrs � Rpqrs − ρprδqs + ρqsδpr − ρpsδqr − ρqrδps( )
+ ρpρrδqs + ρqρsδpr − ρqρtδps − ρpρsδqr( )
−|∇ψ|2 δprδqs − δilδqr( ). . (2.16)

Applying the pullback property in (2.15) to Km via the point x,
we get

�σψpq � e−ρ σψpq − ρψδqp( ), (2.17)
�H
ψ � eψ Hψ − ρψ( ), (2.18)

where �σψpq and �Hψ are the components of the second fundamental
form and mean curvature vector.

The following significant relation was proved in [1].

e2ρ ‖�σ‖2 − d‖ �H‖2( ) + d‖H‖2 � ‖σ‖2. (2.19)

3 MAIN RESULTS

Initially, some basic results and formulas will be discussed which
are compatible with the studies ([1, 22]).

It is well-known that a simply connected Sasakian space
form �K2t+1 is a (2t + 1)-sphere S2t+1 and Euclidean space R2t+1

with constant sectional curvature κ = 1 and κ = −3,
respectively.

Now, we have the following result, which is based on the
preceding arguments:

Lemma 3.1. [1] Let Kd be a slant submanifold of a Sasakian space
form �K2t+1(κ) which is closed and oriented with dimension ≥ 2. If
f: Kd → �K2t+1(κ) is embedding from Kd to �K2t+1(κ), then there is
a standard conformal map x: �K2t+1(κ) → S2t+1(1) ⊂ R2t+2 such
that the embedding Ω = x°f = (Ω1, . . . , Ω2t+2) satisfies

∫
Kd
|Ωa|ψ−2Ωa dVK � 0, a � 1, . . . , 2 t + 1( ),

for ψ > 1.
Remark: The Lemma 3.1 is also true for the bi-slant

submanifolds and can be proved on the same lines as
derived in [1].

In the next result, we obtain a result which is analogous to
Lemma 2.7 of [22]. Indeed, in Lemma 3.1 by the application of
test function, we obtain the higher bound for λ1,ψ in terms of
conformal function.

Proposition 3.2. Let Kd be a d − dimensional bi-slant submanifold
which is closed orientable isometrically immersed in a Sasakian
space form �K2t+1(κ). Then we have

λ1,ψVol Kd( )≤ 2|1−ψ
2| t + 1( )|1−ψ

2|d
ψ
2∫

Kd
e2ρ( )ψ2 dV, (3.1)

where x is the conformal map used in Lemma 3.1, and ψ > 1. The
standard metric is identified by Lc,, and we consider x*L1 = e2pLc.

Proof: Considering Ωa as a test function, along with Lemma
3.1, we have

λ1,ψ∫
Kd

|Ωa|ψ ≤ |∇Ωa|ψdV, 1≤ a≤ 2 t + 1( ). (3.2)

Observing that ∑2t+2
a�1 |Ωa|2 � 1 and then |Ωa| ≤ 1, we get

∑2t+2
a�1

|∇Ωa|2 � ∑d
i�1

|∇eiΩ|2 � de2ρ. (3.3)

On using 1 < ψ ≤ 2, we conclude

|Ωa|2 ≤ |Ωa|ψ . (3.4)
By the application of Holder’s inequality together with

(3.2).–.(3.4), we get

λ1,ψVol Kd( ) � λ1,ψ ∑2t+2
a�1

∫
Kd

|Ωa|2dV≤ λ1,ψ ∑2t+2
a�1

∫
Kd

|Ωa|ψdV

≤ λ1,ψ∫
Kd

∑2t+2
a�1

|∇Ωa|ψdV≤ 2t + 2( )1−ψ/2∫
Kd

∑d
a�1

|∇Ωa|2⎛⎝ ⎞⎠ψ/2

dV

� 21−
ψ
2 t + 1( )1−ψ

2∫
Kd

de2ρ( )ψ2 dV,
(3.5)

which is (3.1). On the other hand, if we assume ψ ≥ 2, then by
Holder inequality

I � ∑2t+2
a�1

|Ωa|2 ≤ 2t + 2( )1− 2
ψ ∑2t+2

a�1
|Ωa|ψ⎛⎝ ⎞⎠2

ψ

. (3.6)

As a result, we get
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λ1,ψVol Kd( )≤ 2t + 2( )ψ2−1 ∑2t+2
a�1

λ1,ψ∫
Kd
|Ωa|ψdV⎛⎝ ⎞⎠. (3.7)

The Minkowski inequality provides

∑2t+2
a�1

|∇Ωa|ψ ≤ ∑2t+2
a�1

|∇Ωa|2⎛⎝ ⎞⎠
ψ
2

� de2ρ( )ψ2 . (3.8)

By the application of 3.2, 3.7, and .3.8, it is easy to
get (3.1).

In the next theorem, we are going to provide a sharp
estimate for the first eigenvalue of the ψ − Laplace operator
on the bi-slant submanifold of the Sasakian space form
�K2t+1(κ).

Theorem 3.3. Let Kd be a d − dimensional bi-slant submanifold of
a Sasakian space form �K2t+1(κ), then

1. The first nonnull eigenvalue λ1,ψ of the ψ − Laplacian
satisfies

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }ψ/2

dV

(3.9)
for 1 < ψ ≤ 2 and

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }ψ/2

dV

(3.10)
for 2<ψ ≤ d

2 + 1, where 2p and 2q are the dimensions of the
invariant and slant distributions, respectively.

2. The equality is satisfied in (3.9) and (3.10) if ψ = 2 and Kd are
minimally immersed in a geodesic sphere of radius rκ of �K

2t+1(κ)
with the following relations

r0 � d

λΔ1
( )1/2

, r1 � sin−1r0, r−1 � sinh−1r0.

Proof 1<ψ ≤ 2 0 ψ
2 ≤ 1. Proposition 3.2, together with

Holder inequality, provides

λ1,ψVol Kd( ) ≤ 21−
ψ
2 t + 1( )1−ψ

2m
ψ
2∫

Kd
e2ρ( )ψ2 dV

≤ 21−
ψ
2 t + 1( )|1−ψ

2| d
ψ
2 Vol Kd( )( )1−ψ

2 ∫
Kd
e2ρdV( )

ψ
2 .

(3.11)
We can calculate e2ρ with the help of conformal relations and

the Gauss equation. Let �K2k+1 � �K2k+1(κ), �g � e−2ρLκ,
and �g � κ*L1. From (2.14), the Gauss equation for
the embedding f and the bi-slant embedding Ω = x◦f, we have

R � κ + 3
4

( )d d − 1( ) + κ − 1
4

( ) 6p cos2α1 + 6q cos2α2 − 2 d − 1( ){ }
+d d − 1( )‖H‖2 + d‖H‖2 − S‖σ‖2.

(3.12)
�R − d d − 1( ) � d d − 1( )‖ �H‖2 + d‖ �H‖2 − ‖�σ‖2( ). (3.13)

On tracing (2.16), we have

e2ρ �R � R − d − 2( ) d − 1( )|∇ρ|2 − 2 d − 1( )Δρ. (3.14)
Using 3.12, 3.13, and 3.14, we get

e2ρ d d − 1( ) + d d − 1( )‖ �H‖2 + d‖ �H‖2 − ‖�σ‖2( )( ) � κ + 3
4

( )d d − 1( )
+ κ − 1

4
( ) 6p cos2α1 + 6q cos2α2 − 2 d − 1( ){ }

+d d − 1( )‖H‖2 + d‖H‖2 − ‖σ‖2( )
− d − 2( ) d − 1( )‖∇ρ‖2 − 2 d − 1( )Δρ.

(3.15)
The abovementioned relation implies that

e2ρ‖�σ‖2− d − 2( ) d − 1( )|∇ρ|2 − 2 d − 1( )Δρ

� d d − 1( ) e2ρ − κ + 3
4

− κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ){ }[

+ e2ρ‖ �H‖2 − ‖H‖2( )] + d e2ρ‖ �H‖2 − ‖H‖2( ).
(3.16)

From 2.18, 2.19, we derive

d d − 1( ) e2ρ − κ + 3
4

( ) − κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ){ } + d d − 1( )∑

ψ

Hψ − ρψ( )2
� d d − 1( )‖H‖2 − d − 2( ) d − 1( )|∇ρ|2 − 2 d − 1( )Δρ .

(3.17)

Furthermore, on simplification, we get

e2ρ � κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2

d d,−, 1( ) ,+, 2
d
, ‖H, ‖2( ){ }

−2
d
Δρ − d − 2

d
|Δρ|2 − ‖ ∇ρ( )⊥ −H‖2.

.

(3.18)
On integrating along dV, it is easy to see that

λ1,ψVol Kd( ) ≤ 2|1−
ψ
2| t + 1( )|1−ψ

2|d
ψ
2 Vol Kd( )( )1−ψ

2 ∫
Kd
e2ρ dV( )

ψ
2

.

≤
2|1−

ψ
2| t + 1( )|1−ψ

2|d
ψ
2

Vol Kd( )( )ψ
2−1

∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ){{

+‖H‖2}dV}ψ/2.
,

(3.19)

which is equivalent to (3.9). If ψ > 2, then it is not possible to
apply Holder inequality to govern ∫

Kd(e2ρ dV)
ψ
2 by using∫

Kd(e2ρ). Now, multiplying both sides of Eq. 3.18 by e(ψ−2)ρ

and integrating on Kd,

∫
Kd
eψρdV ≤∫

Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }e ψ−2( )ρ dV

− d − 2 − 2ψ + 4
d

( )∫
Kd

e ψ−2( )|Δρ|2dV

≤∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }e ψ−2( )ρ dV.

(3.20)
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From the assumption, it is evident that d ≥ 2ψ − 2. On applying
Young’s inequality, we arrive at

∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }e ψ−2( )ρ dV

≤
2
ψ
∫

Kd
|κ + 3

4
+ κ − 1

4
6p cos2α1 + 6q cos2α2

d d − 1( ) − 2
d

( ) + ‖H‖2|{ }ψ/2
dV

+ψ − 2
ψ

∫
Kd
e
ψ
ρ dV.

(3.21)
From Eqs 3.20, 3.21, we conclude the following:

∫
Kd
eψρdV≤∫

Kd
|κ + 3

4
+ κ − 1

4
6p cos2α1 + 6q cos2α2

d d − 1( ) − 2
d

( ) + ‖H‖2|{ }ψ/2
dV.

(3.22)
Substituting (3.22) in (3.1), we obtain (3.10). For the bi-slant

submanifolds, the equality case holds true in (3.9), and the
equality cases of (3.2) and 3.4 imply that

|Ωa|2 � |Ωa|ψ ,
ΔψΩa � λ1,ψ|Ωa|ψ−2Ωa,

for a = 1, . . . , 2t + 2. For 1 < ψ < 2, we have |Ωa| = 0 or 1.
Therefore, there exists only one a for which |Ωa| = 1 and λ1,ψ = 0,
which is not possible since the eigenvalue λi,ψ ≠ 0. This leads to
using the value of ψ equal to 2, so we can apply Theorem 1.5
of [15].

For ψ > 2, the equality in (3.10) still holds; this indicates that
equalities in (3.7) and (3.8) are satisfied, and this leads to

|Ω1|ψ � / � |Ω2t+2|ψ ,
and there exists a such that |∇Ωa| = 0. It shows that Ωa is a
constant and λ1,ψ = 0; this again contradicts the fact that λ1,ψ ≠ 0,
which completes the proof.

Note 3.1 If ψ = 2, then the ψ − Laplacian operator becomes the
Laplacian operator. Therefore, we have the following corollary.

Corollary 3.4. Let Kd be a d − dimensional bi-slant submanifold of
a Sasakian space form �K2t+1(κ), then the first nonnull eigenvalue
λΔ1 of the Laplacian satisfies

λΔ1 ≤
d

Vol K( )∫Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }dV.

(3.23)
By the application of Theorem 3.3 for 1 < ψ ≤ 2, we have the

following result.

Theorem 3.5. Let Kd be a d − dimensional bi-slant submanifold of
a Sasakian space form �K2t+1(κ), then the first nonnull eigenvalue
λ1,ψ of the ψ − Laplacian satisfies

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )mψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
+ ‖H‖2( )

ψ
2 ψ−1( )

dV⎡⎢⎢⎣ ⎤⎥⎥⎦ψ−1

(3.24)

for 1 < ψ ≤ 2.
Proof: If 1 < ψ ≤ 2, we have ψ

2(ψ−1)≥ 1, and then the Holder
inequality provides

∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
( ) + ‖H‖2{ }dV

≤ Vol Kd( )( )1−2 ψ−1( )
ψ ×

∫
Kd

κ + 3
4

+ κ − 1
4

6p cos2α1 + 6q cos2α2
d d − 1( ) − 2

d
+ ‖H‖2( )

ψ
2 ψ−1( )⎡⎢⎢⎣ ⎤⎥⎥⎦

2 ψ−1( )
ψ

(3.25)
On combining (3.9) and (3.25), we get the required inequality.

This completes the proof.
Note 3.2 If κ = 1, then simply the connected Sasakian space

form �M2t+1(κ) becomes an odd dimensional sphere, B2t+1(1).
Furthermore, if κ = −3, then �M2t+1(κ) changes to (2t + 1) −
dimensional Euclidean space.

As a result of the abovementioned arguments, we
conclude

Corollary 3.6 Let Kd be a d − dimensional bi-slant submanifold
of a Sasakian space form B2t+1(1) (odd dimensional sphere), then

1. The first nonnull eigenvalue λ1,ψ of the ψ − Laplacian satisfies

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )mψ

2

Vol K( )( )ψ/2 × ∫
Kd

1 + ‖H‖2( )dV{ }ψ/2
(3.26)

for 1 < ψ ≤ 2 and

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2 × ∫
Kd

1 + ‖H‖2( )dV{ }ψ/2
(3.27)

for 2<ψ ≤ d
2 + 1, where 2p and 2q are the dimensions of the anti-

invariant and slant distributions, respectively.
Note 3.3 If α1 = 0 and α2 = π/2, then the bi-slant submanifolds

become the semi-invariant submanifolds.
With the application of the abovementioned findings, we can

deduce the following results for semi-invariant submanifolds in
the setting of Sasakian manifolds.

Corollary 3.7 Let Kd be a d − dimensional semi-
invariant submanifold of a Sasakian space form
�K2t+1(κ), then

1. The first nonnull eigenvalue λ1,ψ of the ψ − Laplacian satisfies

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ 3p c − 1( )
2d d − 1( ) −

1
2d

+ ‖H‖2( )dV{ }ψ/2 (3.28)

for 1 < ψ ≤ 2 and

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ 3p c − 1( )
2d d − 1( ) −

1
2d

+ ‖H‖2( )dV{ }ψ/2 (3.29)
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for 2<ψ ≤ d
2 + 1, where 2p and 2q are the dimensions of the anti-

invariant and slant distributions, respectively.
2. The equality is satisfied in (3.28) and (3.29) if ψ = 2 and Kd

are minimally immersed in a geodesic sphere of radius rc of
�K2t+1(κ) with the following relation

r0 � d

λΔ1
( )1/2

, r1 � sin−1r0, r−1 � sinh−1r0.

Furthermore, by Corollary 3.4 and Note 3.1, we deduce the
following.

Corollary 3.8 Let Kd be a d − dimensional semi-
invariant submanifold of a Sasakian space form
�K2t+1(κ), then the first nonnull eigenvalue λΔ1 of the
Laplacian satisfies

λΔ1 ≤
d

Vol K( )( )∫Kd

κ + 3
4

+ 3p κ − 1( )
2d d − 1( ) −

1
2d

+ ‖H‖2{ }dV. (3.30)

In addition, we also have the following corollary, which can be
derived from Theorem 3.5.

Corollary 3.9 Let Kd be a d − dimensional semi-
invariant submanifold of a Sasakian space form �K2t+1(κ),
then the first nonnull eigenvalue λ1,ψ of the ψ − Laplacian
satisfies

λ1,ψ ≤
2 1−ψ

2( ) t + 1( ) 1−ψ
2( )dψ

2

Vol K( )( )ψ/2

× ∫
Kd

κ + 3
4

+ 3p κ − 1( )
2s d − 1( ) −

1
2d

+ ‖H‖2( )
ψ

2 ψ−1( )
dV⎡⎢⎢⎣ ⎤⎥⎥⎦ψ−1,

(3.31)
for 1 < ψ ≤ 2.
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