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The dynamics of the scalar field and particle in a conformal frame are considered. The
conformal Klein-Gordon equation describing the scalar field is transformed into the
quantum Telegraph equation in Minkowski space-time. The conformal factor acts like a
background field having a perfect energy-momentum tensor. The scalar field decays
exponentially with time during inflation allowing the conformal field to induce space energy.
The conformal field grows with time at the expense of decreasing the energy density of the
real scalar field. Einstein’s tensor embodies an energy-momentum tensor representing the
background contribution reflecting the matter aspect of the gravitational field. The energy
density arising from the conformal field is negative. The background energy associated
with Einstein’s curvature tensor gives rise to massive gravitons that act like a cosmological
constant. In an expanding Universe, this particular case yields a background energy
proportional to the square of the scalar field mass giving rise to the massive graviton.
Because of the background fluid, which is intrinsically coupled to space curvature, the
particle’s motion is found to exhibit a drag force and therefore moves in a curved path even
no matter around exists. It is found that breaking the conformal invariance gives rise to the
mass generation of gravitons.

PACS 04.20.-q, Classical general relativity; PACS 04.20.Cv, Fundamental problems and
general formalism; PACS 95.30.Sf, Relativity and gravitation; PACS 4.62.+v, Quantum
fields in curved space-time
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INTRODUCTION

The general theory of gravitation describes the gravitational effects as manifestations of the curvature
of space-time. The concept of force may not be needed in Einstein’s formalism. The motion of an
object in a gravitational field can not be distinguished from that one due to a non-inertial motion.
While Newton used scalars and vectors to formulate his theory of gravitation, Einstein, on the other
hand, employed tensors to envisage the effect of curvature on the motion of a particle that has
interesting mathematical properties. The particle path in curved space is defined by a geodesic
equation that incorporates a quantity embodying the gravitational field. The above equivalence
between curvature and gravity is a crucial factor on which Einstein built his theory [1].

Interestingly, the general theory of relativity (GTR) reproduces and generalizes Newton’s theory
of gravitation. The mathematical properties of the tensors in which the GTR was built gave rise to
new and additional mathematical quantities that are found to bear physical meanings. The
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overwhelmingly confirmed predictions of the GTR qualify it to be
the appropriate theory of gravitation. Besides the GTR, a rival
theory of gravitation was introduced by Brans-Dicke (BD) in
1961 where the gravitational interaction is partaken by a scalar
field [2].

In this formalism, the gravitational constant is considered to
be a function of this scalar field. This assumption dictates that
Newton’s constant had to vary with space-time. Besides the
gravitational constant, the BD theory encompasses an
additional coupling that remained un-determined by the
theory. To yield the same prediction for the solar system
constraints as that of the GTR, the Cassini mission limited the
coupling constant to a value of ω > 104 that makes the two
paradigms indistinguishable for the present epoch [3]. They
however differ from other cosmic eras.

Owing to Noether’s theorem, the conserved physical
quantities emerge from the invariance of the equation of
motion (or the Lagrangian) under a given transformation. A
new transformation called the conformal transformation that was
known to preserve the angle between two curves is believed to be
appropriate to fundamental physical theories. The
electromagnetic and quantum theories are found to be
invariant under the conformal transformation, but the GTR is
not. This poses an impasse to GTR. Hence, the need for a
conformal theory of gravitation is raised. This time the BD is
found to be invariant under the conformal transformation.
Further attempts to quantize gravity following the same
prescription as that made for the electromagnetic theory were
doomed to failure.

Weyl formulated a conformal theory of gravitation by
introducing the Weyl tensor which is unlike the Riemann and
Ricci tensor and the scalar is conformally invariant. The Weyl
tensor represents the curvature of the space where the Ricci tensor
vanishes. The conformal factor, transforming a given metric
tensor into a conformal one, is a function of space and time.
It is found that this factor acts as representing a background field
coupled to gravity. It induces an energy-momentum tensor in a
gravitational theory that can be attributed to the background (the
material aspect of the space).

A disturbance in the gravitational field will give rise to a
gravitational wave that travels at the speed of light in a vacuum.
Thus, if this is mediated by a graviton it must be massless. A
possibility that gravity is mediated by massive graviton were
entertained by Freund et al. [4]. In this theory, a finite-range
gravitation theory is proposed which introduces the idea that the
graviton could be massive. He then found that the effect of such a
proposal modified the Einstein equations by introducing a
cosmological-like term proportional to the square of the
graviton mass (−m2) in the field equations. Recall that the
mass term in the electromagnetic Lagrangian is of the form
m2AμA

μ, which in GTR would become m2gμ]gμ] = 4m2, which
is a constant. For such a reason, the mass term can be included in
the cosmological constant in the Einstein-Hilbert action.

This is reminiscent of the massive electrodynamics proposed
by Proca that was known to break the gauge invariance of
electromagnetism. Proca theory could be applicable inside a
superconductor where the electromagnetic field becomes a

short-range interaction. An electrodynamics that respects the
gauge invariance in conjunction with the introduction of the
photon mass is proposed in [5].

We would like here to explore a gravitational scalar-tensor
theory and see how the scalar field proceeds in conformal
coordinates. The scalar field partakes the gravitational
interactions with the graviton. The wave equation of the scalar
field is found to be described by a new matter-wave equation
proposed by Arbab [6, 7]. This is a quantum Telegraph equation
whose classical analog governs the propagation of the electric
signals in transmission lines. Hence, a conformal scalar
gravitational theory can be compared with a massive
gravitational theory. We in a sense deal with a quantization of
the gravitational scalar-tensor theory. We found the conformal
factor increases exponentially with time. The exponent term
involves a mass that is related to the mass of the graviton.

An exponential conformal factor is connected, in the
Robertson-Walker Universe, to an inflationary period in the
history of the Universe. In this era, the inflationary period is
driven by a cosmological constant that was initially introduced by
Einstein in his static Universe to hold it from collapse, if gravity is
the only existing force. Today the cosmological constant is
believed to account for the background energy contained in
the Universe. This cosmological constant is found to be
related to the conformal factor. Thus to resolve the dark
energy problem, one is inclined to assume the actual space we
live in is a conformal Riemannian space, however.

The above particular quantization associated with the
conformal gravity could bring a lot of clues to the
quantization of a gravitational theory. Furthermore, we
anticipate that only a conformal gravity can be quantized, and
not any other gravitational theory. This could be the reason why
up to now no single quantized gravitational theory existed with a
large consensus among physicists.

We would like in this work to study the evolution of the scalar-
tensor gravity and study the conformal aspect of the theory. In
particular, we would like to explore the scalar wave equation,
governed by the Klein-Gordon equation, and see how it evolves in
a conformal coordinate. Note that in a conformal representation
the background field extracted from the Einstein curvature acts as
if it has an energy-momentum tensor. This energy-momentum
tensor depends on the functional form of the conformal factor.

We would like to find the conformal factor by comparing the
Klein-Gordon equation, describing the scalar field in the
conformal coordinate with a recently proposed quantum
Telegraph equation [6, 7]. We then calculate the Ricci tensor
and scalar and see how the Universe with these new quantities
evolves. In particular, we want to see the effect of the mass of the
scalar field on the evolution of the Einstein field equations
without solving them. A conformal theory is found to be
equivalent to introducing a cosmological constant that is also
equivalent to a massive graviton field theory. The appearance of
the mass term in the system is like the Higgs mechanics that
generates the particle’s mass that were once assumedmassless [8].
Because a background fluid could be inherently coupled to
curvature, that background field is reflected in the particle’s
motion which tends to be a drag-like type. The presence of
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this background field influences the particle motion mimicking
that one moving in a curved path. The existence of a background
fluid permeating the whole space will therefore justify why all
objects experience inertia. It can be seen as tantamount to the
effect of space on the motion of gravitating bodies.

CONFORMAL GRAVITATION

Einstein’s field equations describing the gravitational field can be
expressed as

Gμ] � κTμ] , Gμ] � Rμ] − 1
2
gμ] R , κ � 8πG

c4
, (1)

where Tμ] is the energy momentum tensor of the matter
representing the gravitational source. The above Einstein
equations are not invariant under the conformal transformation

~gμ] � Ω2 x( )gμ]. (2)
This is because the Einstein tensor is not conformally invariant.
The Ricci and tensor and scalar transform in D—dimensions
as [9–11].

~Rμ] � Rμ] +Ω−2 2 D − 2( )Ω,μΩ,] − D − 3( )Ω,λΩ,λgμ][ ]
−Ω−1 D − 2( )Ω;μ] + gμ]□Ω[ ], (3)

~R � Ω−2 R − 2 D − 1( )□ΩΩ − D − 1( ) D − 4( )gμ]Ω,μΩ,]

Ω2[ ], (4)

and the Einstein’s tensor transforms as

~Gμ] � Gμ] + D − 2
2Ω2 4Ω,μΩ,] + D − 5( )Ω,λΩ,λgμ][ ]

− D − 2
Ω Ω;μ] − gμ]□Ω[ ]. (5)

Assume the energy momentum tensor of the matter present to be
an ideal fluid, i.e.,

Tμ]
m � ρ + p c−2( ) uμu] − pgμ], (6)

whose energy and momentum conservation equation transforms,
under the conformal transformation, as

~T
μ]
m;] � −Ω

,μ

Ω Tm, (7)

which is conformally conserved when Tm = 0. This case is usually
valid for radiation fluid.

Now Eq. 5 can be rewritten in the form

~Gμ] � Gμ] + TΩ
μ], (8)

where

TΩ
μ] �

D − 2
2Ω2 4Ω,μΩ,] + D − 5( )Ω,λΩ,λgμ][ ]
− D − 2

Ω Ω;μ] − gμ]□Ω[ ], (9)

is an expression of the energy momentum tensor that represents
the background contribution, and acts as if the space is full of a
scalar field Ω having the above energy momentum tensor.

One can express the above tensor in an ideal fluid form to
deduce the form of the pressure and energy density, viz.,

T μ] � κ−1c−2 −4Ω,μΩ,]

Ω2 + 2
Ω;μ]

Ω( ) − κ−1c−2 −Ω,λΩ,λ

Ω2 + 2□Ω
Ω[ ]gμ],

(10)
where D = 4. This energy-momentum tensor represents the
matter aspect (content) of the gravitational field. Hence,
comparing Eq. 10 with Eq. 6 indicates that the background
pressure is given by

P � κ−1c−2 −Ω,λΩ,λ

Ω2 + 2□Ω
Ω[ ]. (11)

One can now associate an angular momentum with the
background field defined by

Jμ] 0 � xμ T ] 0 − x] T μ 0. (12)
The orbital angular momentum corresponds to the Jij0

components

Jij 0 � xi T j 0 − xj T i 0. (13)
Let us now consider the wave equation of the scalar field ϕ, and
see how it transforms under the conformal transformation. Let us
assume the scalar field transform under the conformal
transformation as

~ϕ � Ωξ ϕ, (14)
where ξ is some real number (weight).

The D’alembertian of the scalar field ϕ is found to transform as
[9, 10].

~□~ϕ � Ωξ−2 □ϕ + 2ξ +D − 2( ) Ω,μ

Ω ϕ,μ + ξ
□Ω
Ω + ξ ξ +D − 3( )Ω

,μ Ω,μ

Ω2( )ϕ[ ],
(15)

where

□ � 1
c2

z2

zt2
− ∇2. (16)

The conformal Klein-Gordon equation will be

~□~ϕ + ~mc

Z
( )2

~ϕ � 0, (17)

where ~m is the conformal mass. A conformal covariance and
invariant formulation of scalar wave equations was studied in
[12]. It is proposed in this work that the conformal factor is
proportional to the field mass. Another study of such models was
initiated by a treatment of interacting conformal scalar and
gravitational fields [13].

The massless wave equation in conformal frame, ~□~ϕ � 0,
becomes
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□ϕ + 2
c2

_Ω
Ω

zϕ

zt
� 0 , ξ � 0 , Ω � Ω t( ). (17a)

However, for ξ ≠ 0, we will have a Telegraph equation with a
distortion given by

□ϕ + 2 ξ + 1( )
c2

_Ω
Ω

zϕ

zt
+ ξ

□Ω
Ω + ξ ξ + 1( )

c2
_Ω2

Ω2
⎡⎣ ⎤⎦ϕ � 0. (17b)

The Telegraph equation is the equation that governs the
propagation of electric signals in transmission lines. Thus, the
presence of the conformal factor Ω (background) induces a
dissipation in the wave equation that is similar to the effect of
a conductor on the propagation of the electromagnetic wave
inside it. However, if ξ = −1, and Ω∝ eimc2t/Z, then Eq.17b yields
the Klein-Gordon equation.

In a recent work, it shown that the quantum Telegraph
equation describing the matter wave (de Broglie wave) is
found to yield the Schrodinger, Klein-Gordon and Dirac
equations [6, 7]. It is expressed as

□ϕ + 2m
Z

zϕ

zt
+ mc

Z
( )2

ϕ � 0, (18)

where Z is the reduced Planck’s constant. Eq. 18 is a distortion-
less Telegraph equation that preserves the wave entity. The
solution of the above equation is a traveling wave to left and
right with speed of light, c, but with time-decaying amplitude. It is
of the form

ϕ � ϕ0e
−mc2t/Z e−i ± c k t− �k· �r( ), (19)

where ϕ0 is a constant. The above quantum equation can be seen
as a resistive (dissipative) Klein-Gordon equation. It represents a
propagation of a massive scalar field in a medium (background).

Applying Eq. 15 in Eq. 17 yields

□ϕ + 2
_Ω

c2Ω
zϕ

zt
+ mc

Z
( )2

ϕ � 0 , ~m � Ω−1m , D � 4,

(20)
if Ω =Ω(t). Moreover, it seems that as if the scalar wave travels in
a resistive medium. Or, one may envisage space as a medium. It is
also similar to the equation of the propagation of the electric field
in a conducting medium [14]. In the latter case the coefficient,
2 _Ω
c2Ω � μ0σ, impling that the background medium bears an

electric conductivity given by

σ � 2 ε0
_Ω
Ω. (21)

Therefore, when light propagates in a Minkowski space-time it
experiences a dissipation while no dissipation occurs in the
conformal frame.

CONFORMAL BACKGROUND FIELD

The invariance of a gravitational theory under the conformal
transformation should bring new insight to the theory. Owing to

Noether’s theorem, an invariance of a given theory under a given
symmetry should result in a conserved physical quantity. Thus, a
question is posed what is the benefit of a theory being invariant
under conformal transformation? Motivated by Eqs 8–10, one
can hypothesize that the conformal factor, Ω, is not a mere
function but is linked to a field representing the background
medium. This field can be connected with some scalar fields.
Comparing Eq. 18 with Eq. 20 yields

Ω � Ω0 e
mc2t/Z, (22)

where Ω0 is a constant, and m is the mass of the conformal field.
This holds in an expanding homogenous Universe. It is
interesting to see that one can treat the conformal factor as a
field (conformal field). The conformal field is the field due to the
background medium outlined above. But since the background
field emanated from the curvature term, we may say that the
scalar field is coupled to curvature via the background field, as
evident from Eq. 20.

Thus, a scalar field satisfying the Klein-Gordon will be
equivalent to the quantum Telegraph equation in the
conformal coordinate. Eq. 18 is similar to the wave equation
of an electric field propagating in a conducting medium [14].
Because the wave is coupled to the wire, it experiences a decay in
its amplitude.

Eq. 19 indicates that Ω ∝|ϕ|−1. A time-dependent conformal
factor makes the metric behave like an expanding one. In the
Robertson-Walker metric, the scale factor of an expanding
Universe, a, is proportional to the conformal factor Ω so that

_Ω
Ω � _a

a
� H, (23)

is Hubble’s parameter. Recall that during inflation the Hubble’s
parameter is constant. Hence,H � mc2

Z , wherem is the mass of the
inflaton (scalar) field. This implies that the Universe was scaled by
a factor depending on the scalar mass and time (homogeneous
Universe). The mass of this scalar field can be calculated from the
knowledge of Hubble’s parameter. Notice that here the scalar
field, ϕ, mediates the gravitational interactions which act like a
massive propagator (massive graviton). Consequently, the
gravitational interactions become short-range.

Interesting studies related to the interaction of scalar field in
curved space are considered [15].

Owing to Eqs 10, 11, and the fact that T μ] is that of a perfect
fluid, then the background pressure is

P � κ−1c−2
_Ω
Ω( )2

� κ−1c−2H2, (24)

and its energy density is

ρΩ � −3κ−1c−2 _Ω
Ω( )2

� −3κ−1c−2H2. (25)

Notice that a negative energy density gives rise to inflation.
During the inflationary period the scalar field and its energy
density (ϕ2) decay exponentially with time, as evident from Eq.
19. The energy density of the background fieldΩ is T 00 that yields

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8677664

Arbab et al. Scalar Field and Particle Dynamics in Conformal Frame

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


ρ Ωc
2 � −3κ−1 _Ω

Ω( )2

� −3κ−1 mc2

Z
( )2

� − 3m
2c6

8πGZ2
, (26)

upon using Eq. 22, where m is the mass of the inflaton (scalar)
field. This particular energy density corresponds to a Universe
filled with a cosmological constant (Λ). Notice that the scalar
field, ϕ, decreases with time and so does its energy density, while
the conformal field, Ω, increases with time. Therefore, since Ω is
the background field, the background energy increases with time
while the ordinary scalar field decays with time. This will
ultimately drive our Universe into a background-dominated era.

From Eqs 3, 4, one finds

~R00 � R00 + 2c−2
_Ω
Ω( )2

, ~R00 � R00 + 2
mc

Z
( )2

, (27)

and

~R � Ω−2 R − 6
mc

Z
( )2( ), ~R � Ω−2 R − 6

H2

c2
( ). (28)

Equations 27 and 28 imply that the background alone can curve
the space. Here the curvature scalar R is that one due to the
presence of matter in space. The background curvature is equal to
RΩ � −6(mc

Z )2. This term can be considered as a quantum
correction that rarely appears at a classical level.

Recall that the background energy per oscillator is non-zero
and is equal to E0 � 1

2 Zω. It is now apparent that the presence of
the background energy is equivalent to including a mass term in
the Einstein equations. This, in other words, is a new mechanism
of giving the graviton a mass. It remarkable that our results agree
with that of [16] where they attribute the mass m to the graviton
mass. Our results are obtained without solving Einstein’s
equations, without assuming any form of the energy-
momentum tensor of the scalar field. The effect of the
background conformal field on the matter source, in a scalar-
tensor theory, can be studied in future endeavors.

One can now express the conformal Einstein’s tensor in Eq. 5,
for D = 4, in the form

~Gμ] � Gμ] + Λ gμ] + 2Λ δ0μ δ
0
] , Λ � m2c2

Z2
. (8a)

The second term in Einstein’s tensor mimics the cosmological
constant which in the present context reflects the effect of the
background that can be extracted from Einstein’s curvature. It
represents a perturbation in the space-time curvature which has
now a quantum signature. Quantum effects can break conformal
invariance too [17].

The last term in Eq.8a can be seen as a representation of the
energy-momentum tensor due to the presence of a background
field that signifies the interaction of the gravitational field with the
quantum scalar field. Such a field also emerges when an
electromagnetic field is coupled to a scalar field that led to the
Higgs field permeating the whole space. The remaining scalar
(Higgs) field would have an energy-momentum tensor of a form
expressed in Eq.8a. The remaining field filling the space can be
thought of like that assigned to ether. Here the ether is more
physical than the hypothetical one early introduced to help the

electromagnetic field propagate in space. Thus, the notion of a
quantum ether appears when a quantum field is coupled to the
gravitational field. Similarly, a classical ether will result from the
coupling of the gravitational field with a classical scalar field.

Remarkably, the background energy is not exhibited in
Einstein’s ordinary equations that overlooked the material
contribution of space so that the conformal transformation
highlights the material aspect of space that is attached to the
space-time curvature. It is evident from Eq.8a that the generation
of mass breaks the time-translation symmetry of Einstein’s
equations.

Like the degeneracy in a quantum system which is sometimes
lifted when a perturbation is applied to a system, we see here that
the conformal transformation of Einstein’s curvature separated
(extracted) the background contribution from the curvature of
space-time. This contribution is of paramount importance. We
see that the background field couples to massless scalar field
giving it a mass and to the massive field inducing a dissipative
effect in its evolution. It is thus very interesting that breaking the
conformal transformation (when time-symmetry is broken)
leads to a massive field, i.e., a mechanism to give the
massless field a mass. Recall that in quantum field theory
paradigms (spontaneous symmetry breaking), breaking a
local gauge invariance leads to the emergence of a massive
field too.

Breaking of symmetry could lead to tangible cosmological
consequences since it adds appreciable energy content to the
Universe when the massive field responsible for breaking the
symmetry acquires mass. It is argued that the axion field which
results from its interaction of photons can impart its energy as a
kind of dark energy (matter) that helps accelerate the Universe
expansion [18]. Moreover, the presence of a background field
could also provide a resistive force that alters the orbital motion
of stars inside galaxies modifying it to a non-Keplerian behavior.
That is because the velocity of stars in elliptical galaxies exhibits
an unexpectedly flat pattern. This latter behavior is resolved
upon imposing dark matter contribution [19]. Scalar field dark
matter models are considered owing to the recent accurate
cosmological and astrophysical observations [20].

PARTICLE DYNAMICS IN CONFORMAL
FRAME

The motion of a particle in the curved space is described by the
geodesic equation

dvμ

dτ
+ Γμ]λ v] vλ � 0, (29)

where vμ is the particle’s velocity and Γμ]λ are the Christoffel
symbol. The conformal transformation of the Christoffel symbols
is given by

~Γμ]λ � Γμ]λ +Ω−1 Ω,] δ
μ
λ + Ω,λ δ

μ
] − Ω,δ g

μδ g]λ[ ], (30)
so that the equation of the geodesic in the conformal frame will
become
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d~vμ

d~τ
+ ~Γμ]λ ~v] ~vλ �

dvμ

ds
+ Γμ]λ v] vλ

+ 2z] lnΩ( ) v] vμ − c2 zδ lnΩ( ) gμδ[ ]. (31)
If the particle in the conformal frame is described by the geodesic
equation (when the right-hand side of Eq. 31 vanishes), then in
the Minkowski space-time, one has

dvμ

dτ
+ 2γ

_Ω
Ω vμ � 0, (32)

if Ω =Ω(t), where γ � 1�����
1−v2/c2√ is the Lorentz factor, and the last

term in Eq. 31 vanishes. The additional acceleration in the
left-hand side of Eq. 32 is due to the conformal field that is
coupled to the particle’s motion. It is like a viscous (drag)
term that arises when a particle travels in a medium. This is so
since the conformal field represents the field of the
background fluid. Upon employing Eq. 22 this viscous-like
term would become

aμΩ � −2γ mc2

Z
( )vμ, (33)

which depends on the background field mass, m. Therefore, as
long as m ≠ 0, all particles travel in a curved space, no matter if
other sources of matter exist, experience a drag force. This could
justify why all objects resist motion or exhibit inertia. Therefore,
the influence of the background on the motion of quantum
particles would be prominent when subject to motion in a
narrow space that could lead to prominent phenomena (e.g.,
Casimir effect). A self-force on a charged particle in an external
scalar field is recently considered and found to lead to interesting
phenomena [21].

Let us now consider the particle dynamics in conformal frame.
To this end, we define the force acting on the particle in a
conformal frame as follows

~f
μ � d~pμ

d~τ
, (34)

where

d~τ � Ω dτ , ~mp � Ωnmp, (35)
where mp is the particle’s mass. Applying Eq. 35 in Eq. 34 yields
the particle’s acceleration as

~aμ � Ωn−2 dvμ

dτ
+ n − 1( )Ω,]

Ω vμ v][ ]. (36)

Thus, because of the second term in the right-hand side of Eq. 36,
a free particle in a conformal frame receives an extra acceleration
when compared with that one in the Minkowski space-time. It is
given by

aμΩ � n − 1( )Ω,]

Ω vμ v]. (37)

Therefore, if Ω = Ω(t), then the above acceleration becomes

aμΩ � n − 1( ) γ
_Ω
Ω vμ, (38)

which upon using Eq. 22 yields

aμΩ � n − 1( ) γ mc2

Z
vμ. (39)

If we compare Eq. 39with Eq. 33, we deduce that n = 3 so that the
conformal particle mass, ~mp � Ω3mp. Because of the appearance
of Z, we call this acceleration a quantum-conformal acceleration.

It is pertinent to mention that the inappropriate choice of a
frame of reference (e.g., rotating frame) has induced a fictitious
force, i.e., the Coriolis force.

CONCLUDING REMARKS

We have found that a scalar field satisfying the Klein-Gordon
equation reduces to a scalar field satisfying the quantum
Telegraph equation in the conformal representation. The
conformal factor acts like a scalar field having a negative
energy density giving rise to inflation. The energy-momentum
tensor of the background field has a perfect fluid form. The
background energy density is found to be proportional to the
square mass (−m2) of the scalar (inflaton) field. This agrees with a
theory of finite-range gravitation proposed by Freund et al. It is
equivalent to introducing a cosmological constant in the GTR.
The conformal Ricci scalar involves the mass of the scalar field
partaking in the gravitational interactions. A massive scalar field
coupled to a background field endows space with non-zero
curvature. The conformal field (Ω), representing the
background, is coupled to the scalar field by the relation, Ω ∝|
ϕ|−1. In this scenario, the massive scalar field mediates the
gravitational interactions which make them short-range.
Therefore, the scalar field acts like the graviton. One can
assume that the real Universe has a space structure that is
different from that one due to Riemann. In such a space the
Universe is filled with a background field that is necessary for the
gravitational interaction to propagate which mimics the aether
that was advocated to allow the electromagnetic wave to travel in
space. We have shown that the background fluid (field) is coupled
to the particle motion as well. This field couples to a massless
scalar field giving it a mass and to the massive field inducing a
dissipative effect in its evolution.
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