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Papers in the literature dealing with the Ethernet network characterize packet delay
variation (PDV) as a long-range dependence (LRD) process. The fractional Gaussian
noise (fGn) or the generalized fractional Gaussian noise (gfGn) belong to the LRD process.
The IEEE1588v2 is a two-way delay (TWD) protocol that uses the messages from the
Forward (Master to Slave) and the Reverse (Slave to Master) paths. Suppose we have a
significant difference between the PDV variances of the Forward and the Reverse paths.
Thus, if we can use only the path with the lowest PDV variance (namely, only the one-way
delay (OWD) technique), we might get a better clock skew performance from the mean
square error (MSE) point of view compared with the traditional TWD method. This paper
proposes two OWD clock skew estimators, one for the Forward path and one for the
Reverse path applicable for the white-Gaussian, fGn and gfGn environment. Those OWD
estimators do not depend on the unknown asymmetry between the fixed delays in the
Forward and Reverse paths and nor on the clock offset between the Master and Slave. We
also supply two closed-form approximated expressions for the MSE related to our new
proposed OWD clock skew estimators. In addition, we supply some conditions,
summarized in a table, guiding us whether we should use the OWD clock skew
estimator for the Forward path or for the Reverse path, or just use the TWD algorithm.
Simulation results confirm that our new proposed OWD clock skew estimators achieve
better clock skew performances from the MSE point of view, compared with the TWD
clock skew estimator recently proposed by the same authors and compared with two
literature known OWD methods (the maximum likelihood and Kalman clock skew
estimators).
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1 INTRODUCTION

The Precision Time Protocol (PTP), named also as the IEEE
1588v2 standard [1] is a TWD exchange scheme where the Slave
exchanges a series of synchronization packets with its Master so
the packet timestamps can be employed to estimate the clock
skew relative to the Master. In other words, the PTP as a TWD
algorithm uses messages received from the Forward (Master to
Slave) and from the Reverse (Slave to Master) paths in order to
estimate the clock skew relative to the Master. The
synchronization packets can encounter several intermediate
switches and routers along the network path between the
Master and the Slave [2]. Networks often suffer large
unpredictable queuing delays at switches and routers (thus
having heavy PDV in the network) due to the presence of
background traffic [3]. This background traffic may be a real
traffic or one caused by a cyber attack [2] where a malicious
intermediate node deliberately delays the transmission of
synchronization messages. A heavy PDV can be seen in the
Forward path, in the Reverse path or in both paths. Usually,
the PDV in the Forward path is different from the PDV in the
Reverse path. The problem is that the PDV of the Forward and
Reverse paths can significantly hamper the accuracy of the clock
skew estimation [3]. A lower PDV will lead to a more accurate
clock skew estimation compared to a higher PDV. Thus, if the
difference in the PDVs encountered in Forward and Reverse
paths is high, the clock skew estimation accuracy obtained with
the TWD technique is mainly decreased due to the path with the
higher PDV. Thus, if we could use for the clock skew estimation
task only the path with the lowest PDV (namely, using the OWD
technique), the clock skew performance from the MSE point of
view might be improved compared with the case where we have
also to consider the path with the higher PDV (the TWD
approach). Since the lower PDV path may occur in the
Forward path as well as in the Reverse path, two different
OWD clock skew estimators are needed (one for the Forward
path and the other one associated with the Reverse path). So far
we have seen that for the clock skew estimation task, the OWD
technique may be more useful compared with the TWD approach
in cases where the Forward PDV variance is very different from
the Reverse PDV variance. According to [4], PTP (which is a
TWD exchange scheme) has more unknown parameters than
available equations. Thus, in order to solve the problem, a
symmetric path is usually assumed. Namely, the fixed delay in
the Forward path is usually assumed to be the same as the fixed
delay for the Reverse path. But, in practical scenarios, this is not
the case. Thus, for an asymmetrical path, when the symmetric
path assumption is applied, a degradation in the clock skew
estimation may be obtained when the TWD approach is applied.
Now, the OWD technique relies only on one path, on the Reverse
path or on the Forward path. Thus, the symmetric assumption is
not needed in the OWD technique which can be considered here
as an advantage compared with the TWD approach. Suppose for
a moment that we have three clock skew estimators applicable for
the PTP case. Namely, we have one OWD clock skew estimator
for the Forward path, one OWD clock skew estimator for the
Reverse path and a TWD clock skew estimator. Next we wish to

know which of the three clock skew estimators should be taken
for the clock skew estimation task given a network where different
PDV variances are seen on both Forward and Reverse paths but
the fixed delay of the Forward path is equal to the fixed delay of
the Reverse path. It is quite reasonable to think that when the
Forward path PDV variance is equal or close to equal to the
Reverse path PDV variance, the TWD clock skew estimator is
preferable over the OWD clock skew estimator due to the
“averaging” effect of the variances in the TWD clock skew
estimator. But, when the PDV variances of the Forward and
Reverse paths are different and on the same time the difference in
the variances is not very high, it is not clear if the OWD clock
skew estimator for the Forward path or the OWD clock skew
estimator for the Reverse path or maybe the TWD clock skew
estimator should be applied for the clock skew estimation task.
Thus, some guiding lines (closed-form expressions, conditions)
are needed here, telling us which approach should be applied in
order to get the best clock skew performance in the MSE point of
view. Namely, which clock skew estimator should be taken: the
OWD clock skew estimator for the Forward path or the OWD
clock skew estimator for the Reverse path or perhaps the TWD
clock skew estimation approach. Recently [4], we proposed a new
TWD clock skew estimator for the PTP case that has the best
clock skew performance in the MSE point of view compared to
the relevant literature known estimators [5–7]. This clock skew
estimator [4] is suitable for the white-Gaussian and fGn/gfGn
cases and does not depend on the asymmetric fixed delay between
the Forward and the Reverse paths, nor on the offset between the
Master and the Slave clocks. This paper is a direct continuation of
our previous work [4]. Thus, please refer to [4] in order to find a
detailed overview of the existing TWD and recently proposed
OWD approaches for the PTP case. Please note that the two
recently proposed OWD clock skew estimators [6,7], are both
OWD clock skew estimators associated with the Forward path.
Thus, if the Forward path PDV variance is much higher
compared with the Reverse path PDV variance, [6,7] may not
get better clock skew performance from the MSE point of view
compared with the TWD approach and compared with the OWD
clock skew estimator associated with the Reverse path. As already
was mentioned, this paper is a direct continuation of our previous
work [4] where we proposed a novel TWD clock skew estimator
applicable for the PTP case. In this paper we propose:

1. A novel OWD clock skew estimator for the Forward path
based on [4], applicable for the white-Gaussian and fGn/gfGn
environment.

2. A novel OWD clock skew estimator for the Reverse path based
on [4], applicable for the white-Gaussian and fGn/gfGn
environment.

3. A closed-form-approximated expression for the clock skew
performance (MSE) related to our OWD proposed clock skew
estimator for the Forward path.

4. A closed-form-approximated expression for the clock skew
performance (MSE) related to our OWD proposed clock skew
estimator for the Reverse path.

5. Guiding lines (closed-form expressions, conditions),
summarized in a table (please refer to Table 1), telling us if
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we should use the OWD clock skew estimator for the Forward
path or the OWD clock skew estimator for the Reverse path or
perhaps the TWD clock skew estimator proposed by [4] in
order to get the best clock skew performance from the MSE
point of view.

The clock skew performances (MSE) of our new proposed
OWD clock skew estimators were compared via simulation with
the clock skew performances (MSE) obtained with two TWD
clock skew estimators [4,5] and with the literature known OWD
clock skew estimators [6,7]. Simulation results will show the
advantage in performance (MSE) of our new proposed OWD
clock skew estimators compared to [4–7]. Simulation results will
also show the effectiveness of our closed-form-approximated
expressions for the clock skew performance (MSE) associated
to the Forward and Reverse paths as well as the effectiveness of
our proposed guiding lines, leading us to the right choice of the
clock skew estimator from the MSE point of view.

The paper is organized as follows. Section 2 briefly introduces
the system under consideration and the assumptions we applied
for our algorithm. Section 3 proposes the OWD clock skew
estimators for the Forward and Reverse paths. Section 4 suggests
the closed-form approximated expressions for the MSE related to
our new proposed OWD clock skew estimators where the PDV is
a white-Gaussian process. Section 5 suggests the closed-form
approximated expressions for the MSE related to our new
proposed OWD clock skew estimators where the PDV is an
fGn/gfGn process. In Section 6, we derive some guiding lines
(conditions), summarized in Table 1, telling us under what
condition should we prefer the OWD for the Forward path
over the OWD for the Reverse path or should just prefer the
TWD clock skew estimator obtained in [4]. Section 7 presents
simulation results, and in Section 8, a conclusion is given.

2 SYSTEM DESCRIPTION

As already was mentioned earlier, this paper is a direct
continuation of our previous work [4]. Thus, the system
description is the same as in [4]. Please refer to [4], for having
a detailed description of the message exchange flow between the
Master and the Slave. Let us recall Figure 1 from [4] where based
on [8–10] we may write:

t1 j[ ] + dms + ω1 j[ ] � t2 j[ ] 1 + α( ) + Q (1)
t4 j[ ] − dsm − ω2 j[ ] � t3 j[ ] 1 + α( ) + Q (2)

where Q is the time difference between the Master and the Slave
clocks (offset) and α is the clock skew. The Forward and the
Reverse fixed delays are denoted as dms, dsm respectively. The
Forward PDV is denoted as ω1[j] and the Reverse PDV is denoted
as ω2[j]. The total number of the Sync messages periods is
denoted as J, where j = 1, 2, 3, . . . , J. At timestamp t1, the
Master sends a Sync message to the Slave. The Slave receives this
Sync message at timestamp t2 and sends back to the Master a
Delay Req message at timestamp t3. The Master receives
this Delay Req message at timestamp t4. Please note that t1[j],
t2[j], t3[j], t4[j] are the timestamps of t1, t2, t3 and t4 respectively at
the jth Sync message period.

We consider two different models for the PDV, as was done in [4]:

1. The PDV is modeled as a white-Gaussian noise with zero
mean and the variance E[ωn[j],ωn[m]] is σ2ωn

when j =m and
zero when j ≠ m

where E [.] denotes the expectation operator on (.) and n = 1, 2.

2. The PDV is modeled as an fGn/gfGn process with zero mean.
Based on [11–13] we have:

TABLE 1 | Summary of the conditions where the suggested estimator have the possible lower MSE.

Zσ2ω1
� σ2ω2

Z � 1 (σ2ω1
� σ2ω2

� σ2) Z ≠ 1

white-Gaussian if (σ2 ≥ ~σ2) when Z > 1: if (Z ≥ ~Z)
then we use OWD in Eq. 62 then we use OWD in Eq. 61
otherwise, we use TWD in Eq. 60 otherwise, we use TWD in Eq. 60

~σ2 � 2 A
BT

2
syn

when Z < 1: if (Z ≤ �Z)
then we use OWD in Eq. 62
otherwise, we use TWD in Eq. 60

~Z � 3(1 + B
A

σ2ω1
T2
syn
)

�Z � 1
3 (1 + B

A
σ2ω1
T2
syn
)

fGn/gfGn if (σ2 ≥ ~σ2fGn/gfGn) when Z > 1: if (Z ≥ ~ZfGn/gfGn)
then we use OWD in Eq. 62 then we use OWD in Eq. 61
otherwise, we use TWD in Eq. 60 otherwise, we use TWD in Eq. 60

~σ2fGn/gfGn � 2 A
B

C+D
C T2

syn
when Z < 1: if (Z ≤ �ZfGn/gfGn)
then we use OWD in Eq. 62
otherwise, we use TWD in Eq. 60

~ZfGn/gfGn � 3(1 + C
C+D

B
A

σ2ω1
T2
syn
)

�ZfGn/gfGn � 1
3 (1 + C

C+D
B
A

σ2ω1
T2
syn
)
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a. When j = m: E[ωn[j],ωn[m]] � σ2ωn
.

b. When j ≠ m: E[ωn[j],ωn[m]] � σ2ωn
2 [‖(j −m)a| − 1|2H−

2(|(j −m)a|)2H + (|(j −m)a| + 1)2H].
where a = 1 is the fGn case.
In addition, we use also the same assumptions as were made

in [4]:

1. The Forward and the Reverse PDVs are independent. Thus, we
have: E[ω1[j],ω2[m]] � 0 ∀ j,m.

2. In the Slave clock the time between t2 [j] to t3 [j] is constant
and is denoted as X. Thus, we have: t3 [j] − t2 [j] = X.

In this paper we propose two novel OWD clock skew
estimators, one for the Forward path and one for the Reverse
path. Both OWD clock skew estimators are based on our
previously TWD clock skew estimator [4] given by:

α̂ � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( ) +

T4,j i( )
T2,j i( )( ) − 1 (3)

where

T1,j i( ) � t1 j + i[ ] − t1 j[ ], T2,j i( ) � t2 j + i[ ] − t2 j[ ],
T4,j i( ) � t4 j + i[ ] − t4 j[ ] (4)

3 THE OWD CLOCK SKEW ESTIMATORS

In the following, we present in Theorem 1 our new proposed OWD
clock skew estimator for the Forward path and in Theorem 2 our
new proposed OWD clock skew estimator for the Reverse path.

3.1 Theorem 1
The clock skew estimator for the OWD in the Forward path
(Master to Slave) can be written as:

α̂F � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( )( ) − 1 (5)

where α̂F is the is the clock skew estimator that based only on
timestamps from the Forward path.

Proof of Theorem 1
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Therefore, based on Eq.
1 we have:

T1,j i( ) + Ω1,j i( ) � T2,j i( ) 1 + αF
j,i( ) (6)

where αFj,i is the clock skew between the (j + i)-th and ith Sync
period, and Ω1,j(i) is:

Ω1,j i( ) � ω1 j + i[ ] − ω1 j[ ] (7)
Based on Eq. 6 the clock skew can be written as:

αFj,i �
T1,j i( )
T2,j i( ) +

Ω1,j i( )
T2,j i( ) − 1 (8)

The OWD clock skew in the Forward path can be defined as:

αF � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

αFj,i (9)

By putting Eq. 8 into Eq. 9 we define the clock skew in the
Forward path as:

αF � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( )( ) + Ω1,j i( )

T2,j i( )( )( ) − 1

� α̂F + 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

Ω1,j i( )
T2,j i( )( ) (10)

This completes our proof.

FIGURE 1 | PTP messaging timing diagram.
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3.2 Theorem 2
The skew clock estimator for the OWD in the Reverse path (Slave
to Master) can be written as:

α̂R � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T4,j i( )
T2,j i( )( ) − 1 (11)

where α̂R is the is the clock skew estimator that based only on
timestamps from the Reverse path.

Proof of Theorem 2
In order to avoid the fixed delay, we can subtract between two
timestamps from different Sync periods. Therefore, based on Eq. 2
we have:

T4,j i( ) − Ω2,j i( ) � T3,j i( ) 1 + αR
j,i( ) (12)

where αRj,i is the clock skew between the (j + i)-th and ith Sync
period, and

T3,j i( ) � t3 j + i[ ] − t3 j[ ] ; Ω2,j i( ) � ω2 j + i[ ] − ω2 j[ ] (13)
Based on the definition that t3 [j] − t2 [j] = X, as mentioned

in the section of System Description (assumption 2), we can
write:

T3,j i( ) � t3 j + i[ ] − t3 j[ ] � t2 j + i[ ] +X − t2 j[ ] +X( ) � T2,j i( )
(14)

By using Eq. 14, we can write Eq. 12 as:

T4,j i( ) − Ω2,j i( ) � T2,j i( ) 1 + αR
j,i( ) (15)

Therefore, based on Eq. 15 the clock skew can be written as:

αRj,i �
T4,j i( )
T2,j i( ) −

Ω2,j i( )
T2,j i( ) − 1 (16)

The OWD clock skew in the Reverse path can be
defined as:

αR � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

αRj,i (17)

By putting Eq. 16 into Eq. 17 we define the clock skew in the
Reverse path as:

αR � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T4,j i( )
T2,j i( )( ) − Ω2,j i( )

T2,j i( )( )( ) − 1

� α̂R − 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

Ω2,j i( )
T2,j i( )( ) (18)

This completes our proof.

4 THE CLOCK SKEW PERFORMANCE FOR
THE WHITE-GAUSSIAN CASE

In the following, Theorems 3 and 4 present the closed-form
approximated expressions for the MSE related to our new

proposed OWD clock skew estimator for the Forward path
and Reverse path, respectively. According to [4], the MSE for
the TWD clock skew estimator for the Gaussian case is
given by:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2ω1

+ σ2
ω2

( )
T2
syn

A 1 + 1
P

( )⎡⎣ ⎤⎦ (19)

where P is:

P � A

B

σ2
ω1
+ σ2ω2

σ4ω1

( )T2
syn (20)

and A, B are given by:

A � 2∑J−1
i�1

J − i

i2
+∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik
−∑J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

B � 12∑J−1
i�1

J − i

i4
+ 6∑J−1

i�1
∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k
m�j+i
m�j−k

1

ik( )2 + 4∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j

m≠j+i−k
m≠j+i
m≠j−k

1

ik( )2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

4.1 Theorem 3
For |Ω1,j(i)

T1,j(i)|≪ 1, the closed-form-approximated expression for the
MSE related to the OWD clock skew estimator (for the Forward
path), can be defined as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

A 1 + 1
PF

( )⎡⎣ ⎤⎦ (23)

where PF is:

PF � A

B

T2
syn

σ2
ω1

( ) (24)

where A and B are defined in Eq. 21, 22 respectively.

Proof of Theorem 3
Based on Eq. 10 the error of the OWD clock skew estimator (for
the Forward path) is:

eF � αF − α̂F � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

Ω1,j i( )
T2,j i( )( ) (25)

Now, according to Eq. 6 we can write T2,j(i) as following:

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + αF

j,i( ) (26)

Based on Eq. 26 we may write the expectation of Eq.
25 as:
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E eF[ ] � 2 1 + αF( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

E
aj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦ (27)

where

aj,i � Ω1,j i( )
T1,j i( ) (28)

For |Ω1,j(i)
T1,j(i)|≪ 1 we can write Eq. 27 as:

E eF[ ] ≈ 2 1 + αF( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

E aj,i 1 − aj,i( )[ ][ ] (29)

Based on Eq. 29 the approximated MSE related to the OWD
clock skew estimator (for the Forward path) can be define as:

E e2F[ ] ≈ 4 1 + αF( )2
J J − 1( )( )2 ∑

J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E aj,iam,k[ ] − E a2j,iam,k[ ] − E aj,ia
2
m,k[ ] + E a2j,ia

2
m,k[ ][ ]

(30)
According to [4], we can write T1,j(i) and T1,m(k) as:

T1,j i( ) � t1 j + i[ ] − t1 j[ ] � iTsyn

T1,m k( ) � t1 m + k[ ] − t1 m[ ] � kTsyn
(31)

where Tsyn is the Sync messages period.
Based on Eq. 28 and on Eq. 31 we can simplify the expressions

in Eq. 30:

E aj,iam,k[ ] � E
Ω1,j i( )
T1,j i( )

Ω1,m k( )
T1,m k( )[ ] � E Ω1,j i( )Ω1,m k( )[ ]

ikT2
syn

(32)

E a2j,iam,k[ ] � E
Ω2

1,j i( )
T2
1,j i( )

Ω1,m k( )
T1,m k( )⎡⎣ ⎤⎦ � E Ω2

1,j i( )Ω1,m k( )[ ]
i2kT3

syn

(33)

E aj,ia
2
m,k[ ] � E

Ω1,j i( )
T1,j i( )

Ω2
1,m k( )

T2
1,m k( )[ ] � E Ω1,j i( )Ω2

1,m k( )[ ]
ik2T3

syn

(34)

E a2j,ia
2
m,k[ ] � E

Ω2
1,j i( )

T2
1,j i( )

Ω2
1,m k( )

T2
1,m k( )

⎡⎣ ⎤⎦ � E Ω2
1,j i( )Ω2

1,m k( )[ ]
i2k2T4

syn

(35)

Since the PDV has zero mean Eqs 33 and 34 can be set to zero.
Now, by putting Eqs 32 and 35 into Eq. 30, we can write the
following expression:

E e2F[ ] ≈ 2 1 + αF( )
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦ (36)

Based on [4] we can write the two summation parts in Eq.
36 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

� σ2
ω1
A

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2 � σ4

ω1

T2
syn

B

(37)

where A and B are defined in Eq. 21, 22 respectively.
Based on Eq. 37 we may write (36) as:

E e2F[ ] ≈ 2 1 + αF( )
J J − 1( )( )Tsyn

( )2

σ2ω1
A + σ4ω1

T2
syn

B⎛⎝ ⎞⎠ (38)

For practical systems, the two clocks (Master and Slave) operate at
almost the same frequency. Therefore we can write that (1 + αF) ≈ 1.

After rearranging Eq. 38 we can write:

E e2F[ ] ≈ 2
J J − 1( )( )Tsyn

( )2

σ2ω1
A 1 + σ2

ω1

T2
syn

B

A
⎛⎝ ⎞⎠ (39)

Now, it can be easily seen that based on Eq. 39 we can write
Eq. 23, and this completes our proof.

4.2 Theorem 4
For |Ω1,j(i)

T1,j(i)|≪ 1, the closed-form-approximated expression for the
MSE related to the OWD clock skew estimator (for the Reverse
path), can be defined as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 σ2

ω2

T2
syn

A⎡⎣ ⎤⎦ (40)

where A is defined in Eq. 21.

Proof of Theorem 4
Based on Eq. 18 the error of the OWD clock skew estimator (for
the Reverse path) is:

eR � αR − α̂R � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

−Ω2,j i( )
T2,j i( )( ) (41)

Let us recall (26):

T2,j i( ) � T1,j i( ) +Ω1,j i( )
1 + αF

j,i( )
Based on Eq. 26, we may write the expectation of Eq. 41 as:

E eR[ ] ≈ 2 1 + αF( )
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

−E bj,i

1 + aj,i( )⎡⎢⎣ ⎤⎥⎦⎡⎢⎣ ⎤⎥⎦ (42)

where

aj,i � Ω1,j i( )
T1,j i( ) bj,i � Ω2,j i( )

T1,j i( ) (43)

As mentioned before for practical systems, the two clocks
(Master and Slave) operate at almost the same frequency.
Therefore, we can write (1 + αF) ≈ 1.

For |Ω1,j(i)
T1,j(i)|≪ 1 we can write Eq. 42 as:

E eR[ ] ≈ 2
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

−E bj,i − aj,ibj,i[ ][ ] (44)

Based on the assumption of independence of the Forward and
the Reverse messages (as mentioned in assumption 1 in section
2), we may write Eq. 44 as:
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E eR[ ] ≈ 2
J J − 1( )( ) ∑

J−1

i�1
∑J−i
j�1

−E bj,i[ ][ ] (45)

Based on Eq. 45 the closed-form-approximated expression for
the MSE related to the OWD clock skew estimator (for the
Reverse path) can be define as:

E e2R[ ] ≈ 4

J J − 1( )( )2 ∑
J−1

i�1
∑J−i
j�1

∑J−1
k�1

∑J−k
j�m

E bj,ibm,k[ ][ ] (46)

Based on Eq. 43 and on Eq. 31 we can rewrite the expression
E[bj,ibm,k] as:

E bj,ibm,k[ ] � E
Ω2,j i( )
T1,j i( )

Ω2,m k( )
T1,m k( )[ ] � E Ω2,j i( )Ω2,m k( )[ ]

ikT2
syn

(47)

Now, based on Eq. 47 the closed-form-approximated
expression for the MSE related to the OWD clock skew
estimator (for the Reverse path) is:

E e2R[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦
(48)

According to [4], we can write the summation part in Eq.
48 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω2
A (49)

where A is defined in Eq. 21.
Now, it can be easily seen that by putting Eq. 49 into Eq. 48we

get Eq. 40, and this completes our proof.

5 THE CLOCK SKEW PERFORMANCE FOR
THE LRD CASE

In this section we applied the fGn/gfGn model for the LRD
process. This model has the Hurst exponent in the range of 0.5 ≤
H < 1 and the a parameter in the range of 0 < a ≤ 1, where for a =
1 we have the fGn case. In the following, Theorems 5 and 6
present the closed-form approximated expressions for the MSE
related to our new proposed OWD clock skew estimator for the
Forward path and Reverse path, respectively. According to [4] the
closed-form-approximated expression for the MSE related to the
TWD clock skew estimator [4] is given by:

E e2[ ] ≈ 1
J J − 1( )( )( )2 σ2

ω1
+ σ2ω2

T2
syn

⎛⎝ ⎞⎠ 1 + 1
P

( )C +D( ) (50)

where C and D are given by:

C � ∑J−1
i�1

J − i

i2
2 − fGH i,H( )( )

+∑J−1
i�1

∑J−i
j�1

∑J−1
k�1
k≠i

∑J−k
m�1
m�j

m�j+i−k

1
ik

1 + 1
2

fGp

H
i − k,H, a( ) − fGp

H i,H, a( ) − fGp
H k,H, a( )( )( )

−∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m�j+i
m�j−k

1
ik

1 − 1
2

fGp
H i,H, a( ) − fGp

H k,H, a( ) + fGp
H i + k,H, a( )( )( )

(51)

D � ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1
m≠j
m≠j+i
m≠j−k
m≠j+i−k

1
2ik

fGp
H j −m,H, a( ) − fGp

H j + i −m,H, a( )(

−fGp
H j −m − k,H, a( ) + fGp

H j + i −m − k,H, a( ))
(52)

the function fGp
H(.) is:

fGp
H x,H, a( ) � ‖xa| − 1|2H − 2 |xa|( )2H + |xa| + 1( )2H[ ] (53)

and P is defined in Eq. 20.

5.1 Theorem 5
The closed-form approximated expression for the MSE related to
our new proposed OWD clock skew estimator (for the Forward
path) can be defined as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

⎛⎝ ⎞⎠ 1 + 1
PF

( )C +D( ) (54)

where C, D and PF are defined in Eq. 51, 52 and 24 respectively.

Proof of Theorem 5
The MSE for the fGn/gfGn case is based on the MSE of the OWD
clock skew estimator for the Forward path defined in Eq. 36.
Based on the fact that 1 + αF ≈ 1, we can write Eq. 36 as:

E e2F[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦ (55)

According to [4], we can write the first part in Eq. 55 as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω1

C +D( ) (56)

where C and D are defined in Eq. 51, 52 respectively.
The calculation of the second expression in Eq. 55 is quite

difficult to carry out for the fGn/gfGn case. Therefore, following
[4] we can write:
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∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω1,j i( )Ω1,m k( )[ ]
ik

+ 1

T2
syn

E Ω2
1,j i( )Ω2

1,m k( )[ ]
ik( )2

⎡⎣ ⎤⎦
� σ2

ω1
C 1 + 1

PF
( ) +D( ) (57)

Now, by putting Eq. 57 into Eq. 55, we get Eq. 54 and this
completes our proof.

5.2 Theorem 6
The closed-form approximated expression for the MSE related to
our new proposed OWD clock skew estimator (for the Reverse
path) can be defined as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 σ2

ω2

T2
syn

C +D( ) (58)

where C and D are defined in Eq. 51, 52.

Proof of Theorem 6
The MSE for the fGn/gfGn case is based on the MSE of the OWD
clock skew estimator for the Reverse path defined in Eq. 48. Let as
recall Eq. 48:

E e2R[ ] ≈ 2
J J − 1( )( )Tsyn

( )2 ∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦
We can write the summation part in Eq. 48 as was done in

[4] as:

∑J−1
i�1

∑J−i
j�1

∑J−1
k�1

∑J−k
m�1

E Ω2,j i( )Ω2,m k( )[ ]
ik

⎡⎣ ⎤⎦ � σ2
ω2

C +D( ) (59)

Now, by putting Eq. 59 into Eq. 48, we get Eq. 58 and this
completes our proof.

6 THE PREFERRED CLOCK SKEW
ESTIMATOR FOR EACH SCENARIO

In this paper we proposed two OWD clock skew estimators (Eqs
5, 11). Thus, we can consider now two OWD clock skew
estimators and one TWD clock estimator proposed by [4]. Let
us recall the three estimators.

At first, we recall the TWD clock skew estimator from [4]:

α̂ � 1
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( ) +

T4,j i( )
T2,j i( )( ) − 1 (60)

The OWD clock skew estimator for the Forward path is given
by Eq. 5:

α̂F � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T1,j i( )
T2,j i( )( ) − 1 (61)

The OWD clock skew estimator for the Reverse path is given
by Eq. 11:

α̂R � 2
J J − 1( ) ∑

J−1

i�1
∑J−i
j�1

T4,j i( )
T2,j i( )( ) − 1 (62)

It would be very helpful for the system designer if he could
know which of the above listed clock skew estimators (Eqs
60–62) he should choose in order to achieve the best clock
skew performance in the MSE point of view. In this section we
will give the system designer guidelines (conditions) that will
help him to choose wisely the best clock skew estimator in
order to achieve the best clock skew performance from the
MSE point of view.

Please note, in this section we define Z as:

Z � σ2
ω2

σ2
ω1

(63)

Thus we have:

a. when Z> 1 → σ2ω1
< σ2ω2

,
b. when Z< 1 → σ2ω1

> σ2ω2
,

c. when Z � 1 → σ2ω1
� σ2ω2

.

In the following we have Theorem seven supplying us
guidelines for choosing the preferable clock skew estimator
from the above listed clock skew estimators (Eqs 60–62)
leading to the best clock skew performance from the MSE
point of view for the white-Gaussian case. Theorem 8 supplies
us guidelines for choosing the preferable clock skew estimator
from the above listed clock skew estimators (Eqs 60–62)
leading to the best clock skew performance from the MSE
point of view for the fGn/gfGn case.

6.1 Theorem 7
For the white-Gaussian process we have the following conditions:

Case a: For Z > 1:
If Z≥ ~Z, then we use the OWD clock skew estimator in the

Forward path (Eq. 61).
where

~Z � 3 1 + B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (64)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case b: For Z < 1:
If Z≤ �Z, then we use the OWD clock skew estimator in the

Reverse path (Eq. 62),
where

�Z � 1
3

1 + B

A

σ2
ω1

T2
syn

⎛⎝ ⎞⎠ (65)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case c: For Z = 1 (σ2ω1

� σ2ω2
� σ2):

If σ2 ≥ ~σ2, then we use the OWD clock skew estimator in the
Reverse path (Eq. 62),

where
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~σ2 � 2
A

B
T2
syn (66)

Otherwise, we use the TWD clock skew estimator (Eq. 60).

Proof of Theorem 7
We rewrite the closed-form-approximated expression for the MSE
related to the TWD clock skew estimator (Eq. 19), and the closed-
form-approximated expressions for the MSE related to our new
proposed OWD clock skew estimators (Eqs 23, 40) with the help of
Z (Eq. 63).

The closed-form approximated expressions for the MSE related
to the TWD clock skew estimator (Eq. 19) can be written as:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2

ω1
1 + Z( )
T2
syn

A 1 + 1
P

( )⎡⎣ ⎤⎦ (67)

The closed-form approximated expression for the MSE related
to the OWD clock skew estimator for the Forward path (Eq. 23)
can be written as:

E e2F[ ] ≈ 2
J J − 1( )( )( )2 σ2ω1

T2
syn

A 1 + 1
PF

( )⎡⎣ ⎤⎦ (68)

The closed-form approximated expression for the MSE related
to the OWD clock skew estimator for the Reverse path (Eq. 40) can
be written as:

E e2R[ ] ≈ 2
J J − 1( )( )( )2 Zσ2ω1

T2
syn

A⎡⎣ ⎤⎦ (69)

where A, B, P and PF are defined in Eqs 21, 22, 20 and 24
respectively.

In the following, we define MSET
G, MSEF

G and MSER
G as the

MSE of the TWD case (Eq. 67), OWD in the Forward path case
(Eq. 68) and OWD in the Reverse path case (Eq. 69) respectively.

For Z > 1, we wish to find the value for Z where we have
MSET

G ≥MSEF
G. Thus, we may write with the help of Eqs 20, 24:

1
J J − 1( )Tsyn

( )2

σ2
ω1

1 + Z( )A + B
σ4ω1

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 σ2
ω1
A + B

σ4ω1

T2
syn

⎡⎣ ⎤⎦ (70)

where Eq. 70 can be written also as:

σ2ω1
1 + Z( )A + B

σ4
ω1

T2
syn

⎡⎣ ⎤⎦≥ 4 σ2
ω1
A + B

σ4ω1

T2
syn

⎡⎣ ⎤⎦ (71)

After rearranging Eq. 71 we can write:

Zσ2ω1
A≥ 3 σ2

ω1
A + B

σ4ω1

T2
syn

⎛⎝ ⎞⎠ (72)

We can divide Eq. 72 byAσ2ω1
(Aσ2ω1

>0) and then we canwrite:
Z≥ ~Z (73)

where ~Z is defined in Eq. 64.

This completes our proof of Theorem 7, case a.
Now, we continue the proof of case b. For Z < 1, we wish to

find the value for Zwhere we haveMSET
G ≥MSER

G. Thus, with the
help of Eq. 20 we may write:

1
J J − 1( )Tsyn

( )2

σ2
ω1

1 + Z( )A + B
σ4ω1

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 Zσ2ω1
A[ ] (74)

where Eq. 74 can be written also as:

σ2ω1
1 + Z( )A + B

σ4
ω1

T2
syn

≥ 4Zσ2ω1
A (75)

After rearranging Eq. 75 we can write:

σ2
ω1

A + B
σ2ω1

T2
syn

⎛⎝ ⎞⎠≥ 3Zσ2ω1
A (76)

We can divide Eq. 76 by 3Aσ2ω1
(3Aσ2ω1

> 0) and then we can
write:

Z≤ �Z (77)
where �Z is defined in Eq. 65.

This completes our proof of Theorem 7, case b.
Now we can continue the proof of case c of Theorem 7. For Z =

1, we defined that σ2ω1
� σ2ω2

� σ2. We wish to find the value for Z
where we have MSET

G ≥MSER
G (please note that for Z = 1:

MSET
G <MSEF

G ∀ j, since B has only positive values). Thus,
with the help of Eq. 20 we can write:

1
J J − 1( )Tsyn

( )2

2σ2A + B
σ4

T2
syn

⎡⎣ ⎤⎦≥
1

J J − 1( )Tsyn
( )2

4 σ2A[ ] (78)

where Eq. 78 can be written also as:

2σ2A + B
σ4

T2
syn

≥ 4σ2A (79)

After rearranging Eq. 79 we can write:

σ2 ≥ ~σ2 (80)
where ~σ2 is defined in Eq. 66. Now, we have completed our proof
of Theorem 7.

6.2 Theorem 8
For the fGn/gfGn process we have the following conditions:

Case a: For Z > 1:
If Z≥ ~ZfGn/gfGn, then we use the OWD clock skew estimator

in the Forward path (Eq. 61),
where

~ZfGn/gfGn � 3 1 + C

C +D

B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (81)
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Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case b: For Z < 1:
If Z≤ �ZfGn/gfGn, then we use the OWD clock skew estimator

in the Reverse path (Eq. 62),
where

�ZfGn/gfGn �
1
3

1 + C

C +D

B

A

σ2ω1

T2
syn

⎛⎝ ⎞⎠ (82)

Otherwise, we use the TWD clock skew estimator (Eq. 60).
Case c: For Z = 1 (σ2ω1

� σ2ω2
� σ2):

If σ2 ≥ ~σ2fGn/gfGn, then we use the OWD clock skew estimator
in the Reverse path (Eq. 62),

where

~σ2
fGn/gfGn � 2

C +D

C

A

B
T2
syn (83)

Otherwise, we use the TWD clock skew estimator (Eq. 60).

Proof of Theorem 8
We rewrite the closed-form-approximated expression for the MSE
related to the TWDclock skew estimator (Eq. 50), and the closed-form-
approximated expressions for the MSE related to our new proposed
OWD clock skew estimators (Eqs 54, 58 with the help of Z (Eq. 63).

The closed-form approximated expressions for the MSE related
to the TWD clock skew estimator (Eq. 50) can be written as:

E e2[ ] ≈ 1
J J − 1( )( )2 σ2ω1

1 + Z( )
T2
syn

C 1 + 1
P

( ) +D( )⎡⎣ ⎤⎦ (84)

The closed-form approximated expressions for the MSE
related to the OWD clock skew estimator for the Forward
path Eq. 54 can be written as:

E e2F[ ] ≈ 2
J J − 1( )( )2 σ2ω1

T2
syn

C 1 + 1
PF

( ) +D( )⎡⎣ ⎤⎦ (85)

The closed-form approximated expressions for the MSE
related to the OWD clock skew estimator for the Reverse path
Eq. 58 can be written as:

E e2R[ ] ≈ 2
J J − 1( )( )2 Zσ2

ω1

T2
syn

C +D( )⎡⎣ ⎤⎦ (86)

where C, D, P and PF are defined in Eqs 51, 52, 20 and 24
respectively.

In the following, we define: MSET
fGn/gfGn, MSEF

fGn/gfGn and
MSER

fGn/gfGn as the MSE of the TWD case (Eq. 84), OWD in the
Forward path case (Eq. 85) and OWD in the Reverse path case
(Eq. 86) respectively.

For Z > 1, we wish to find the value for Z where we have
MSET

fGn/gfGn ≥MSEF
fGn/gfGn. Thus, we may write:

1
J J − 1( )Tsyn

( )2

σ2ω1
1 + Z( ) 1 + 1

P
( )C +D( )[ ]≥

1
J J − 1( )Tsyn

( )2

4 σ2
ω1

( ) 1 + 1
PF

( )C +D( )[ ] (87)

where Eq. 87 can be written also as:

1 + Z( ) 1 + 1
P

( )C +D( )≥ 4 1 + 1
PF

( )C +D( ) (88)

Based on the definition of P and PF in Eqs 20, 24 respectively,
we can write:

P � A

B

1 + Z( )T2
syn

σ2ω1

, PF � A

B

T2
syn

σ2
ω1

→

P � PF 1 + Z( )
(89)

Based on Eq. 89 we can write Eq. 88 as:

1 + Z( ) 1 + 1
PF 1 + Z( )( )C +D( )≥ 4 1 + 1

PF
( )C +D( ) (90)

After rearranging Eq. 90 we can write:

Z≥ 3
1 + 1

PF
( )C +D

C +D
⎛⎝ ⎞⎠ (91)

By putting the definition of PF Eq. 24 into Eq. 91 we can write:

Z≥ 3
C +D + BC

A

σ2ω1
T2
syn

C +D
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ → Z≥ ~ZfGn/gfGn (92)

where ~ZfGn/gfGn is defined in Eq. 81.
This completes our proof of Theorem 8, case a.
Now we continue the proof of case b. For Z < 1, we wish to find

the value for Z where we haveMSET
fGn/gfGn ≥MSER

fGn/gfGn. Thus,
we may write:

1
J J − 1( )Tsyn

( )2

σ2ω1
1 + Z( ) 1 + 1

P
( )C +D( )[ ]≤

1
J J − 1( )Tsyn

( )2

4 Zσ2ω1
( ) C +D( )[ ] (93)

where Eq. 93 can be written also as:

1 + Z( ) 1 + 1
P

( )C +D( )≤ 4Z C +D( ) (94)

By using the definition of P in Eq. 20 into Eq. 95wemay write:

1 + Z( ) 1 + B

A

σ2
ω1

1 + Z( )T2
syn

⎛⎝ ⎞⎠C +D⎛⎝ ⎞⎠≤ 4Z C +D( ) (95)

After rearranging Eq. 95 we can write:

Z≤
1
3

C +D + CB
A

σ2ω1
T2
syn

C +D
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ → Z≤ �ZfGn/gfGn (96)

where �ZfGn/gfGn is defined in Eq. 82.
This completes our proof of Theorem 8, case b.
Now we can continue the proof of case c of Theorem 8. For Z =

1, we defined that σ2ω1
� σ2ω2

� σ2. We wish to find the value for Z
where we have MSET

fGn/gfGn ≥MSER
fGn/gfGn. Note that for Z �
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1 MSET
fGn/gfGn <MSEF

fGn/gfGn ∀j since, A, B and C have only
positive values. Thus, we can write:

1
J J − 1( )Tsyn

( )2

2σ2 C 1 + 1
P

( ) +D( )[ ]≥
1

J J − 1( )Tsyn
( )2

4σ2 C +D( )[ ] (97)

where Eq. 97 can be written also as:

2σ2 C 1 + 1
P

( ) +D( )≥ 4σ2 C +D( ) (98)

By using the definition of P in Eq. 20, we may write Eq. 98 as:

2σ2 C 1 + B

A

σ2

2T2
syn

⎛⎝ ⎞⎠ +D⎛⎝ ⎞⎠≥ 4σ2 C +D( ) (99)

After rearranging Eq. 99 we can write:

σ2 ≥ ~σ2fGn/gfGn (100)
where ~σ2fGn/gfGn is defined in Eq. 83. Now, we have completed our
proof of Theorem 8.

7 SIMULATION RESULTS

In this section, we first start to test our guidelines (conditions) from
Theorem 8, summarized in Table 1. Figures 2, 3 show the
simulated clock skew performance (MSE) comparison between
the OWD clock skew estimator for the Forward path (Eq. 61) with
the TWD clock skew estimator proposed by Avraham and Pinchas
[4] for the fGn case. Figures 4–6 show the simulated clock skew
performance (MSE) comparison between the OWD clock skew
estimator for the Reverse path (Eq. 62) with the TWD clock skew
estimator proposed by Avraham and Pinchas [4] for the fGn case.
Figure 7 shows the simulated clock skew performance (MSE)
comparison between the OWD clock skew estimator for the
Forward path (Eq. 61) with the TWD clock skew estimator
proposed by Avraham and Pinchas [4] for the gfGn case.
Figure 8 shows the simulated clock skew performance (MSE)
comparison between the OWD clock skew estimator for the
Reverse path (Eq. 62) with the TWD clock skew estimator
proposed by Avraham and Pinchas [4] for the gfGn case. In
Figures 2, 3 and Figure 7, the Forward PDV variance was set
lower than the Reverse PDV variance (Z > 1). Now, according to
test case a of Theorem 8, if Z≥ ~ZfGn/gfGn we should choose the
OWD clock skew estimator for the Forward path over the TWD
clock skew estimator, else we should choose the TWD clock skew
estimator. Namely, if Z≥ ~ZfGn/gfGn, a better clock skew
performance from the MSE point of view can be obtained with
the OWD clock skew estimator for the Forward path compared
with the TWD clock skew estimator proposed by Avraham and
Pinchas [4]. In Figure 2 and Figure 7, we haveZ≥ ~ZfGn/gfGn while
in Figure 3 we have Z< ~ZfGn/gfGn. Indeed we can see that in
Figure 2 and Figure 7 a lower MSE is obtained with the OWD
clock skew estimator for the Forward path compared with the
TWD clock skew estimator proposed by Avraham and Pinchas [4]

which clearly demonstrates that the OWD clock skew estimator for
the Forward path should be chosen for the clock skew estimation
task. In Figure 3 a lowerMSE is obtained with the TWD clock skew
estimator compared with the OWD clock skew estimator for the
Forward path which means that the TWD clock skew estimator
should be chosen for the clock skew estimation task. Thus, we may
say that according to Figures 2, 3 and Figure 7, test case a of
Theorem 8 works correctly. In Figures 4, 5 and Figure 8, the
Reverse PDV variance was set lower than the Forward PDV
variance (Z < 1). Now, according to test case b of Theorem 8,
if Z≤ �ZfGn/gfGn we should choose the OWD clock skew estimator
for the Reverse path over the TWD clock skew estimator, else we
should choose the TWD clock skew estimator. Namely, if
Z≤ �ZfGn/gfGn a better clock skew performance from the MSE
point of view can be obtained with the OWD clock skew estimator
for the Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. In Figure 4 and Figure 8,
we have Z≤ �ZfGn/gfGn while in Figure 5 we have Z> �ZfGn/gfGn.
Indeed we can see that in Figure 4 and Figure 8 a lower MSE is
obtained with the OWD clock skew estimator for the Reverse path
compared with the TWD clock skew estimator proposed by
Avraham and Pinchas [4] which clearly demonstrates that the
OWD clock skew estimator for the Reverse path should be chosen
for the clock skew estimation task. In Figure 5 a lower MSE is
obtained with the TWD clock skew estimator compared with the
OWD clock skew estimator for the Reverse path which means that
the TWD clock skew estimator should be chosen for the clock skew
estimation task. Thus, we may say that according to Figures 4, 5
and Figure 8, test case b of Theorem 8works correctly. In Figure 6,
the Reverse PDV variance was set equal to the Forward PDV
variance (Z = 1). Now, according to test case c of Theorem 8, if
σ2 ≥ ~σ2fGn/gfGn we should choose the OWD clock skew estimator
for the Reverse path over the TWD clock skew estimator, else we
should choose the TWD clock skew estimator. Namely, if
σ2 ≥ ~σ2fGn/gfGn a better clock skew performance from the MSE
point of view can be obtained with the OWD clock skew estimator
for the Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. According to Figure 6, up
to approximately J = 80 we have that σ2 < ~σ2fGn/gfGn. Thus, up to
approximately J = 80 we see according to Figure 6 that a lower
MSE is obtained with the TWD clock skew estimator proposed by
Avraham and Pinchas [4] compared with the OWD clock skew
estimator for the Reverse path. But, for J > 80, σ2 > ~σ2fGn/gfGn thus a
lower MSE is obtained with the OWD clock skew estimator for the
Reverse path compared with the TWD clock skew estimator
proposed by Avraham and Pinchas [4]. Figure 6 clearly
demonstrates the effectiveness of test case c of Theorem 8.
According to Figures 2–8, our guidelines (conditions) from
Theorem 8 indeed may help the system designer to choose
wisely the preferred approach among Eqs 60–62 that should be
applied for the clock skew estimation task in order to get the best
clock skew performance from theMSE point of view. According to
Figures 2–8 we can also see the advantage of having two OWD
clock skew estimators (one for the Forward path and one associated
with the Reverse path) that can supply better clock skew
performance from the MSE point of view compared to our
recently proposed TWD clock skew estimator Avraham and

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 86786111

Avraham and Pinchas OWD Clock Skew Estimator - PTP

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Pinchas [4], when complying with our proposed guidelines
(conditions) from Theorem 8.

In Figures 9–12 we compared the clock skew performance
(MSE) of our new proposed OWD clock skew estimators (Eqs 61,
62) with the clock skew performance (MSE) that is obtained from
three clock skew algorithms: a.) TWD clock skew estimator, named
as the ML-like estimator (MLLE) proposed by Noh et al. [5], b.)

OWD clock skew estimator, named as the maximum likelihood
estimator proposed by Levy and Pinchas [7], c.) OWD clock skew
estimator, named as the Kalman estimator proposed by Chaloupka
et al. [6]. According to Noh et al. [5] we have:

β̂ � T2,1 J − 1( )2 + T3,1 J − 1( )2
T1,1 J − 1( )T2,1 J − 1( ) + T3,1 J − 1( )T4,1 J − 1( ) − 1 (101)

FIGURE 2 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 4e − 8[sec2],

σ2ω2
� 6.4e − 7[sec2], Z = 16, ~ZfGn/gfGn(J � 500) � 3.233 (for J < 500, ~ZfGn/gfGn <3.233). The results were obtained for 100 Monte-Carlo trails.

FIGURE 3 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1e − 8[sec2],

σ2ω2
� 1.44e − 8[sec2], Z = 1.44, ~ZfGn/gfGn(J � 500) � 3.058 (for J < 500, ~ZfGn/gfGn <3.058, ~ZfGn/gfGn(J � 10) � 3.004). The results were obtained for 100 Monte-Carlo

trails.
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where

β̂ � 1
α̂ + 1

− 1 (102)
T2,1 (J − 1) = t2 [J] − t2 [1], T1,j(i), T2,j(i), T3,j(i) and T4,j(i) are
defined in Eqs 4, 13.

According to Levy and Pinchas [7] we have:

FIGURE 4 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 6.4e − 7[sec2],

σ2ω2
� 4e − 8[sec2], Z = 0.0625, �ZfGn/gfGn(J � 500) � 0.748 (for J < 500, �ZfGn/gfGn < 0.748, �ZfGn/gfGn(J � 10) � 0.36). The results were obtained for 100Monte-Carlo trails.

FIGURE 5 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1.44e − 8[sec2],

σ2ω2
� 1e − 8[sec2], Z = 0.69, �ZfGn/gfGn(J � 500) � 0.342 7 (for J < 500, �ZfGn/gfGn <0.3427). The results were obtained for 100 Monte-Carlo trails.
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FIGURE 6 | Test case c of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an fGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.6, dms = 2.5 ms, dsm = 3 ms, σ2ω1
� σ2ω2

� 4e − 6[sec2], Z =
1, ~σ2fGn/gfGn(J � 500) � 1.03e − 6 (for J < 500: ~σ2fGn/gfGn >1.03e − 6, ~σ2fGn/gfGn(J � 100) � 3e − 6, ~σ2fGn/gfGn(J � 60) � 4.3e − 6, ~σ2fGn/gfGn(J � 10) � 1.72e − 5). The results
were obtained for 100 Monte-Carlo trails.

FIGURE 7 | Test case a of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Forward path (Eq. 61) and the TWD clock
skew estimator (Eq. 60). The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95, a = 0.08, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 1e − 8[sec2],

σ2ω2
� 9e − 8[sec2], Z = 9, ~ZfGn/gfGn(J � 500) � 3.02 (for J < 500, ~ZfGn/gfGn < 3.02). The results were obtained for 100 Monte-Carlo trails.
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FIGURE 8 | Test case b of Theorem 8. Performance (MSE) comparison between the OWD clock skew estimator in the Reverse path (Eq. 62) and the TWD clock
skew estimator (Eq. 60). The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95, a = 0.08, dms = 5 ms, dsm = 5.5 ms, σ2ω1
� 9e − 8[sec2],

σ2ω2
� 1e − 8[sec2], Z = 0.111, �ZfGn/gfGn(J � 500) � 0.356 (for J < 500, �ZfGn/gfGn < 0.356, �ZfGn/gfGn(J � 10) � 0.337). The results were obtained for 100Monte-Carlo trails.

FIGURE 9 | Performance (MSE) comparison between the OWD clock skew estimator for the Forward path (Eq. 61), likelihood clock skew estimator proposed by
Noh et al. [5] and maximum likelihood clock skew estimator proposed by Levy and Pinchas [7]. The PDV is an gfGn process. α = 50ppm, Q = 5 ms,
Tsyn � 15.6ms (64 packet

sec ), H = 0.95, a = 0.08, dms = 5.5 ms, dsm = 5 ms, σ2ω1
� 4e − 8[sec2], σ2ω2

� 1.6e − 7[sec2]. The results were obtained for 100 Monte-Carlo trails.
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FIGURE 10 | Performance (MSE) comparison between the OWD clock skew estimator for the Reverse path (Eq. 62), likelihood clock skew estimator proposed by
Noh et al. [5] and maximum likelihood clock skew estimator proposed by Levy and Pinchas [7]. The PDV is an fGn process. α = 50ppm, Q = 5 ms,
Tsyn � 15.6ms (64 packet

sec ), H = 0.7, dms = 5.5 ms, dsm = 5 ms, σ2ω1
� 1.6e − 7[sec2], σ2ω2

� 4e − 8[sec2]. The results were obtained for 100 Monte-Carlo trails.

FIGURE 11 | Performance (MSE) comparison between the OWD clock skew estimator for the Forward path (Eq. 61), likelihood clock skew estimator proposed by
Noh et al. [5] and Kalman clock skew estimator proposed by Chaloupka et al. [6]. The PDV is an gfGn process. α = 50ppm,Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ),H = 0.95,
a = 0.08, dms = 5.5 ms, dsm = 5 ms, σ2ω1

� 4e − 8[sec2], σ2ω2
� 1.3e − 7[sec2], L = 100, QKAL = 0, δσ = δμ = 1e − 4, μ̂[1] � 0. The results were obtained for 100 Monte-

Carlo trails.
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FIGURE 12 | Performance (MSE) comparison between the OWD clock skew estimator for the Reverse path (Eq. 62), likelihood clock skew estimator proposed by
Noh et al. [5] and Kalman clock skew estimator proposed by Chaloupka et al. [6]. The PDV is an fGn process. α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.7,
dms = 5.5 ms, dsm = 5 ms, σ2ω1

� 3.6e − 7[sec2], σ2ω2
� 4e − 8[sec2], L = 100, QKAL = 0, δσ = δμ = 1e − 4, μ̂[1] � 0. The results were obtained for 100 Monte-Carlo trails.

FIGURE 13 | case 1: Performance comparison for the fGn case, between our new proposed clock skew estimator for the Forward path (Eq. 61) with the
performance results for our new proposed expression for the MSE (Eq. 54). σω1 � 0.8e − 3[sec]. Case 2: Performance comparison for the fGn case, between our new
proposed clock skew estimator for the Reverse path (Eq. 62) with the performance results for our new proposed expression for the MSE (Eq. 58). σω2 � 0.1e − 3[sec].
For both cases: α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.6, dms = 5.5 ms, dsm = 5 ms. The results were obtained for 100 Monte-Carlo trails.
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ε̂ � 2∑J
i�1

∑J
j�1

∑min i,j( )−1

k�1
Amax J, i, j, k,H( ) △Ts1.i −△Ts2.i( ) △Ts1.j −△Ts2.j( )[ ]⎛⎜⎝ ⎞⎟⎠

∑J
i�1

∑J
j�1

∑min i,j( )−1

k�1
Amax J, i, j, k,H( ) △Tm.j △Ts1.i −△Ts2.i( )[[⎛⎜⎝

+△Tm.i △Ts1.j −△Ts2.j( )]])−1 − 1

(103)
where Amax (J, i, j, k, H) is:

Amax J, i, j, k,H( ) � Γ J( )
Γ −H + 0.5( )Γ J −H + 0.5( )[ ]2

Γ i − k −H + 0.5( )(
Γ J −H + 0.5 − i + k( )Γ j − k −H + 0.5( )Γ J −H + 0.5 − j + k( ))
Γ J − i + k( )Γ J − j + k( )Γ i − k( )Γ j − k( )( )−1

1
i − k( )

1
j − k( ) − 1

J − i + k( )
1

J − j + k( )[ ]
(104)

and ε̂ is:

ε̂ � 1
α̂ + 1

− 1 (105)

Γ(.) denotes the Gamma function, △ denotes the difference
between two consecutive timestamps. Tm. i is the timestamp in
the ith period when the Master sends the Sync message. Ts1. i is
the timestamp in the ith period when the dual-Slave receives the
Sync message. Ts2. i is the timestamp in the ith period when the
Slave receives the Sync message.

The Kalman estimator from Chaloupka et al. [6] depends on a
predefined parameter L that defines the sliding window’s length
in the algorithm. The L parameter impacts the performance
(MSE). As we increase L, it reduces the MSE. However, L also
depends on the total number of sync periods, which we set for the

frequency synchronization task as 500. Therefore, L must be
smaller than 500.

According to Chaloupka et al. [6] the Kalman’s measurement
equation is:

T1,j L( ) − T2,j L( ) � T2,j L( )α j[ ] +Ω1,j L( ) (106)
The Kalman’s state equation is:

α̂ j + 1[ ] � α̂ j[ ] + u j[ ]. (107)
where the variance of u[j] is QKAL. The estimate of the noise
measurement variance is given by Chaloupka et al. [6]:

R̂ j[ ] � 1 − δσ( )R̂ j − 1[ ] + δσ x j[ ] − μ̂ j[ ]( )2 (108)
where

μ̂ j[ ] � 1 − δμ( )μ̂ j − 1[ ] + δμx j[ ]; x j[ ] � T1,j L( ) − T2,j L( )
(109)

δμ and δσ are smoothing factors which are between zero
and one.

According to Figures 9, 10, our new proposed OWD clock
skew estimator for the Forward path (Eq. 61) (Figure 9) or for the
Reverse path (Eq. 62) (Figure 10) achieves a lower MSE
compared to the clock skew estimators proposed by Noh et al.
[5] and Levy and Pinchas [7]. Please note that for the simulation
results presented in Figure 10, the PDV for the Reverse path was
set lower than the PDV for the Forward path. Since the OWD
clock skew estimator proposed by Levy and Pinchas [7] is based
on the Forward path only, the clock skew accuracy with this
estimator Levy and Pinchas [7] is indeed decreased (Figure 10).

According to Figures 11, 12, our new proposed OWD clock
skew estimator for the Forward path (Eq. 61) (Figure 11) or for

FIGURE 14 | case 1: Performance comparison for the gfGn case, between our new proposed clock skew estimator for the Forward path (Eq. 61) with the
performance results for our new proposed expression for the MSE (Eq. 54). σω1 � 0.8e − 3[sec].Case 2: Performance comparison for the gfGn case, between our new
proposed clock skew estimator for the Reverse path (Eq. 62) with the performance results for our new proposed expression for the MSE (Eq. 58). σω2 � 0.1e − 3[sec].
For both cases: α = 50ppm, Q = 5 ms, Tsyn � 15.6ms (64 packet

sec ), H = 0.95, a = 0.95, dms = 5.5 ms, dsm = 5 ms. The results were obtained for 100 Monte-Carlo
trails.
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the Reverse path (Eq. 62) (Figure 12) achieves a lower MSE
compared to the clock skew estimators proposed by Noh et al. [5]
and Chaloupka et al. [6]. Please note that for the simulation
results presented in Figure 12, the PDV for the Reverse path was
set lower than the PDV for the Forward path. Since the OWD
clock skew estimator proposed by Chaloupka et al. [6] is based on
the Forward path only, the clock skew accuracy with this
estimator Chaloupka et al. [6] is indeed decreased (Figure 12).

Next we tested our new proposed OWD clock skew estimators’
performances (MSE) for the Forward and Reverse paths (Eqs 61,
62) with our closed-form-approximated expressions for the MSE
for the LRD case (Eqs 54, 58) for the Forward and Reverse path,
respectively. Case 1 in Figures 13, 14 presents the clock skew
performance of our new proposed OWD clock skew estimator for
the Forward path (Eq. 61) compared with our closed-form-
approximated expression for the MSE in Eq. 54. Case 2 in
Figures 13, 14 presents the clock skew performance of our new
proposed OWD clock skew estimator for the Reverse path (Eq. 62)
compared with our closed-form-approximated expression for the
MSE in Eq. 58. According to Figures 13, 14 it can be clearly seen
that our new closed-form-approximated expressions for the MSE
in Eqs 54, 58 supply very close results to the simulated one.

8 CONCLUSION

In this paper we derived two novels OWD clock skew estimators for
the Forward and Reverse paths applicable for white-Gaussian
process and for the fGn/gfGn environment. Those estimators

do not depend on the unknown fixed paths nor on the clock
offset between the Master and Slave. In addition, we derived
also closed-form-approximated expressions for the clock
skew performance (MSE) for the new proposed OWD
clock skew estimators for the Forward and Reverse paths.
In order to help the system designer to choose the right
clock skew estimator that may get the best clock skew
performance from the MSE point of view, some guidelines
(conditions) were derived, helping choosing the right clock skew
estimator wisely. Simulation results has confirmed that our new
OWD clock skew estimators indeed achieve better clock
skew performance from the MSE point of view compared to the
literature known clock skew estimators. Simulation results have also
confirmed that our closed-form-approximated expressions for the
MSE related to our new proposed OWD Forward and Reverse
estimators are indeed efficient.
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