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A wide range of theoretical and computational models have been developed to

predict the electrical transport properties of dense plasmas, in part because

dense plasma experiments explore order-of-magnitude excursions in

temperature and density; in experiments with mixing, there may also be

excursions in stoichiometry. In contrast, because high pressures create

transient and heterogeneous plasmas, data from experiments that isolate

transport are relatively rare. However, the aggregate of our datasets

continues to increase in size and plays a key role in the validation of

transport models. This trend suggests the possibility of using the data

directly to make predictions, either alone or in combination with models,

thereby creating a predictive capability with a controllable level of

agreement with the data. Here, such a data-driven model is constructed by

combining a theoretical model with extant data, using electrical conductivity as

an example. Discrepancy learning is employed with a theoretical model

appropriate for dense plasmas over wide ranges of conditions and a dataset

of electrical conductivities in the solid to expandedwarmdensematter regimes.

The resulting discrepancy is learned via a radial basis function neural network.

Regularization of the network is included through centers chosen with

silhouette scores from k-means clustering. The covariance properties of

each cluster are used with a scaled Mahalanobis distance metric to

construct anisotropic basis functions for the network. The scale is used as a

hyperparameter that is used to optimize prediction quality. The resulting

predictions agree with the data and smoothly transition to the theoretical

model away from the data. Detailed appendices describe the electrical

conductivity model and compare various machine-learning methods. The

electrical conductivity data and a library that yields the model are available

at GitHub.
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1 Introduction

Dense plasmas are typically created in the laboratory by heating solids with currents,

radiation or beams. In all cases, electron-ion collisions play a central role in determining

the characteristics of the energy absorption. Energy deposition properties (e.g., stopping

range) from ion beams, for example, are primarily determined by projectile-electron

OPEN ACCESS

EDITED BY

Mianzhen Mo,
Stanford University, United States

REVIEWED BY

Zheng Li,
Peking University, China
Tianyu Guo,
Peking University, China and
Jingcheng Hu, Zhejiang University,
China, in collaboration with reviewer ZL
Nathaniel Shaffer,
University of Rochester, United States

*CORRESPONDENCE

Michael S. Murillo,
murillom@msu.edu

SPECIALTY SECTION

This article was submitted to Low-
Temperature Plasma Physics,
a section of the journal
Frontiers in Physics

RECEIVED 01 February 2022
ACCEPTED 25 August 2022
PUBLISHED 24 November 2022

CITATION

Murillo MS (2022), Data-driven electrical
conductivities of dense plasmas.
Front. Phys. 10:867990.
doi: 10.3389/fphy.2022.867990

COPYRIGHT

© 2022 Murillo. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 24 November 2022
DOI 10.3389/fphy.2022.867990

https://www.frontiersin.org/articles/10.3389/fphy.2022.867990/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.867990/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.867990&domain=pdf&date_stamp=2022-11-24
mailto:murillom@msu.edu
https://doi.org/10.3389/fphy.2022.867990
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.867990


collisions [1]. Similarly, properties of laser absorption are also

determined by electron-ion collisions in the inverse

Bremsstrahlung process [2, 3]. These energy-deposition

processes are typically characterized by the stopping-power

and electrical-conductivity transport coefficients. Knowledge

of these coefficients allows us to design and interpret

experiments and provides physical insight into material

properties. In fact, these transport coefficients, together with

the equation of state [4], are the closures in hydrodynamics

models that specify material properties [5–7]. It is important to

obtain accurate values for these coefficients, but it is difficult to do

so over large ranges of material properties because of the order-

of-magnitude excursions in these properties during a typical

experiment. This difficulty poses challenges for theoretical and

computational approaches that are highly efficient in narrow

regimes of material properties.

A typical research pattern is that theoretical and/or

computational models are compared to each other, yielding a

form of theoretical confidence or sensitivity [4, 7], and are

validated with experimental data. With increasing amounts of

experimental data becoming available, an alternate approach,

using machine learning (ML), is possible: rather than merely

validating models with data, data can now be directly employed

in generating models. ML approaches to capturing and

predicting material properties are currently under intense

development [8–11], and such approaches are widely used in

plasmas physics [12]. Other applications of ML in plasma physics

include, for example, mitigating disruptions that break

confinement in tokamaks, provided accurate forecasts can be

made from real-time data; in fact, using a wide variety of ML

techniques, the success rate for predicting disruptions is quite

high [13]. Another example is the use of ML to produce clean

gases from biomass by predicting chemical processes in plasma

arcs to improve tar removal [14]; in general, ML has numerous

uses in low-temperature plasma applications [15, 16]. Closer to

the theme of this work, artificial neural networks have been used

to reconstruct plasma parameters using spectra from laser-

plasma experiments [17]. Here, ML will be used to develop

predictions for the electrical conductivity in dense plasmas,

both as an exemplar of this approach and because of the

intrinsic importance of the electrical conductivity in plasma

applications.

A wide array of theoretical and computational methods has

been developed across many decades to model electrical

conductivities [18–21]. The ongoing need for new models

stems from the fact that practical models are formulated for a

narrow range of material properties; theoretical and

computational approaches are efficient and accurate in limited

regimes [7]. This can be seen by considering the Lee-More model

of electronic transport [18], a version of which is developed in

this work. To account for large changes in material properties,

the Lee-More model uses a “patchwork-quilt” approach that

stitches together conductivity models appropriate in different

regimes of temperature-density space (see their Figure 6). Their

model is constructed such that it captures the high-temperature

Spitzer limit, with corrections to handle lower-temperature

phases. While these corrections do give important

improvements, as discussed in detail in Supplementary

Appendix SB, the accuracy of this model at low temperatures

is not uniform across different elements. Thus, for the important

class of experiments in which matter is rapidly heated from a

solid through the liquid and warm dense matter regimes,

improvements in the model are needed. In particular, laser-

and pulsed-power-heated targets are initially cold and often

evolve into, or through, the challenging expanded warm dense

matter regime. Fortunately, this is the regime for which data are

most readily available; starting with a new version of the Lee-

More model, the goal of this work is to use ML to create a wide-

ranging model that is very accurate at both low and high

temperatures.

This paper is organized as follows. The ML approach

employed here is based on radial basis function neural

networks (RBFNNs), which are reviewed and developed

generally, for potential application to a variety of material

properties, in the next section. Because ML can be conducted

using a wide range of techniques, RBFNNs are compared with

several relatedML techniques in Supplementary Appendix SA; in

some settings, a related ML technique may offer an advantage

over RBFNNs in terms of interpretation, computational cost and/

or another specific feature, such as an ability to provide

uncertainty estimates. RBFNNs are used here in the context of

discrepancy learning [22–24], which is formulated in the next

section to include model-based detrending, cluster-based center

selection and anisotropic radial basis functions (RBFs). The

model used here is a modification of the Lee-More model and

is developed in detail in Supplementary Appendix SB. Next, in

Section 3, two datasets are described that include electrical

conductivity measurements from five elements, as measured

in exploding-wire experiments conducted by DeSilva and

coworkers [25, 26], and data from Clérouin et al. for eight

elements. Exploratory data analysis is carried out, including

the generation of distributions, correlations and silhouette

diagrams for data clusters, as well as a scatter plot variant that

reveals silhouette trends within a cluster. Finally, a summary

discussion, conclusions and an outlook are given.

2 Radial basis function neural
network models

Our RBFNN approach is described in this section. Because

the approach can be applied to a broad range of applications

beyond electrical conductivity, including to the equation of state

[4], ionic transport properties [5] and other electronic properties

[6], the formulation in this section is generic. The ML goal is

function approximation: from data, establish the functional
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relationship between the input variables, which are here the

equilibrium material properties {Z, ρ, T}, and the output

variable, which is the electrical conductivity σ. In the

following section, we will examine data for the electrical

conductivity σ that can be used in the framework of this section.

Consider a datasetDwithNd data points (xp, yp) ∈ D, where

the xp are the input features, the yp are the outputs, and p labels

the data point. A wide variety of methods have been developed to

predict values at any x given the dataset D. As an example, the

model

Y x( ) � ∑
Nd

i�1
yiPi x − xi( ) (1)

directly uses the dataD to make a prediction at any x. Intuitively,

predictions sum contributions from the input data yiweighted by

the distance from data locations xi. This learning approach uses

the idea of similarity: predictions should be similar to nearby

data, appropriately weighted. Obvious limiting cases are

Pi � N−1
d , in which predictions are the average of the data,

and Pi � d−1i /∑jd
−1
j , where dj is a distance metric from x to

data point xj, which is the inverse-distance weighting (IDW)

method [27]. A form notionally similar to the IDW method and

obtained from statistical arguments is [28]

Y x( ) � ∑Nd
i�1yi exp −d2

i /2L2( )
∑Nd

i�1 exp −d2
i /2L2( )

. (2)

The relative contribution of distant data points is controlled

through the choice of L. These methods are intuitive and

straightforward to evaluate given the data; the connections

among these models and others, and their strengths and

weaknesses, are discussed in Supplementary Appendix SA.

The related RBFNN method will be used in the remainder of

this paper.

2.1 RBF basics

The RBFNN method expresses predictions Y at x in terms of

a basis expansion of the form

Y x( ) � ∑
Nc

c�1
wcK x, xc( ), (3)

or Y = Kw, where the functional form of K depends on ‖x − xc‖2
(Euclidean distance or L2 norm). That is, predictions are made

based on radial distances r = ‖x − xc‖2 from centers xc, avoiding

the need for a regular mesh. The sum is over all Nc centers, with

weightswc learned fromD. Oncew is found, we have a prediction

for Y for any input x. Note that x is of arbitrary dimension and

could live in the three-dimensional space spanned by {Z, ρ, T}, or

x could be formulated element-by-element as YZ in two

dimensions {ρ, T} or in much higher dimensions for mixtures.

Note also that K(x, xc) = K(‖x − xc‖2; ϵ) has a scaling parameter ϵ,
which we sometimes write explicitly as a “length” L. Common

functional forms, and some comparisons among them, are given

in Supplementary Appendix SA.

Note that we use the term “RBF” to refer to the basis

functions in (3), although that term is also used in some

contexts to refer specifically to the Gaussian, or “squared-

exponential,” basis function itself. We also refer to the basis

functions themselves as RBFs, and we call the method that uses

RBFs an RBFNN.

For a given choice for K, we have Nc unknowns wc, and Nd

knowns yp. There are several options for choosing the centers. If

the data have very little uncertainty, then the centers can be

chosen to be the locations of the data: xc = xp. We use the data,

with Y(xj) = yj, to write (3) as

Y xj( ) � ∑
d

p�1
wpK ‖xj − xp‖2; ϵ( ), (4)

for each j in D. We can write (4) in terms of d × 1 vectors for y

and w and a d × d symmetric “kernel matrix” for K, which allows

us to learn the weights, with w = K−1y. This is computationally

inexpensive provided K is not too large.

This learning method makes predictions using the data

directly and reproduces the data exactly (i.e., the method is an

“exact-interpolation” method). Note that every prediction Y(x)

uses all of the data with relative contributions determined by the

distances ‖x − xp‖2 and the functional form of K. The scaling

parameter ϵ can be chosen to be the inverse of the average

distance between data points, or it can be determined through a

separate procedure (e.g., maximum likelihood estimation or

cross validation).

Maximum fidelity is obtained by choosing each center at each

data point, in which case K is square and we exactly interpolate

D. In the common case in which the data have uncertainty, we

choose Nc < Nd and employ the pseudoinverse w = K+y to obtain

a least-squares solution rather than exact interpolation. This

flexibility in the number of centers aids in preventing the

overfitting of noisy data. A process for choosing centers is

discussed in Section 2.3, after we remove systematic trends in

the data.

2.2 Discrepancy learning: Physics-based
Detrending

In principle, the form (3) can be used to predict electrical

conductivities given a datasetD used to obtain weights w. However,

several practical issues arise. First, the model in (3) should not be

used for extrapolation, because we cannot guarantee that data in a

localized region of x are predictive at points distant from xp.

Mathematically, depending on the functional form chosen for

K(x, xp; ϵ), extrapolations can have nonphysical values such as
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zero or infinity. Second, material parameters often vary by orders of

magnitude within a single experiment. Third, data may not span all

regimes experienced in an experiment, and we must rely on

theoretical guidance in some regimes.

These three issues are mitigated by detrending the data with a

physics model that reliably characterizes electrical conductivities

in data-poor regimes, exhibits appropriate basic trends with

physical parameters (e.g., power-law scalings with density

and/or temperature), and is high-fidelity in the data-poor

regimes explored by experiments (e.g., at very high

temperature). Thus, here, we propose to modify (3) to become

Y x( ) � ∑
d

p�1
wpK x, xp; ϵ( ) + T x( ), (5)

where T (x) is a trend, and K(x, xp; ϵ) is an RBF that tends to zero

away from the data. We choose T (x) to be a model applicable in

physical regimes not covered by the data. Because conductivity

data are more readily measured in the solid, liquid-metal and

warm dense matter regimes, we take the trend T (x) to be a

model developed for high-temperature applications. In this

sense, the RBF portion of (5) corrects the trend T (x) to

match the data. We choose that the RBF will decay to zero to

recover the trend away from the data; the Gaussian RBF will be

used below for this reason. In summary, the model (5) matches

the data to our desired accuracy (by varying the number of

centers) and tends to the model T (x) of our choosing. The

theoretical model we employ for T (x) is a modified version of

the Lee-More [18] electrical conductivity model, which is

discussed in detail in Supplementary Appendix SB.

In the following subsection, we will specify the details of the

RBFNN: center selection, choice of distance metric and

functional form.

2.3 Center selection and silhouette
diagrams

The number of centers in the RBFNN is a key

hyperparameter that allows one to account for several

properties of the data, including the following:

• Data may have been obtained with very fine changes in

material conditions with negligible changes in the material

property.

• Related to the possibility raised above, datasets can be

unbalanced, with many more data points in one region of

the input space than in other regions.

• Experimental uncertainties may not support exact

interpolation.

• The dataset may contain contradictory data obtained by

experiments under the same conditions with samples that

differ in some way, such as the presence of impurities.

• Computational resources may prohibit finding the weights

w for very large datasets.

In general, different datasets will not be impacted by these

issues in the same way; thus, there is no single algorithm for

choosing the number and locations of the centers that will work

in all situations [10]. Given a choice for the number of centers,

perhaps guided by computational limitations, the centers can be

placed uniformly, randomly, or more densely near extrema of the

second-order derivative of an approximate function, or they can

be chosen using clustering [29, 30].

An unsupervised approach to clustering is used to find the

RBF centers. Choosing the number of clusters is a challenge in

the absence of a straightforward analogy of cross-validation for

unsupervised learning, as there is no equivalent to a “test” score

[31, 32]. However, as there are no computational issues with the

relatively small datasets we have in mind, the number of centers

is chosen such that the topology of the data is well represented by

the number of clusters, as defined by silhouette scores for the

clusters [33]. Clusters of various numbers are formed by a k-

means algorithm, and the value of k with the lowest silhouette

score is chosen as the optimal value. The silhouette score S(p)
for data point p is computed by first finding the average distance

to points within its cluster, denoted as the within-cluster

dissimilarity W(p). Next, this step is repeated for all other

clusters to find the cluster C(p) nearest to p. The silhouette

score then measures the dissimilarity between p’s cluster and its

neighbor, as described in [33], and can be written as

S p( ) � W p( ) − C p( )
max W p( ), C p( ){ }

. (6)

Note that −1<S(p)< 1, with values closer to 1 indicating

strong clustering. An example using fake data is illustrated in

Figure 1, where we imagine that the dataset has been constructed

from possibly multiple experiments and therefore is scattered in

the plane. The fake data in this two-dimensional space are plotted

as points, and we wish to characterize the topology of these data

by forming clusters. Five, six and seven clusters are chosen in the

first, second and third columns, respectively, with the cluster

centers shown as larger gray circles. In this example, the quality

of the k-means clustering is qualitatively good.

The overall silhouette score is given at the top of each column

in Figure 1, and we see that the middle column has a slightly

higher score. However, all scores are positive and > 0.65, which
indicates high-quality clustering. Silhouette diagrams are shown

in the lower row, corresponding to the clustering shown in the

upper row. Silhouette diagrams further quantify the clustering by

assigning a score to each point within a cluster, giving us a sense

of which points solidly fall within some cluster or are instead

close to two or more cluster centers. For example, in the right

column, the cluster containing yellow points is not as well defined

as the others because one of its points is close to the cluster center
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above it. This approach allows for a completely unsupervised

approach to placing the optimal number of centers within

clusters found in the dataset. In practice, as shown in the next

section, clusters were formed in the three-dimensional space of

{ρ, T, σ} to account for clusters that appear because of excursions

in the conductivity itself. In the following subsection, we will

determine the RBF widths at those centers.

2.4 Norms and RBF widths

As mentioned above, RBFs are typically characterized by a

scalar distance and a scaling parameter ϵ (See Supplementary

Appendix SA for more details). The radial distance r can be

defined for multivariate data in terms of the Euclidean distance

r � ‖x‖2 (7)
� ���

xTx
√

. (8)

Consider the Gaussian RBF

K ‖x‖2( ) � exp −ϵxTx( ). (9)

This RBF is unsatisfactory in practice because the

components of x contain quantities of different types, scales

and units. This suggests that it would be useful to use a weighted

norm, which we define as

‖x‖2W � xTWTWx, (10)

where W is a matrix that contains the scalings. Choosing a

diagonal form for W generalizes (9) to

K ‖x‖2( ) � e−ϵ1x
2
1e−ϵ2x

2
2 . . . . (11)

This is treated by scaling each feature by a “typical” value of

that feature; for example, we scale temperatures by 10 eV,

densities by 1 g/cc, and nuclear charges by 10, making each

scaled feature dimensionless and of order unity. An overall scale

remains that is determined by the topology of the data.

FIGURE 1
Example of forming clusters of three sizes with fake data and generating silhouette scores and diagrams. In the top row, the smaller points are
the data points, and the larger gray points are the cluster centers, as determined by k-means. The silhouette score is given at the top of each column;
the center column has the highest score. Silhouette diagrams are shown in the diagrams in the bottom row, color coded by the clusters shown in the
diagrams above them. Bar lengths aremost uniform in themiddle column, indicating that none of the points are poorly clustered, and therefore
resulting in the middle column’s higher score.

Frontiers in Physics frontiersin.org05

Murillo 10.3389/fphy.2022.867990

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2022.867990


Experimental data are rarely aligned along the Cartesian

directions of our inputs; as a result, changes in one variable

are often correlated with changes in other variables. For example,

laser-driven experiments drive shocks that follow the Hugoniot

rather than an isochore. For this reason, clusters of points around

a center are unlikely to be distributed spherically. The region of

influence of the center should reflect the distribution of data

points; what is “farther from” or “closer to” the center depends on

the topology of the data associated with that center. An extreme

example is the case in which a very short-pulse laser is used to

heat a sample approximately isochorically: the data lie nearly

along a line in parameter space, not as points filling a sphere. We

treat these issues by generalizing the distance metric to the

Mahalanobis distance

‖x‖2C � xTC−1x. (12)

We assume that C is proportional to the (non-diagonal)

covariance matrix of the data within a given cluster, and

therefore units, scales and orientations are treated automatically.

Use of the Mahalanobis distance suggests an alternate

visualization to the standard silhouette plot in Figure 1. In

Figure 2, fake data are again used to find clusters. The dataset

is shown with 2–7 clusters. Here, the points are color-coded

according to their silhouette value, with darker colors

corresponding to lower values. Also shown are contours

associated with the covariance matrix of each cluster; these

contours indicate each cluster’s orientation and therefore its

volume of influence in parameter space. Silhouette scores are

shown in the lower right plot, which shows that the choice of four

clusters is optimal; when there are more than four clusters, well-

isolated clusters are broken into non-isolated subclusters.

Importantly, as the number of clusters grows, the region

influenced by the data becomes more spherical and suggestive

of a single, scalar ϵ. Thus, we anticipate that in the limit of large

datasets and large numbers of clusters, the universal function-

approximation properties of these anisotropic RBFs will be

preserved. Note how dense clusters associated with an

unbalanced dataset are assigned to a single center, thereby

partially balancing the dataset.

In summary, the ML approach finds clusters in the data,

guided by silhouette scores, finds the covariance of each cluster,

uses the covariance as the distance in anisotropic RBFs and learns

the discrepancy between T (x) and the data. In the next section,

we apply this ML approach to conductivity data.

3 Datasets

The approach described above was applied to two datasets,

both of which originated from exploding-sample experiments. A

dataset that includes the elements Al, Ni, Fe, Cu and W was

generated with wires by DeSilva and Katsouros (DK) [25] and

FIGURE 2
A fake dataset separated into two through seven clusters. The color of each data point indicates its silhouette number. The orientation of each
cluster is indicated by contours computed from the covariance properties of that cluster, indicating the coverage of the data points in the parameter
space. The optimal number of clusters is found using the plot at the lower right that shows the silhouette score versus the number of clusters; the
number of clusters with the largest silhouette score is the optimal choice. See Figure 9 for the 3D version using real data.
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has been studied by many authors [34–36]. Conductivities versus

temperature, color-coded by density, for these four elements are

shown in Figure 3. Another dataset, using wires, foam, tubes, foil

and sticks, was generated by Clérouin and co-authors [37] and

includes data for the elements Al, Ni, Ti, Cu, Ag, Au, B and Si.

The Clérouin et al. data differ from the DK data in two important

ways: detailed equations of state were used to connect the energy

density to the temperature, and the density was controlled

through the use of a fixed-radius ring. Both datasets used

here, along with codes used in this work, are available at

GitHub [38].

Raw features of these datasets are shown in Figures 4, 5.

Variations in and concentrations of values for temperature,

density and conductivities are indicated by the histograms

along the diagonal. Note that the DK dataset is concentrated

at lower temperatures and higher densities, as expected for

exploding wires that begin as room-temperature solids. The

logarithm of the conductivity is moderately uniform. There

are clear trends of conductivity with temperature and density,

with the correlation between conductivity and density being

slightly stronger than that between conductivity and

temperature. While these trends are similar to those seen in

the Clérouin data, a key difference is that the Clérouin

experiments are very isochoric. (Note that an outlier in the

boron data was removed.)

We can get a better sense of the physics content of the data by

plotting conductivity versus density, with data points color-

coded by temperature, and separately, conductivity versus

temperature, with data points color-coded by density. These

comparisons are shown in Figure 6, where some averaging is

done by binning the data into temperature ranges. In the left

panel, at low temperatures (blue dots), the conductivity increases

monotonically and nearly linearly (in terms of logarithms of the

quantities). At elevated temperatures (e.g., orange and green), the

conductivity exhibits a minimum, and insufficient data are

available to draw a definitive conclusion at the highest

temperatures. However, at low densities, there is a trend

toward higher conductivities at higher temperatures. This

trend is clearer in the panel on the right, where the colors of

data points now reflect density bands, with some bands not

shown, to reduce clutter. At high densities (shown as green points

near the top of the plot), the conductivity drops as the

temperature increases. At slightly lower densities (cyan), there

is no clear trend. For expanded plasmas, however, the

FIGURE 3
DK electrical conductivity data for Fe, Ni, Cu and W. Conductivity is shown versus temperature, with data points color-coded by the mass
density. (Conductivity and mass density are shown on logarithmic scales.) Note that the data at high temperatures tend to be at lower densities
because of the experimental procedure that employs an exploding wire.
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conductivity increases with temperature, a possible signature of a

metal-nonmetal transition [36]. Because all of the temperatures

in this dataset are below the Fermi energy of Cu (~ 7eV), the

physical properties are very sensitive to pressure ionization (or a

lack thereof).

The function we wish to learn is σ(ρ, T). Figure 7 shows the

distribution of data points in this input space, color-coded by the

conductivity, for three elements: Al, Fe and W. Because this

dataset originated from one source—with all data produced using

exploding wires—the data do not have well-isolated clusters.

Rather, the topology of the data represents the temperature-

density path taken by wires with initially high density and low

temperature that are heated and expand under pressure.

Moreover, because Figure 7 is a 2D projection, we cannot

view possible clustering of points along a conductivity axis.

Below, we will examine whether our clustering algorithm can

find the structure in this dataset.

4 Results

The modified Lee-More (MLM) model (see Supplementary

Appendix SB) is compared with the data in Figure 8 for the two

temperatures 10kK and 30kK for a range of densities. This

represents an extreme regime—expanded warm dense

matter—for the MLM model, and the corresponding errors

are clearly visible. Note that the MLM model is used here

with no empirical adjustments. The MLM model uses a

FIGURE 4
DK electrical conductivity data for all five elements (Al, Fe, Ni, Cu and W) shown as histograms and scatter plots. Along the diagonal are the
distributions of temperatures (in K), densities (log g/cc) and conductivities (log S/m). Note that some of the data are unbalanced toward lower
temperatures or higher densities. Correlations between variables are shown in the off-diagonal plots, which reveal strong correlations between
conductivity and density as well as between conductivity and temperature.
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simple Thomas-Fermi ionization model (see Supplementary

Appendix SB) that is not accurate at these low densities and

uses a single mean ionization state. Importantly, the MLMmodel

is used here only as the trend T .

Next, clustering is used to examine the coverage of the DK

data in the density-temperature space, using a cluster analysis. As

with most ML methods, the formation of clusters was very

sensitive to the data values. Thus, to compress the data onto

similar scales, temperatures were scaled by 11,605; that is,

temperatures were converted to eV from K. The results are

shown in Figure 9.

In practice, once clusters are formed and their covariances

are found, three additional steps were performed. First, because

the clusters were formed in 3D, a marginal covariance in 2D was

found in terms of the input variables x. Second, a hyperparameter

was introduced that scales the covariance matrix; physically, this

FIGURE 5
Clérouin et al. electrical resistivity data for all elements, shown as histograms and scatter plots. In contrast to the DK data, the densities are
constant within a given experiment and resistivities are shown.

FIGURE 6
The DK data plotted as conductivity versus density (left panel) and versus temperature (right panel) for Al. In the left panel, color coding by
temperature reveals strong temperature dependence at low density, with fairly universal behavior at high density. These trends with temperature can
be seen in the right panel, in which data points are color-coded by the logarithm of the density: conductivities decrease with temperature at high
densities (top, green), are roughly constant at intermediate densities (cyan), and increase with temperature at low densities.
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corresponds to learning the region of influence of the data and

therefore the scale over which the model reverts to T . Third,

additional clusters were found with silhouette scores above the

silhouette score’s optimal value, to mitigate underfitting. A cross-

validation approach was used to determine these

hyperparameters. Our cross-validation procedure is as follows.

The data are first split into training and testing sets. The split is

random, with the split percentage varied; it was the found that the

commonly used split of 80% yielded good results. The width

hyperparameter was varied with a grid search on a portion of the

testing set, that is, only along a single temperature contour. This

amounts to a separate validation step: does the width determined

in one temperature regime yield good results in a separate

temperature regime? Finally, the predictions were compared

with the test data. Here, quality was measured only visually;

in a production setting, a three-stage train-validate-test would be

constructed to yield a quantitative error metric.

RBFNN model predictions of Al and Cu electrical

conductivity versus density are shown as the orange curves in

Figures 10, 11. Because of the large variations in the conductivity

values, the logarithm of σ(ρ, T) was used in the learning process.

The DK testing data [25] are shown as green points, with testing

data chosen randomly from 80% of the total data. Note the

agreement of the RBFNN with the data in comparison with the

base MLMmodel and, in particular, how the RBFNN predictions

naturally transition to the MLM model predictions away from

the data. Here, scale factors of 10 and 30 of the Mahalanobis

covariance matrix were used for Al and Cu, respectively, which

impacts the widths of the peaks seen in the RBFNN predictions

FIGURE 7
Distribution of DK data points in a linear-temperature log-
density plane, color-coded by the logarithm of the electrical
conductivity, for Al, Fe and W.

FIGURE 8
Electrical conductivity versus density for the MLM and DK data. Shown are two temperatures, 10kK (blue) and 30 kK (green), for Cu. (To get a
sense of the trend in the data, a small band of temperatures around 10kK and 30kK was used).
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(and therefore the scale over which there is a transition to the

MLM model). Because only five centers were used, a high degree

of regularization is seen. This is manifested in the good

agreement with the green testing data; there is little chance of

overfitting with so few centers.

Next, we turn to the Clérouin et al. dataset. As seen above in

Figures 4, 5, the topology of this dataset is very different from that

of the DK dataset, and this difference provides an opportunity to

further explore the RBFNN approach. Results are shown in

Figure 12 for three clusters. Note that the data are nearly

constant, with relatively small temperature variations and no

density variations; such a topology causes two potential problems

not seen with the DK data. First, because the data for each

element falls on an isochore, which prevents one from exploring

variations along density contours as can be done with the DK

data, the lack of variation in density leads to a covariance matrix

that has small, and sometimes zero, values. The RBFNN

procedure therefore involves singular matrices. These zero

values correspond to having no confidence in making a

prediction at any density other than the one that was

FIGURE 9
Clustering of the DK Al data. As in Figure 2, colors represent silhouette scores; darker points are less well clustered. Note that clusters are formed
using all three dimensions (with Z fixed). Five clusters are used, which is two greater than the silhouette score suggested; this increase in cluster
number gave an improved prediction.

FIGURE 10
DK training data for Al are shown as green dots, with the base MLMmodel shown as the top, blue curve. The RBFNNmodel is shown in orange,
which predicts the data well and asymptotically (away from the data) tends to the trend T , which is the MLMmodel. Here, five centers were used, and
the covariance scale hyperparameter was learned from the data in the panel on the left; thus, the prediction in the right panel serves as a test. The
magenta triangles indicate the test data (random 20% of the total data).
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FIGURE 11
DK training data for Cu are shown as green dots, with the base MLMmodel shown as the top, blue curve. The RBFNNmodel is shown in orange,
which predicts the data well and asymptotically (away from the data) tends to the trend T , which is the MLMmodel. Here, five centers were used, and
the covariance scale hyperparameter was learned from the data in the panel on the left; thus, the prediction in the right panel serves as a test. The
magenta triangles indicate the test data (random 20% of the total data).

FIGURE 12
Predictions for the Clérouin et al. dataset for four elements. In this case, conductivity is plotted versus temperature because density did not vary
within an experiment. Three clusters were used, which limits the ability of the RBFNN to resolve what are nearly flat data.
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measured. However, if we plot our predictions versus

temperature, as in Figure 12, we do not use information for

other densities; when the data and predictions are shown this

way, a small amount of noise added to the covariance matrix

allows for matrix inversion. Second, it is known that RBFNNs are

poor at approximating functions that have steps between flat

regions, which is how this dataset varies versus temperature. To

achieve a sharp transition between flat regions, the RBFNN

generates oscillations as seen in the figure.

If we have control over the creation of our data, where should

we create it [39]? The Clérouin et al. dataset reveals that, despite

the desire to experimentally create well-characterized densities,

allowing some variation in density is important from a data-

science perspective. (Portions of the Clérouin et al. dataset

contained data at two densities for a single element; we leave

analysis of these data for future work.) ML methods can be used

to guide the creation of datasets [39, 51] that maximize our

knowledge with the minimum cost. And, of course, in practice we

would combine the datasets; here, these two datasets were kept

separate to reveal the interesting differences in their topologies.

5 Conclusion and outlook

In summary, a data-driven approach to predictions of

electrical conductivities has been presented. The ML model

is based on a detrended RBFNN, where the detrending

function T (x) is a modified version of the Lee-More model.

Training data are from the Cu exploding-wire experiments of

DeSilva and Katsouros. Two data sources were used here; they

are available on GitHub [38]. Many other data sources, as they

are found or produced, will be added to this repository. The

RBFNN model presented here uses a small number of centers

that resolve the topology of the data without overfitting it.

Silhouette scores guide k-means clustering, a purely

unsupervised learning process. Future work will examine a

supervised approach, as well as cross-validation methods for

clustering [32].

The detrending model T (x), while wide ranging, could be

improved. Obviously, the more accurate T (x) is, the more

accurate the overall model will be. Theoretically, Ziman

approaches are more fundamental and should be explored

in this ML context. Although Ziman models are often more

computationally demanding, because of their use of ionic

structure factors and numerically generated cross sections,

fast implementations or tabulated outputs could be used

for T (x).
There are many ways that the ML approach can be extended.

Chief among them is to enhance the size, quality and sources of

the dataset. This can be accomplished by using properties of

lower-pressure heated solids and liquid metals, as well as by

“computing data” with highly converged, high-fidelity

computational models (e.g., Kubo-Greenwood calculations

with finite-temperature Kohn-Sham inputs). A topic not

discussed here is uncertainty: all discrepancy-learning models

[22–24] should be subject to uncertainty quantification and the

use of Bayesian methods, such as Gaussian process regression

(GPR) [40]. This will be the subject of future work; for example,

there are interesting parallels with discrepancy modeling and

multifidelity models, many of which are GPR-based [39]. Finally,

the approach presented here could be extended to multi-output

ML. Simultaneous prediction of multiple electronic transport

properties (e.g., including viscosity and thermal conductivity)

could enforce consistency among the models. Importantly, a

general framework could be constructed that also predicts the

equation of state, which allows a more direct use of exploding

wire data [26] for which energy density is a more natural

independent variable than temperature.
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