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Second-order topological insulators (SOTIs) are a class of materials hosting gapless bound
states at boundaries with dimension lower than the bulk by two. In this work, we investigate
the effect of Zeeman field on two- and three-dimensional time-reversal invariant SOTIs. We
find that a diversity of topological phase transitions can be driven by the Zeeman field,
including both boundary and bulk types. For boundary topological phase transitions, we
find that the Zeeman field can change the time-reversal invariant SOTIs to time-reversal
symmetry breaking SOTIs, accompanying with the change of the number of robust corner
or hinge states. Relying on the direction of Zeeman field, the number of bound states per
corner or chiral states per hinge can be either one or two in the resulting time-reversal
symmetry breaking SOTIs. Remarkably, for bulk topological phase transitions, we find that
the transitions can result in Chern insulator phases with chiral edge states and topological
semimetal phases with sharply-localized corner states in two dimensions, and hybrid-
orderWeyl semimetal phases with the coexistence of surface Fermi arcs and gapless hinge
states in three dimensions. Our study reveals that the Zeeman field can induce very rich
physics in higher-order topological materials.

Keywords: topological phase transitions, second-order topological insulators, Zeeman field, hybrid-order Weyl
semimetals, bound states

1 INTRODUCTION

In the last few years, higher-order topological phases have attracted tremendous interest owing to the
emergence of novel boundary physics beyond the description of conventional bulk-boundary
correspondence [1–27]. Roughly speaking, a mth-order topological phases in n dimensions (n ≥
m) harbors robust gapless states at boundaries with dimensions lower than the bulk by m [28]. For
instance, a second-order topological insulator (SOTI) will harbor robust bound states at the sample
corners in two dimensions and chiral or helical propagating states on the sample hinges in three
dimensions. From a boundary perspective, the higher-order topology can be intuitively understood
as the existence of certain forms of Dirac domain walls on the boundary [29, 30]. If the Dirac domain
walls are symmetry-enforced, the corresponding higher-order topological phases are commonly
categorized to the intrinsic class, otherwise they are categorized to the extrinsic class.

The higher-order topology greatly extends the freedom of bound states on the boundary. On one
hand, the positions of bound states may be highly tunable by some external fields if they are not
pinned due to symmetry constraints [31, 32]. Such tunability may benefit the design of devices based
on higher-order topological materials for applications [33–35]. On the other hand, bound states with
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different dimensions can coexist in the same system [36], which
may result in novel responses absent in conventional topological
phases. The higher-order topology also enriches the possibility of
topological phase transitions [37–42]. With the advent of higher-
order topology, topological phase transitions can happen not only
between the different topological sectors of a topological phase
following Z or Z2 classification [43, 44], but also between phases
with different orders in topology [37].

Higher-order topological insulators and semimetals have already
been implemented in a great amount of platforms [45–56], while the
experimental progress in higher-order topological superconductors
is slow as the superconductivity is an intrinsic quantum phenomena
without classical counterparts [57]. Thus far, the experimental
studies on higher-order topological insulators and semimetals
have also been mainly done in metamaterial systems owing to
their great advantages in controllability in design and
measurements [58]. In comparison, in spite of the accumulation
in quantum material candidates for higher-order topological
insulator and semimetals [59–72], related experiments on
quantum materials remain relatively rare due to the much higher
complexity in material growth and detecting the expected signatures
of higher-order topology [73–77].

While higher-order topological insulators and semimetals have
been intensively studied in experiments in metamaterial systems, we
notice that the response of higher-order topological phases to
external fields remains poorly explored [78–85]. In this work, we
systematically investigate the effects of Zeeman field on time-reversal
invariant SOTIs, with a particular focus on the possible topological
phase transitions and the associated evolution of boundary states. It
is worth noting that while the Zeeman field in a quantum material
can be induced by an external magnetic field or the proximity-
induced exchange field from magnetic materials in contact, the
Zeeman field in metamaterials cannot be implemented in the same
way as the underlying spin degrees of freedom are not real spin.
Nevertheless, effective Zeeman fields in metamaterials can also be
generated by appropriately designing the on-site potentials and
couplings between sites [86]. In a quantum material, if the
Zeeman field is generated by an external out-of-plane magnetic
field, it is known that orbital effect also needs to be taken into
account. However, if the Zeeman field is generated by an in-plane
magnetic field or exchange interaction in a quantum material, the
orbital effect is absent. Moreover, the effective Zeeman field in
matematerials is not tied with an orbital effect as the spin is
pseudo. With these in mind, in this work we will only focus on
the Zeeman field and not consider the orbit effect.

The main findings of our work can be summarized as follows. In
two dimensions, when the concerned time-reversal invariant SOTI
with each corner harboring two zero-energy bound states is
subjected to the Zeeman field, we find that the fate of the zero-
energy corner states depends on the direction, the strength, and the
type of Zeeman field. When the Zeeman field is a layer-independent
ferromagnetic type and in the out-of-plane direction, we find that the
two zero-energy bound states per corner are robust in the weak-field
regime even though the time-reversal symmetry and chiral
symmetry are broken. With the increase of Zeeman field, a bulk
topological phase transition will happen at a critical value, and the
systemwill enter a Chern insulator phase [87]. The topological phase

transition is accompanied with the disappearance of corner modes
and the emergence of chiral edge states. When the ferromagnetic-
type Zeeman field is changed to lie in the lattice plane, we find that
the number of zero-energy bound states per corner also does not
change in the weak-field regime. With the increase of field strength,
we find that the system can first undergo a boundary topological
phase transition and enter a new SOTI phase with the number and
the locations of zero-energy bound states depend on the direction of
Zeeman field. Remarkably, we find that corner states can still exist
even when the system is driven into a topological semimetal phase
with flat-band edge states. When the Zeeman field changes to be an
antiferromagnetic type, we find that the number of zero-energy
bound states per corner does not change in the weak-field regime if
the Zeeman field is along the out-of-plane direction. With the
increase of field strength, the system will undergo a bulk
topological phase transition and enter a new SOTI with each
corner only hosting one zero-energy bound state. When the
antiferromagnetic-type Zeeman field lies in the lattice plane, we
find that the energies of the corner states will in general be shifted
away from zero. Only when the Zeeman field is along certain special
direction, the corner states can accidentally be pinned at zero energy.
In three dimensions, we focus on the ferromagnetic-type Zeeman
field as it is more realistic than the antiferromagnetic one in a bulk
system. Similar to the situations in two dimensions, we find that the
helical states on the hinges are robust in the weak-field regime.
Interestingly, when the field is strong enough to drive the system into
a Weyl semimetal phase [88], we find that the resulting Weyl
semimetal can host hybrid-order topological properties. That is,
first-order topological surface Fermi arcs and second-order
topological helical or chiral hinge states can coexist on the boundary.

The paper is organized as follows. In Section 2, we start with a
minimal model of time-reversal invariant SOTI and
systematically study what kind of topological phase transitions
can be induced by Zeeman fields. In Section 3, we generalize the
study to three dimensions and investigate what kind of novel
topological phases can be achieved. We discuss the results and
conclude the paper in Section 4.

2 TOPOLOGICAL PHASE TRANSITIONS
INDUCED BY ZEEMAN FIELD IN
TWO-DIMENSIONAL SOTIS
As an important consequence of the presence of Zeeman field is
the breaking of time-reversal symmetry, in this paper we will start
with a time-reversal invariant SOTI so that the effect of Zeeman
field can be fully appreciated. While theoretically time-reversal
invariant SOTIs allow a lot of model realizations, the essential
physics is similar. Without loss of generality, here we consider the
following minimal Hamiltonian [4],

H k( ) � m − t cos kx − t cos ky( )ρ0σzs0 + λ sin kxρ0σxsx
+λ sin kyρ0σxsy + η cos kx − cos ky( )ρyσys0
+ρ0σ0B · s,

(1)

where ρi, σi and si are Pauli matrices acting on layer, orbital and
spin degrees of freedom, respectively. For notational simplicity,
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the lattice constants are set to unity throughout this paper. If the
Hamiltonian only has the first three terms, the Hamiltonian
simply describes two layers of decoupled topological insulators
when 0 < |m| < 2t and λ ≠ 0 [89]. Accordingly, there are two pairs
of helical edge states on the boundary. Since time-reversal
invariant insulators in two dimensions follow a Z2
classification if there is no additional crystalline symmetry
[90], the two pairs of helical edge states are not topologically
protected and can be gapped out by perturbations respecting
time-reversal symmetry. The fourth term couples the two layers
and leads to the hybridization of the edge states to open a gap.
Interestingly, because of the existence of line nodes along the
directions kx = ±ky, this term results in a time-reversal invariant
SOTI with doubly-degenerate zero-energy bound states
appearing at the intersecting corners of x-normal and y-
normal edges [4]. The last term represents the Zeeman field
which breaks time-reversal symmetry. Here we first consider that
the two layers have the same Zeeman field, corresponding to a
ferromagnetic type.

When the Zeeman field is along the z direction, i.e., B = (Bx, By,
Bz) = (0, 0, Bz), besides the time-reversal symmetry, one can find
that the chiral symmetry is also broken. As a result, one should
expect that the doubly-degenerate bound states per corner of the
time-reversal invariant SOTI are not stable against the Zeeman
field. However, counterintuitively, this is not the case. To see this,
the most evident way is to derive the boundary Hamiltonian
explicitly since the corner states are a result of the formation of
Dirac domain walls on the boundary [12]. Without loss of
generality, let us first derive the low-energy Hamiltonian
describing the left x-normal edge. Assuming that the
minimum of the band gap is located at the time-reversal
invariant momentum Γ = (0, 0), we expand the lattice
Hamiltonian around Γ to obtain the low-energy bulk
Hamiltonian. Keeping momentum up to the second order, it
takes the form

H k( ) � ~m + t

2
k2x + k2y( )[ ]ρ0σzs0 + λkxρ0σxsx

+λkyρ0σxsy − η

2
k2x − k2y( )ρyσys0

+Bzρ0σ0sz.

(2)

where ~m � m − 2t is assumed to be negative so that the
Hamiltonian is in the SOTI phase when Bz = 0. For the
convenience of discussion, below we consider that coefficients
{t, λ, η, Bz} are all positive. When focusing on the left x-normal
edge, we can assume that the system occupies the half-infinity
plane 0 ≤ x < + ∞. Because of the breaking of translation
symmetry along the x direction, the momentum kx needs to
be replaced by − izx. Next we divide the Hamiltonian into two
parts, H = H1 + H2, where

H1 −izx, ky( ) � ~m + t

2
k2y −

t

2
z2x[ ]ρ0σzs0 − iλzxρ0σxsx,

H2 −izx, ky( ) � λkyρ0σxsy −
η

2
k2x − k2y( )ρyσys0

+Bzρ0σ0sz.

(3)

By solving the eigenvalue equation H1 (−izx, ky)ψ(x) = Eψ(x)
under the boundary conditions ψ(0) = ψ(+∞) = 0, one finds the

existence of four zero-energy bound states as long as
~m + tk2y/2< 0. The wave functions for the four zero-energy
bound states can be compactly written in the form [12].

ψρσ x( ) � N sin κ1x( )e−κ2xeikyyχρσ , (4)
where χρσ � |ρz � ρ, σy � σ, sx � �σ〉 with ρ = ±1, σ = ±1 and
�σ � −σ, the normalization constant N � 2

������������
κ2(κ21 + κ22)/κ21

√
with

κ1 �
����������������
−2 ~m/t − k2y − (λ/t)2

√
and κ2 = λ/t. The effect ofH2 on these

zero-energy bound states can be determined by projecting H2

onto the four-dimensional subspace spanned by the four
orthogonal wave functions of the zero-energy bound states.
Since the bound states from H1 have zero energy, this
projection directly determines the low-energy boundary
Hamiltonian. Put it explicitly, the low-energy Hamiltonian is
given by

HxL ;ρσ,ρ′σ′ ky( ) � ∫+∞
0

ψ†
ρσ x( )H2 −izx, ky( )ψρ′σ′ x( )dx. (5)

Simple algebra calculations reveal that under the basis
(χ11, χ1−1, χ−11, χ−1−1)T, the low-energy boundary Hamiltonian
can be expressed in terms of the Pauli matrices as

HxL ky( ) � −λkyρ0σx −
η ~m

t
ρyσz. (6)

The second term on the right hand side corresponds to the
Dirac mass induced by the η term. Remarkably, one can find that
the Zeeman field does not enter the boundary Hamiltonian. In
other words, the Zeeman field does not have a direct effect on the
boundary Hamiltonian, so the corner modes, even though both
time-reversal symmetry and chiral symmetry are broken. Using
the lattice Hamiltonian, we have numerically verified that the
doubly-degenerate zero-energy bound states per corner are
indeed robust against the Zeeman field in the weak-field
regime, as shown in Figure 1.

Although the out-of-plane Zeeman field does not directly
enter the boundary Hamiltonian, it affects the boundary
through the bulk indirectly. To be more specific, the Zeeman
field will affect the boundary states by reducing the bulk energy
gap. To see this, let us diagonalize the Hamiltonian and obtain the
energy spectrum, which reads

E k( ) � ±
�����������������������������
M k( ) ± Bz[ ]2 + λ2 sin2kx + sin2ky( )√

, (7)
where M(k) � ������������

m2(k) + η2(k)√
with m(k) = (m − t cos kx −

t cos ky) and η(k) = η(cos kx − cos ky) is introduced to shorten
the expression. Apparently, the Zeeman field will directly change
the bulk energy gap. In fact, it is easy to find that the bulk energy
gap will vanish at one or two of the four time-reversal invariant
momentums, Γ = (0, 0), X = (π, 0), Y = (0, π),M = (π, π), when Bz
takes any one of the follow-up values, ± (m ± 2t) and
±

��������
m2 + 4η2

√
. To see what kind of new topological phases can

be induced by the out-of-plane Zeeman field, let us assume thatm
is close to 2t and η is much smaller than t, then the bulk energy
gap undergoes the first closing-and-reopening transition when Bz
is increased to the value Bc,Γ ≡|m − 2t|, and the last transition
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when Bz is increased to the value Bc,M ≡|m + 2t|. Let us first
consider that Bz is approaching to Bc,Γ. Near this critical value, the
band-gap minimum is located at Γ. To simplify the follow-up
discussions, we keepmomentum only up to the linear order in the
low-energy bulk Hamiltonian. Accordingly, we have

H k( ) � ~mρ0σzs0 + λkxρ0σxsx
+λkyρ0σxsy + Bzρ0σ0sz

� Hρz�1 k( ) ⊕ Hρz�−1 k( ).
(8)

Since Hρz�±1 are the same, we can focus on just one of them,
e.g., Hρz�1. Interestingly, Hρz�1 itself takes a block diagonal form,
i.e., Hρz�1 � H+ ⊕ H− with

H+ k( ) � ~m + Bz( )σz + λkxσx + λkyσy,
H− k( ) � ~m − Bz( )σz + λkxσx − λkyσy. (9)

It is worth noting that although the mathematical forms of
Pauli matrices are same, the physical interpretation of the
Pauli matrices σi in H± is distinct to that in Eq. 1 as their
underlying bases are different. However, here we are only
interested in the topological property hiding in the
mathematical structure of the Hamiltonian. When Bz is
approaching to Bc,Γ, the energy gap for H+(k) will undergo
a closing-and-reopening transition while the one for H−(k)
remains open. Therefore, only H+(k) will undergo a
topological phase transition. Because neither time-reversal
symmetry nor chiral symmetry is conserved, the first-order
topology of H+(k) is characterized by the first-class Chern

number [91]. For a two-band model, the Chern number can be
simply determined by the formula [92].

C � − 1
4π

∫ d · zd
zkx

× zd
zky

( )
d3

d2 k, (10)

where d = (dx, dy, dz) with di being the coefficient before the Pauli
matrix σi and the integral is over the whole two-dimensional
momentum space. A simple calculation reveals that the Chern
number for H+(k) is C+ = sgn (−Bc,Γ + Bz)/2. It indicates that the
Chern number has a jumpΔC = 1 when Bz is changed from Bz < Bc,Γ
to Bz > Bc,Γ. As the Chern number is forced to be zero by time-
reversal symmetry when Bz = 0 [93], the change of Chern number
indicates that the system enters a Chern insulator phase with the
total Chern numberC = 2 after taking into account the contributions
from two layers. In other words, an out-of-plane Zeeman field can
induce a topological phase transition from a SOTI to a Chern
insulator with the increase of its strength. We have numerically
demonstrated this topological phase transition, as shown in
Figure 2. After the topological phase transition, the zero-
dimensional corner states disappear and one-dimensional chiral
edge states emerge on the boundary. It is known that higher-
order topology can naturally descend from symmetry-protected
first-order topology by appropriately lifting the protecting
symmetry [7, 8]. The above result indicates that the reverse is
also true. As a final remark of this part, we point out that
increasing the Zeeman field will drive the system from the Chern
insulator phase back to the trivial insulator phase. This is easy to see

FIGURE 1 | (Color online) The response of edge states (red lines) and corner states (red dots) to an out-of-plane ferromagnetic-type Zeeman field. Chosen
parameters are: t = 1,m = 1, λ = 1, η = 0.2. In (A) and (C), Bz = 0. In (B) and (D), Bz = 0.1. In (A) and (B), periodic and open boundary conditions are considered in the x
and y directions, respectively. The system size in the y direction isNy = 100. In (A) and (B), Γ and X denote kx = 0 and π, respectively. In (C) and (D), both x and y directions
take open boundary conditions, and the probability density files of the zero-energy eigenstates (red dots in the inset) show that they are strongly localized at the
lattice corners. A comparison of (A) and (C) with (B) and (D) reveals that the out-of-plane Zeeman field has negligible effects on the edge states and corner states in the
weak-field regime.
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since the system will go to the topologically trivial atomic limit when
the strength of Zeeman field goes to infinity.

Let us now turn our attention to the case with the Zeeman field
lying in the xy plane, i.e., B = (Bx, By, 0). Unlike the out-of-plane
Zeeman field, the in-plane Zeeman field does not break the chiral
symmetry. It is worth noting that due to the simplicity of the
Hamiltonian, there are two chiral symmetry operators, ρyσxsz and
ρ0σxsz. Since the time-reversal symmetry is broken and the chiral
symmetry is preserved, theHamiltonian falls into the symmetry class
AIII. In two dimensions, this symmetry class does not support
nontrivial first-order topological insulator phases [43, 44].

To see what kind of new topological phases can be induced by
the in-plane Zeeman field, we follow previous procedures and
firstly study the effect of Zeeman field on the boundary
Hamiltonian. Let us still focus on the left x-normal edge for
illustration. Similarly, the contribution from the Zeeman field to
the boundary Hamiltonian is determined by

HZ( )ρσ,ρ′σ′ � ∫+∞
0

ψ†
ρσ x( ) ρ0σ0 Bxsx + Bysy( )[ ]ψρ′σ′ x( )dx

� −Bx ρ0σz( )ρσ,ρ′σ′. (11)

Adding this contribution, the boundary Hamiltonian on the
left x-normal edge becomes

HxL ky( ) � −λkyρ0σx −
η ~m

t
ρyσz − Bxρ0σz. (12)

Since [ρy,HxL] � 0, the Hamiltonian can be decomposed as
the direct sum of two parts, HxL � Hρy�1 ⊕ Hρy�−1, where

Hρy�±1 ky( ) � −λkyσx − Bx ±
η ~m

t
( )σz. (13)

Apparently, the x-component of the in-plane Zeeman field
directly changes the boundary Dirac mass on the x-normal edges.
Similar analysis can also find that the y-component of the in-plane
Zeeman field directly changes the boundary Dirac mass on the y-
normal edges in the same way. According to Eq. 13, it is easy to find
that the Dirac mass of one of the branches vanishes when
Bx � ± η ~m/t. This means that increasing the field strength from

zero will induce a closing-and-reopening transition in the boundary
energy gap, leading to the occurrence of a boundary topological
phase transition [94]. Since the Zeeman field neither breaks the
chiral symmetry nor changes the sign of Diracmass when its value is
smaller than the critical value (|η ~m/t|), the doubly-degenerate
corner states are also expected to be robust in the weak-field
regime as long as the system size is sufficiently large so that the
wave functions of corner states remain well separated in real space.
When the Zeeman field is strong enough to induce a closing-and-
reopening transition in the boundary energy gap, the sign change of
Dirac mass will change the topological property of the domain walls
at the corners. Accordingly, the number of corner states will change
and the locations of corner states will depend on the direction of
Zeeman field.

To show the evolution of boundary physics with respect to
Zeeman field more explicitly, we numerically diagonalize the
Hamiltonian under different boundary conditions. In Figures
3A–C, the energy spectra correspond to a cylindrical geometry
with periodic boundary condition in the x direction and open
boundary condition in the y direction. It is readily seen that the
boundary energy gap undergoes a closing-and-reopening transition
with the increase of Zeeman field, in agreement with the above
analytical analysis. In Figures 3D–F, the number and locations of
corner states are shown. The parameters in Figures 3D–F are
respectively the same as Figures 3A–C, what is different is that
open boundary conditions are adopted in both the x and y directions.
It is readily found that the eight zero-energy corner states do remain
robust in the weak-field regime. After the boundary topological
phase transition, the number of zero-energy corner states is reduced
by half. Interestingly, the remaining four zero-energy bound states
are found to appear only at two of the four corners, with each one of
the two corners hosting two zero-energy bound states. In Figures
3C,F, as Bx = − By is considered, the result indicates that the zero-
energy bound states appear at the two corners whose connecting line
is perpendicular to the direction of Zeeman field, implying that the
positions of corner states can be manipulated by controlling the
direction of Zeeman field.

Since the Dirac mass on the x(y)-normal edge is affected by the
x(y)-component of the in-plane Zeeman field, the evolutions of the
corner modes can be briefly described as follows. For the convenience

FIGURE 2 | (Color online) Bulk topological phase transitions induced by an out-of-plane Zeeman field. Chosen parameters are: t = 1,m = 1.8, λ = 1, η = 0.2, Ny =
100. (A) Bz = 0.1, the edge spectrum remains gapped as Bz is smaller than the critical value Bc,Γ = 0.2. (B) Bz = 0.4, with Bz beyond the critical value, the edge spectrum
becomes gapless, indicating the occurrence of a topological phase transition from a SOTI with corner states to a Chern insulator with chiral edge states.
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of discussion, we also consider Bx and By to be positive and
define Mη � |η ~m/t|. When Bx <Mη and By <Mη, each corner of
the square-lattice sample harbors two zero-energy bound states
as the Zeeman field is not strong enough to induce a boundary
topological phase transition. When Bx < Mη < By or By < Mη <
Bx, a sign change in Dirac mass has occurred on the y-normal or
x-normal edges. As a result, the number of Dirac domain walls
per corner will reduce from two to one, resulting in a new SOTI
with one zero-energy bound state per corner. WhenMη < Bx and
Mη < By, the sign change in Dirac mass has occurred on both x-
normal and y-normal edges. As we have illustrated in Figure 3F,
for this case, two of the four corners harbor zero-energy bound
states, and the positions of corner states are determined by the
direction of Zeeman field. In Figure 4, the number and locations
of zero-energy bound states are shown for the case with By <Mη

< Bx. One can find that each corner does harbor one zero-energy
bound state, in agreement with the above analysis.

For the in-plane Zeeman field, so far we have only investigated its
effect on the boundary. When the in-plane Zeeman field is strong
enough, we find that the system will be driven into a topological
semimetal phase. To see this, let us consider that the Zeeman field is
in the x direction. Accordingly, the bulk energy spectrum is

E k( ) � ±

������������������������������������������������
M2 k( ) + λ2 sin2kx

√
± Bx[ ]2 + λ2 sin2ky

√
. (14)

If we assume that the value of m is close to 2t so that the
minimum of band gap is located at Γ, then the system becomes a
topological semimetal when Bx becomes larger than Bc,Γ = |m −
2t|, with two nodal points appearing on the ky = 0 axis. As the
chiral symmetry is conserved, the topological properties of these
nodal points are characterized by the winding number defined
along a closed contour enclosing the nodal point [95]. Due to this
topological protection, the nodal points are robust against
perturbations respecting chiral symmetry and can only be
annihilated pairwise.

If one views the system as a one-dimensional system by taking
one of the momentum as a parameter, then the nodal points can
also be viewed as critical points across which the winding number
has a discrete change. Since a one-dimensional insulator with
nontrivial winding number harbors zero-energy bound states on
its two ends, this implies that the two-dimensional topological
semimetal harbors flat-band edge states, as shown in Figure 5A.
Remarkably, we find that even though the system becomes a
semimetal, sharply-localized corner states can still appear if the
Zeeman field is applied along the diagonal direction of the square
geometric sample, as shown in Figures 5B–D.

Above the Zeeman field has been assumed to be same in the
two layers, corresponding to a ferromagnetic type, in the
following we extend the study to the antiferromagnetic case
for which the Zeeman fields in the two layers are opposite.
Accordingly, the Hamiltonian takes the form

FIGURE 3 | (Color online) Boundary topological phase transitions induced by an in-plane ferromagnetic-type Zeeman field. Chosen parameters are: t = 1,m = 1, λ =
1, η = 0.2. For the chosen set of parameters, the critical value for the boundary topological phase transition is Bc � |η ~m/t| � 0.2. In (A) and (D), Bx = By = 0.05. As both Bx

and By are smaller than Bc, the eight zero-energy corner states remain robust (the observable energy splitting for four corner states originates from the enhancement of
finite-size effects as a result of the decrease in the boundary energy gap). In (B) and (E), Bx = By = 0.2, the boundary energy spectrum becomes gapless at this
critical point. In (C) and (F), Bx = − By = 0.4. The boundary spectrum becomes gapped again, but the number of zero-energy bound states is reduced by half, indicating
the realization of a new SOTI phase. In (A–C), periodic and open boundary conditions are considered in the x and y directions, respectively, withNy = 100. In (D–F), both x
and y directions take open boundary conditions.
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H k( ) � m − t cos kx − t cos ky( )ρ0σzs0 + λ sin kxρ0σxsx
+λ sin kyρ0σxsy + η cos kx − cos ky( )ρyσys0
+ρzσ0B · s.

(15)

Similarly, let us first focus on the out-of-plane case. It is easy to
find that the chiral symmetry remains for this case, with the
remaining chiral symmetry operator being ρyσxsz. According to
our previous discussion, the existence of chiral symmetry implies
that the antiferromagnetic Zeeman field cannot drive the
Hamiltonian into a Chern insulator phase. As the chiral
symmetry still remains, the doubly-degenerate corner states
are robust in the weak-field regime. By projecting the Zeeman
field onto the subspace spanned by boundary states, one can find

that it still does not enter the Hamiltonian. In other words, the
out-of-plane antiferromagnetic Zeeman field cannot induce
boundary topological phase transitions. Nevertheless, the
topological property of the Hamiltonian can be changed with
the increase of Zeeman field. This can be simply inferred from the
bulk energy spectrum which reads

E k( ) � ±
�����������������������������������
m k( ) ± Bz[ ]2 + η2 k( ) + λ2 sin2kx + sin2ky( )√

. (16)
With the increase of Zeeman field, the bulk energy gap will
undergo closing-and-reopening transitions. To be specific, let us
again assume the value ofm to be close to 2t so that the minimum
of band energy gap is located at Γ. Accordingly, with the increase

FIGURE 4 | (Color online) Chosen parameters are: t = 1,m = 1, λ = 1, η = 0.2, Bx = 0.4, By = 0. (A) Ny = 100, the edge spectrum (red lines) on the y-normal edges
does not split as the y-component of the Zeeman field is chosen to be zero. (B) Each corner of the open-square geometric lattice harbors one zero-energy bound state.

FIGURE 5 | (Color online) Topological semimetal phases induced by an in-plane ferromagnetic-type Zeeman field. Chosen parameters are: t = 1,m = 1.8, λ = 1, η =
0.2, Bx = By = 0.5. (A) Ny = 100, the energy spectrum under a cylindrical geometry shows the existence of flat-band edge states. Under an open-square geometry, (B)
shows that the probability density profiles of the four middle eigenstates (the four red dots in the inset) are sharply localized at the corners even though the bulk is gapless.
(C) and (D) show the probability density profiles of some other eigenstates (also highlighted by red dots) with energies close to zero.

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8663477

Zhuang and Yan Topological Phase Transitions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


of Zeeman field, the first transition occurs at Bz = Bc,Γ = |m − 2t|.
When Bz > Bc,Γ, the Hamiltonian enters a new SOTI phase with
each corner harboring one zero-energy bound state, as shown in
Figure 6.

When the antiferromagnetic-type Zeeman field lies in the xy
plane, similar to the ferromagnetic-type case, the chiral symmetry
also remains. However, now the Zeeman field will directly enter
the boundary Hamiltonian. For instance, using the same
derivation, we find that the low-energy boundary Hamiltonian
for the left x-normal edge becomes

HxL ky( ) � −λkyρ0σx − η ~m

t
ρyσz − Bxρzσz. (17)

A remarkable feature of the above Hamiltonian is that the
Dirac masses induced by the η term and the Zeeman field become
anticommutative. As the presence of an additional
anticommutative term induces an overall mass on the
boundary, the corner states are thus expected to be split away
from zero energy. Through numerical calculations, we find that in
general this is indeed the case, as shown in Figures 7A,C.
However, when the Dirac masses induced by the Zeeman field
and the η term are fine-tuned to have the same ratio on two near-
neighboring edges, then their intersecting corner will harbor
zero-energy bound states, as shown in Figures 7B,D. This
result can be simply understood by noting that when the two
Dirac masses with different origins have the same ratio on two
near-neighboring edges, in fact we can redefine the Pauli matrices
while maintaining their anticommutative relationship. By such a

procedure, the boundary Hamiltonian reduces to the standard
Dirac-Hamiltonian form with only one mass term which is
known to support zero-energy bound states when the mass
term has a domain-wall configuration in real space [96].

Since without fine tuning the zero-energy bound states are
immediately gapped by the antiferromagnetic-type in-plane
Zeeman field, the evolution of boundary physics is less
interesting compared to the case with ferromagnetic-type in-
plane Zeeman field. In addition, we find that the
antiferromagnetic-type in-plane Zeeman field cannot drive the
system into a topological semimetal phase. The increase of the
field strength only drives the system to another trivial insulator
phase, therefore, from the perspective of topology, the bulk
physics is also less interesting compared to the case with
ferromagnetic-type in-plane Zeeman fields.

3 TOPOLOGICAL PHASE TRANSITIONS
INDUCED BY ZEEMAN FIELD IN
THREE-DIMENSIONAL SOTIS
As the increase of dimension enriches the allowed types of
boundary states, it is natural to expect that the Zeeman field
can induce a diversity of topological phases transitions and exotic
patterns of boundary states in a three-dimensional SOTI. To
generalize the study, we also follow the minimal-model approach
as adopted in two dimensions. To be specific, we consider that the
minimal Hamiltonian takes the form

FIGURE 6 | (Color online) Bulk topological phase transitions induced by an out-of-plane antiferromagnetic-type Zeeman field. Chosen parameters are: t = 1,m = 1,
λ = 1, η = 0.2. For the chosen set of parameters, Bc,Γ = 1. In (A) and (C), Bz = 0.1 < Bc,Γ. The probability density profiles of the middle eight eigenstates and their
eigenvalues (red dots) show that the eight zero-energy corner states are robust in the weak-field regime. In (B) and (D),Bz = 1.1 >Bc,Γ. The number of zero-energy corner
states indicates that the system enters a new SOTI phase with one bound state per corner. Ny = 100 in (A) and (B).
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H k( ) � m − t ∑
i�x,y

cos ki − tz cos kz⎛⎝ ⎞⎠ρ0σzs0

+λ ∑
i�x,y,z

sin kiρ0σxsi

+η cos kx − cos ky( )ρyσys0 + ρ0σ0B · s.

(18)

In this part, we will focus on the ferromagnetic-type Zeeman
field as the study in two dimensions tells us that it can induce
more interesting physics than the antiferromagnetic type. For this
Hamiltonian, it realizes a time-reversal invariant SOTI when the
last term representing the time-reversal symmetry breaking
Zeeman field is absent and the parameters satisfy λ ≠ 0 and η
≠ 0, and |2t − tz| < |m| < 2t + tz. If open boundary conditions are
taken in both the x and y directions, the second-order topology is
manifested through the appearance of a pair of helical states on
each of the z-direction hinges [3]. It is worth noting that when the
open boundary condition is only applied in the z direction, the
top and bottom surfaces still harbor gapless Dirac cones since the
η term cannot open a gap at the time-reversal invariant
momentum at which the Dirac cones are located.

In parallel to the two-dimensional case, we first consider that
the Zeeman field is along the z direction. In the weak-field regime,
the main effect of the Zeeman field is to open a gap on the top and
bottom surfaces. Following the same analysis as done in two
dimensions, it is easy to figure out that the Zeeman field has little
impact on the helical states on the z-direction hinges even though
the time-reversal symmetry is broken. To be more explicit, note
that the three-dimensional Hamiltonian can be viewed as the
stacking of an infinite number of two-dimensional layers in

momentum space. In particular, the Hamiltonians at the two
high-symmetry planes with kz = 0 and π just reduce to the form of
the previously studied two-dimensional Hamiltonian. According
to the results in two dimensions, an out-of-plane Zeeman field
does not directly affect the corner states in the weak-field regime,
for the same reason, the helical states propagating on the z-
direction hinges will remain stable in the weak-field regime.
Because of the opening of a gap on the top and bottom
surfaces and the stability of the helical states on the z-
direction hinges against the z-direction Zeeman field, the
helical states will no longer flow in the whole surface when
they flow towards the top and bottom surfaces as the low-
energy channels on these two surfaces have been emptied by
the Zeeman field, instead they will be confined to flow along the x-
direction or y-direction hinges so that the low-energy transport
channels can form closed paths along the hinges.

With the increase of Zeeman field, we have shown that in two
dimensions a Chern insulator with chiral edge states will be
realized after the bulk energy gap undergoes a closing-and-
reopening transition. For the Hamiltonian in Eq. 18, because
of the increase in dimension, we find that the bulk energy gap
does not immediately reopen when it is reduced to zero by the
Zeeman field. Instead, the system enters a Weyl semimetal phase
for a broad range of parameters, with the Weyl points located at
some high-symmetry kz axes. It is known that a hallmark of the
Weyl semimetal is the Fermi arcs connecting the projections of
Weyl points in the surface Brillouin zone [88]. Furthermore, if
one treats the momentum kz as a parameter, the Weyl points
correspond to critical points separating regions with C (kz) = 0
from the ones with C (kz) ≠ 0. Interestingly, this raises the

FIGURE 7 | (Color online) The effect of an in-plane antiferromagnetic-type Zeeman field on the corner states. Chosen parameters are: t = 1,m = 1, λ = 1, η = 0.2. In
(A) and (C), Bx = 0.2, By = 0. The Zeeman field shifts the energies of the corner states away from zero. In (B) and (D), Bx = By = 0.2. There are four corner states with
energies accidentally pinned to zero due to the special choice of the Zeeman field. Ny = 100 in (A) and (B).
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possibility of the coexistence of helical hinge states characterizing
second-order topology and surface Fermi arcs characterizing
first-order topology. In other words, hybrid-order topology is

possible in this system. To see this, without loss of generality, let
us assume that H (kx, ky, kz = 0) realizes a SOTI with zero-energy
corner states andH (kx, ky, kz = π) realizes a trivial insulator. If the

FIGURE 8 | (Color online) Hybrid-order Weyl semimetal phases. Chosen parameters are: t = 1, tz = 0.5, m = 1.6, λ = 1, η = 0.2. (a) The energy spectrum is for a
geometry with open boundary condition in the x direction (Nx = 100) and periodic boundary conditions in both the y and z directions. The energy spectrum is plot along
two high symmetry lines in the surface Brillouin zone. Y, Γ, Z denote the time-reversal invariant momentums (ky, kz) = (π, 0) (0, 0) (0, π), respectively. The zero-energy flat
bands in red in (A) indicate the appearance of surface Fermi arcs on the x-normal surfaces. (B) The energy spectrum for a geometry with periodic boundary
condition only in the z direction. The system size in the x and y directions isNx =Ny = 20. The crossing of the red lines at kz = 0 is a manifestation of the existence of helical
hinge states.

FIGURE 9 | (Color online) The evolution of gapless hinge states with respect to Zeeman field. Chosen parameters are: t = 1, m = 1.6, λ = 1, η = 0.2. In (A–D), all
energy spectra are for a geometry with periodic boundary condition only in the z direction. The system size in the x and y directions is fixed toNx =Ny = 20. (A) tz = 1, Bx =
By = 0, the four-fold degeneracy of the crossing red lines reveals that each z-direction hinge harbors a pair of helical states. (B) tz = 1, Bx = By = 0.28, the surface energy
gap vanishes at this critical value. (C) tz = 1, Bx = By = 0.4, the degeneracy of the crossing red lines is reduced by half, corresponding to the transition from helical
hinge states to chiral hinge states. (D) tz = 0.5, Bx = By = 0.25, chiral hinge states remain even though the energy spectrum at the kz = π plane becomes gapless.

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 86634710

Zhuang and Yan Topological Phase Transitions

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


energy gap ofH (kx, ky, kz = π) is smaller than that ofH (kx, ky, kz =
0), then H (kx, ky, kz = π) can first underdo a topological phase
transition and enter a Chern insulator phase. Accordingly, it is clear
that there exists a window within whichH (kx, ky, kz = 0) remains to
be a SOTI due to its stability against the Zeeman field and H (kx, ky,
kz = π) becomes a Chern insulator with chiral edge states. In
Figure 8, we have numerically demonstrated the above picture. It
is worth noting that this class of hybrid-orderWeyl semimetal phase
is distinct to those so-called higher-order Weyl semimetals in which
the hinge states are neither helical nor chiral [97, 98].

When the Zeeman field becomes aligned in the xy plane,
according to the study in two dimensions one can simply infer
that the helical hinge states are stable against the Zeeman field
when its strength is smaller than a critical value, and they will
transform into chiral hinge states when the strength of the
Zeeman field goes beyond the critical value at which the
energy gaps on the x-normal or y-normal surfaces get closed.
In Figures 9A–C, we have numerically demonstrated this
expected evolution. Similar findings have also been obtained
based on low-energy boundary theories in Ref. [78].

Apparently, because chiral hinge states can exist in the strong-
field regime,Weyl semimetal phases with hybrid-order topology can
also be realized when the parameters satisfy appropriate conditions.
For an in-plane Zeeman field, according to the energy spectrum of
the Hamiltonian one can infer that theWeyl points are located at the
kz = 0 or π plane when the Zeeman field is strong enough to drive the
system into a gapless phase, as shown in Figure 9D. Accordingly,
Fermi arcs will appear on the top and bottom z-normal surfaces,
indicating a different pattern of the distribution of the boundary
states compared to the case with a z-direction Zeeman field.

4 DISCUSSIONS AND CONCLUSION

For first-order topological phases protected by time-reversal
symmetry, the one-dimensional lower boundary states are
generally gapped by the Zeeman field due to the breaking of
time-reversal symmetry [7, 8]. However, this picture cannot be
simply generalized to time-reversal invariant higher-order
topological phases. The underlying reason is that the gapless
bound states in a higher-order topological phases live in a
subspace of the total Hilbert space of the bulk Hamiltonian.
While the Zeeman field directly breaks the time-reversal
symmetry of the bulk Hamiltonian, in general it cannot
induce direct couplings between different sectors (e.g., for two
corner states, two sectors with spin-up polarization and spin-
down polarization) of the subspace [99], so the gapless bound

states remain stable. Nevertheless, the Zeeman field will change
the localization length of the wave functions for bound states
either through the reduction in boundary energy gap or through
the reduction in bulk energy gap. When the boundary or bulk
energy gap vanishes, the overlap of wave functions will lead to the
annihilation of some or all of the bound states, corresponding to
the occurrence of boundary or bulk topological phase transitions.

In this work, we have systematically investigated the possible
topological phase transitions and the associated evolution of
boundary bound states when a time-reversal invariant SOTI is
subjected to a Zeeman field. In both two and three dimensions, we
find that the bound states characterizing the second-order
topology are generally stable in the weak-field regime. With
the increase in field strength, both bulk and boundary
topological phase transitions can be induced. Depending on
the direction, the strength, as well as the type of Zeeman field,
the boundary bound states will change their total number or the
type across the topological phase transitions. Remarkably, we find
that corner states can exist even when the system becomes a
topological semimetal in two dimensions. In addition, in three
dimensions we find that the Zeeman field can induce hybrid-
order Weyl semimetal phases in which surface Fermi arcs and
gapless hinge states coexist. Our study reveals that the Zeeman
field can induce very rich physics in higher-order topological
materials, and the results are applied to both quantum materials
and metamaterials.
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