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Fluorescence spectroscopy has been demonstrated to non-invasively detect changes
related to precursors of epithelial cancers, which include decreased fluorescence emission
from collagen crosslinks in the connective tissue and increased fluorescence emission
from reduced nicotinamide adenine dinucleotide (NADH) in the epithelial tissue. We
implemented two-layer forward Monte Carlo models to predict diffuse reflectance and
fluorescence intensities at the surface of cervical mucosa given tissue absorption,
scattering, and fluorescence properties. The absorption and scattering coefficients of
the upper epithelial layer and underlying connective tissue, as well as the epithelial
thickness, were estimated from diffuse reflectance spectra using iterative curve fitting.
The estimated parameters were used by the fluorescence forward model to obtain
quantities needed to relate the intrinsic fluorescence of tissue fluorophores to
measured fluorescence intensity. The emission spectra of tissue fluorophores were
modeled by skew normal functions, and together with the efficiency of the
fluorophores were extracted by fitting the modeled fluorescence spectra to measured
spectra using the genetic algorithm. Compared to conventional one-layer forward models,
the proposed two-layer models showed significantly smaller errors both in tissue
properties estimated from simulated spectra, and in spectral errors of fitting to in-vivo
data. Results of a preliminary in-vivo study showed that in seven of eight subjects with
histopathologically confirmed dysplasia, the NADH-to-collagen intrinsic fluorescence ratio
estimated from the biopsied site was at least two times greater than that estimated from
the normal site on the same subject. The ability to more accurately estimate layer-specific
intrinsic fluorescence from cervical mucosa could aid the detection of precancers in the
cervix as well as other sites including oral and esophageal mucosae.
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1 INTRODUCTION

Fluorescence spectroscopy of in-vivo tissue involves excitation of
tissue autofluorescence with ultraviolet to visible light, collection
of fluoresce photons at multiple wavelengths from the tissue
surface, and analysis of the acquired spectra. It is considered safe
if the excitation photon energy and power density are under the
maximum permissible exposure value. Results of many in-vivo
studies showed differences in the intensity and/or shape of
fluorescence emission from mucosa in more accessible organ
sites such as in the digestive tract and urogenital system, which
may provide useful information for the early detection of
epithelial cancers or their precursors [1, 2]. Non-invasively
evaluating the possibility of tissue progressing into cancer in
the near future is crucial to lowering mortality and improving
quality of life for those at high risk because lesions at this
precancerous stage are mostly curable.

Major fluorophores in the mucosa that are related to
cancerization include reduced nicotinamide adenine
dinucleotide (NADH) and flavin adenine dinucleotide (FAD)
found predominately in mitochondria of cells, and the structural
protein collagen in the lamina propria [3, 4]. The former two are
involved in the metabolism of cells. During cancerization
epithelial cells increase their metabolism which is correlated
with increased NADH and decreased FAD fluorescence levels.
The fluorescent collagen crosslinks are degraded and the collagen
fluorescence intensity decreases with the progression from
normal tissue to precancers [4, 5]. The mucosa at many organ
sites is lined with a single layer of epithelial cells, and thus,
collagen fluorescence dominates the measured fluorescence
intensity from these sites. On the other hand, for mucosa
lined with stratified squamous epithelium containing multiple
layers of epithelial cells, which include the uterine cervix, oral
mucosa and esophagus, the contribution of epithelial
fluorophores (i.e., NADH and FAD) to the fluorescence
intensity measured at the tissue surface is comparable to that
of collagen in the underlying connective tissue. To exploit non-
invasive detection of fluorescence spectra as a potential
biomarker for precancers in these organ sites, it is desirable to
estimate fluorescence emissions originating from the epithelium
and the lamina propria separately.

Since the aforementioned fluorophores are embedded within
the tissue, fluorescence intensity detected at the tissue surface is
inevitably influenced by tissue scattering and absorption
properties. To extract the intrinsic fluorescence emission of
the fluorophores in tissue, various methods have been
proposed and demonstrated (see review article [6]). The main
idea is using diffuse reflectance spectra measured with the same
apparatus as that used to measure the fluorescence spectra to
model and then remove the influences of tissue elastic scattering
and absorption properties on the propagations of excitation and
fluorescence emission photons in tissue. Many studies have
proposed such correction methods based on diffusion
approximation of photon propagation in tissue [7], a photon
migration model of light propagation in tissue to relate the
fluorescence emission to diffuse reflectance [8, 9] or diffusion
approximation combined with Beer-Lambert law to account for

the attenuation due to photons passing through an upper
epithelial layer (10). These methods have been applied to
estimating the intrinsic fluorescence emission from in-vivo
measurements of mucosa in the esophagus [3], oral cavity [9],
uterine cervix [3, 11, 12], and non-melanoma skin cancers [13].

Monte Carlo (MC) simulations of fluorescence excitation and
emission processes [14] has the advantage of being flexible and
versatile because they can accommodate geometric specifications
of any experimental arrangement and tissue heterogeneity. The
main drawback of the MC method is the long computational
time. Various methods have been proposed to enhance the
efficiency of MC simulations for fluorescence such as reverse-
emission simulation where one simulation is performed to obtain
both excitation and emission processes [15], scaling of photon
pathlengths to extend simulation results for one set of scattering
and absorption coefficients into other combinations [16]. To
extract the intrinsic fluorescence of tissue fluorophores a
library or look-up table of parameters related to the photon
propagation in tissue is built from pre-simulated results and used
to find the best match between the modeled andmeasured spectra
[17, 18]. These methods have been applied to estimate the
intensity of NADH fluorescence emission from in-vivo
measurements on mice [19], intrinsic fluorescence spectra
from surgically removed breast tissue [20], and relative
concentrations of a fluorescence dye injected into mice in vivo
[19]. In the latter two studies a MC-based iterative curve fitting
method has been used to estimate the tissue absorption and
scattering coefficients from diffuse reflectance spectra measured
with the same fiber-optic apparatus as measuring the fluorescence
spectra [21].

Despite extensive phantom validations and numerous in-vivo
studies, most of the published papers have implemented methods
for extracting intrinsic fluorescence of tissue fluorophores from
single-layer or semi-infinite homogeneous tissue models. Since
both the structure and chemical composition of the epithelial
tissue are different from those of the lamina propria, the
scattering and absorption coefficients, respectively, are
different between the two types of tissues [22]. These
simplified single-layer models may lead to significant errors
when they are applied to extracting intrinsic fluorescence from
mucosa covered with a stratified squamous epithelial layer that is
typically 0.2–0.6 mm thick, because the influence of the epithelial
tissue on the detected diffuse reflectance and fluorescence spectra
cannot be ignored. A two-layer cervical mucosa tissue model has
been proposed by Weber et al. to quantify tissue scattering and
absorption coefficients, and concentrations of typical
fluorophores from reflectance and fluorescence spectra [11].
The proposed adjoint inverse method has several limitations
including the assumption of a fixed epithelial thickness,
limited ranges of tissue optical properties tested for validation,
and modeling and fitting reflectance spectra with an
approximated one-layer diffusion-based model. However, it
has been shown that using a simplified single-layer tissue
model to fit simulated diffuse reflectance spectra of a multi-
layer skin model resulted in significantly larger errors in
estimated hemoglobin concentration and oxygen saturation
(Figure 8 in [23]). On the other hand, the influence of the
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single-layer assumption on the accuracy of quantifying the
intrinsic fluorescence from mucosa covered with stratified
squamous epithelium has not been elucidated.

In this study we aimed to quantify intrinsic fluorescence of
layer-specific fluorophores in cervical mucosa from diffuse
reflectance spectra and fluorescence spectra measured using
the same fiber optic probe. We implemented two-layer MC
models of the cervical mucosa for diffuse reflectance and
fluorescence spectroscopies, respectively. The optical properties
of an upper epithelial layer and underlying lamina propria, as well
as the thickness of the epithelium, were estimated from diffuse
reflectance spectra using iterative curve fitting [24] accelerated by
forward artificial neural network (ANN) models that replaced the
original MC forward simulations [25]. The extracted optical
properties and epithelial thickness were input into the
fluorescence MC model to obtain necessary quantities to relate
the intrinsic fluorescence of tissue fluorophores to fluorescence
intensity measured at the tissue surface. Intrinsic fluorescence
including the spectral shape and efficiency of fluorescence
emission for layer-specific fluorophores in the cervical mucosa
were estimated by fitting measured fluorescence spectra using the
genetic algorithm. A flowchart is shown in Figure 1 to summarize
the procedure. The performance of the implemented two-layer
intrinsic fluorescence extraction method [26, 27] was evaluated
by simulated spectra and compared to results of applying the
conventional one-layer assumption for diffuse reflectance and
fluorescence spectroscopies. Finally, the proposed method was
applied to extracting intrinsic fluorescence of layer-specific

fluorophores in vivo from the cervical mucosa of human
subjects undergoing colposcopy examination.

2 MATERIALS AND METHODS

2.1 Movable Spectroscopy System
We constructed a movable system to collect diffuse reflectance
and fluorescence spectra from the surface of the uterine cervix
in vivo via optical fibers. Multiple source-to-detector
separations (SDSs) were used to help the measurement of
optical properties at different depths. Since the epithelial
layer is thin (less than 0.6 mm) we used fibers with a small
diameter of about 0.22 mm to achieve short SDSs and enhance
sensitivity to the epithelial tissue and lamina propria in cervical
mucosa. A schematic diagram of the system is shown in
Figure 2A. A broadband light-emitting diode (Bluloop,
Ocean Optics, Inc.) provided the source for diffuse
reflectance and an ultraviolet light-emitting diode (M365L2,
Thorlabs Inc.) with a central wavelength of 365 nm was used
for exciting fluorescence. Three fluorophores considered in
this study are collagen crosslinks, NADH, and FAD. The
absorption around 365 nm is roughly 50 and 30% of the
corresponding maximum values for NADH and FAD,
respectively. Collagen crosslinks have broad absorption
spectra in the ultraviolet wavelengths. Two mechanical
shutters were used to alternate between white light and
ultraviolet light illumination. Light paths of the two sources

FIGURE 1 | Flowchart of the proposed method to extract intrinsic fluorescence. The upper half shows iterative curve fitting to estimate μa(λ), μs(λ) and epithelial
thickness of the two-layer cervical mucosa model based on ANN forward models trained with MC simulations. The lower half shows the process to model fluorescence
spectra and estimate the efficiency and spectral shape of intrinsic fluorescence using the genetic algorithm (GA).
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were combined by a dichroic beam splitter and focused into a
source fiber (Figure 2B). The source fiber was bundled with six
detection fibers and enclosed in a stainless-steel tube with an
outer diameter of 6 mm and a length of 21 cm to make a hand-
held probe. All the fibers have a nominal core diameter of
0.2 mm and numerical aperture of 0.26. The last 2 cm of the tip
of the probe touching the tissue surface was enclosed in a
plastic tube to allow slight tilting of the tip so that the fibers’
axes were perpendicular to the tissue surface. The end face of
the seven fibers were level and fixed by epoxy to form a line
(Figures 2C,D). Three detection fibers were on one side of the
source fiber with SDS equal to 0.22, 0.41, and 0.61 mm,
respectively. The other three detection fibers were on the
other side of the source fiber with SDS equal to 0.215, 0.45,
0.73 mm, respectively (Figures 2D,E). The other end of the six
detection fibers were arranged in a line with a dummy fiber
between two adjacent detection fibers and epoxied into a
rectangular acrylic block (Figure 2B). The end face of the
detection fibers was imaged onto the entrance slit of an
imaging spectrograph (SP-2150i, Princeton Instruments)
and spectra were acquired by a complementary metal-oxide-

semiconductor camera (GS3-U3-23S6M-C, Point Grey). A
long-pass filter with a cutoff wavelength of 400 nm was
placed before the entrance slit to block the excitation light
from the ultraviolet source during the measurement of
fluorescence spectra. Fluorescence spectra were measured
and analyzed in the wavelength range of 408–650 nm, which
covers expected emission spectra of collagen crosslinks,
NADH, and FAD in the ranges of 380–470 nm,
400–520 nm, and 500–600 nm, respectively. The optical
components plus a computer, a monitor, and an isolation
transformer were enclosed in a three-rack utility cart
(Figure 2F).

2.2 Two-Layer Tissue Models of Diffuse
Reflectance Spectroscopy
2.2.1 Tissue Optical Properties
We implemented a two-layer tissue model using MC simulations
accelerated by graphics processing units (GPUs) [28]. The
modified code has been verified by good matches between our
results and those obtained with the original code using the same

FIGURE 2 | (A) A schematic diagram of the spectroscopy system used (B) A photograph of the source fiber and detection fibers at the system end (C) A
photograph of the end surface of the probe at the tissue/sample end (D) The probe side view interacts with the sample (E) A schematic diagram showing the
arrangement of a source fiber (#1), three detection fibers (#2-#4) with SDS of 0.22, 0.41, and 0.61 mm respectively to the left of the source fiber, and another three
detection fibers (#5-#7) with SDS of 0.215, 0.45, 0.73 mm respectively to the right of the source fiber (F) A photograph of the custom-built movable spectroscopy
system. A green arrow indicates the location where the probes come out of the cart.
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optical properties, and is available at https://github.com/
kaoben2731/MCML_GPU. The upper layer representing the
epithelial layer had a thickness between 0.1 and 0.6 mm. The
lower layer was assumed semi-infinite in thickness. All optical
properties were assumed to be uniform within each layer. The
absorption coefficients (μa) were expressed as functions of
wavelength depending on absorbing substances in the
corresponding tissue. In the epithelial layer the absorption is
mainly due to proteins and nucleotides. We set μa(λ) of the
epithelial layer to be fixed according to values experimentally
measured from epithelial cells [29]. The μa(λ) of the lamina
propria was assumed to be

μa low(λ) �
2.303
MWHb

CHb[StO2 · εoxyHb(λ) + (1 − StO2) · εHb(λ)]
+ CCol · μa Col(λ).

(1)
whereMWHb is the average molecular weight of hemoglobin, CHb

is the concentration (g/L) and St O 2 is the oxygen saturation of
hemoglobin in tissue, εoxyHb(λ) and εHb(λ) are molar extinction
coefficients of oxyhemoglobin and deoxyhemoglobin respectively
[30], CCol is the volume fraction of collagen in tissue, and μa_Col(λ)
is the absorption coefficient of 100% collagen [31]. The scattering
coefficient (μs) of bulk tissue has been typically expressed and
measured in terms of the reduced or transport scattering
coefficient (μs’) which is related to μs by μ′s(λ) � μs(λ)(1 − g)
with an anisotropy factor g. The μs′(λ) of soft tissue such as
mucosae can be approximated as

μ′s(λ) � μs(λ)(1 − g) � A · λ−K, (2)
where A is related to the density or strength of scattering objects
and K is related to the structure and size of the scattering objects
in tissue. Using the wavelength dependences of μa(λ) and μs′(λ)
enables the analysis of broadband spectra with a fixed number of
unknown parameters, and enhances the robustness of fitting [32].
The refractive index of both epithelial and lamina propria layers
was assumed to be 1.4. The scattering phase function of the
epithelial layer was adopted from [33] which estimated the
scattering phase function of cervical nuclei by finite-difference
time-domain simulations. The anisotropy factor corresponding
to this scattering phase function was 0.94. Our own investigations
using finite-difference time-domain simulations found a similar
scattering phase function from epithelial cells [34]. For the lower
layer the conventional Henyey-Greenstein phase function was
used with g = 0.885 [35].

2.2.2 Extracting Tissue Parameters From Diffuse
Reflectance Spectra
The spatially resolved diffuse reflectance that could be measured
by the system described in Section 2.1 was modeled by
modifying multi-layered MC code implemented to run with
GPUs [28]. Initial location and direction of photon packets were
randomly sampled from the area of the source fiber and the
angular range corresponding to the fiber numerical aperture,
respectively. When photon packets reached tissue surface after

going through scattering and absorption events in tissue, they
were detected if the radial location was within the radial range of
a detection fiber, and the exit direction was within the
acceptance angle of the fibers. To further improve the speed
of the forward MC model which obtained diffuse reflectance
given μa_up, μa_low, μs_up, μs_low, and Th, we trained artificial
neural networks (ANNs) according to [25]. A separate ANN
model was trained for each detection fiber since the spatially
resolved reflectance varies substantially across the used SDSs.
We used MC simulations to generate 45,000 sets of reflectance
data with randomly chosen values of the five parameters. Ranges
for μa_up, μa_low, μs_up, μs_low, and Th are 0.16–5 cm−1,
0.05–117 cm−1, 13–990 cm−1, 13–820 cm−1, and
0.09–0.62 mm, respectively. The ranges were determined
using direct MC simulations in iterative curve fitting of
selected in-vivo diffuse reflectance spectra which presented
the highest or lowest intensity among the acquired spectra.
We used Neural Network Toolbox inMatlab® (TheMathWorks,
Inc.) to train fully connected networks with two hidden layers,
each consisting of 150 neurons. The pre-simulated reflectance
data were split into 70, 15, and 15% for training, validation, and
testing.

Unknown parameters to be extracted from diffuse reflectance
spectra included one set of A and K for each layer, CHb, StO2, and
the thickness of the upper layer (Th). Iterative curve fitting was
used to find the set of unknown parameters that resulted in the
smallest root-mean-square error between modeled spectra and
measured spectra [24]. A nonlinear least square solver, fmincon,
provided in Matlab® was used because it allowed setting
constraints on A and K values so that the corresponding μs_up
and μs_low were within the ranges set for building the ANN
models. The parameter K for the upper and lower layer was
constrained to be within 0.2–1.8 and 0.3–1.8, respectively. In
addition, CHb, St O 2, and Th were restricted within the ranges of
0.4–6.0 g/L, 50%–100%, and 0.1–0.6 mm, respectively. The ranges
of μs′(λ) searched in the iterative curve fitting are illustrated in

FIGURE 3 | Ranges of μs′(λ) for the upper and lower layers that are
covered in the iterative curve fitting of reflectance spectra.
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Figure 3. Since iterative curve fitting results highly depend on
initial values of target parameters, we generated a database of
diffuse reflectance spectra using uniformly sampled values of the
target parameters. Each set of target spectra, simulated (Section
2.4) or experimentally measured, was compared to the database
to select five sets of target parameters that resulted in the smallest
spectral errors. Iterative curve fitting was performed five times
using the five sets of parameters from the database as initial
values. The fitting results with the smallest root-mean-square
spectral error was taken as the extracted optical parameters.

2.3 Tissue Fluorescence Model
2.3.1 Two-Layer MC Fluorescence Model
The fluorescence process involves the excitation of a
fluorophore to a higher electronic energy state by an
excitation photon, and the subsequent emission of a
fluorescence photon where the probability of emission is
called quantum yield. When fluorophores in tissue are
concerned, the propagation of both the excitation photon
and the emitted photon is typically treated with the radiative
transport theory for quantitative analysis [36]. Here the
numerical modeling method, MC simulations, of radiative
transport is adopted for its accuracy and versatility over the
diffusion approximation. Since the property of a fluorophore, or
the intrinsic fluorescence, is independent of the surrounding
tissue or the hardware arrangement, it can be separated from the
parts that describe the propagations of excitation and emitted
photons in tissue [16, 17]. If the geometry and the scattering and
absorption coefficients of the tissue are known, one can perform
MC simulations to model the fluorescence spectrum that can be
detected by a given detector setup. Then, the intrinsic
fluorescence of tissue fluorophores can be determined by
fitting the modeled fluorescence spectrum to the
experimentally measured spectrum, which is typically
referred to as an inverse problem.

The fluorescence MC simulations were performed using a
custom-written program that utilized GPUs for acceleration.
The code is available on GitHub (https://github.com/md703/
MCF_GPU). The in-house developed code was verified by
performing simulations using optical coefficients listed in
Table 1 and Table 2 in [15]. The errors were less than 1.3%.
We used the absorption coefficient (μa) and scattering
coefficient (μs) for the excitation wavelength, λx, to track the
random walk of a fixed-weight excitation photon in tissue. If the
photon was absorbed, we assumed that a fluorescence photon
with an initial weight of one was emitted isotropically from the
site of absorption and started tracking the random walk of the
emitted photon using μa and μs for the emission wavelength λm.

To reduce the variance of simulations, the weight of the emitted
photon was attenuated by a factor of μs/(μs+μa) at each
scattering event and terminated by the Russian-roulette
technique. The weight of an emitted photon reaching a
detector within its acceptance angle was recorded. The sum
of all detected photon weights was divided by the total number
of launched excitation photons to get the simulated fluorescence
signal, Fsim. The tracking of emitted fluorescence photons was
repeated for each emission wavelength in the range of interest to
produce a spectrum Fsim (λm). The total number of launched
excitation photons was 108, which resulted in a coefficient of
variation about 1.5% over five repeated simulations with 108

photons each.
The fluorescence MC simulation results (Fsim) can be related

to the experimentally detected fluorescence spectrum at the tissue
surface as

Fmeas(λm) � Fsim (λm) ·
μa fl(λx)
μa all(λx)

· ϕfl · Pfl(λm). (3)

where μa_fl and μa_all denote μa of a fluorophore and the tissue
respectively, ϕfl is a scaler representing the quantum yield, and
Pfl (λm) is a probability distribution function representing the
shape of the emission spectrum of the fluorophore. Since only
one light source was used to excite the tissue fluorophores, we
assumed a constant excitation wavelength in the simulations,
and thus λx was omitted from Fsim and Fmeas. To improve the
simulation efficiency, a fluorescence photon was initiated every
time an excitation photon was absorbed in tissue. In actual
experiments, however, only a fraction of the absorbed
excitation photons was absorbed by a fluorophore, and only
a fraction of the absorbed photons was converted into
fluorescence emission (i.e., quantum yield) by the
fluorophore. Therefore, factors were added to Eq. [3] to
account for these discrepancies. The intrinsic fluorescence
as expressed in Eq. [3] comprises two parts: the strength or
intensity of the emission, and the shape of the emission
spectrum. The former is a scaler consisting of two
parameters that can be combined into one parameter,
namely fluorescence efficiency [10].

Efl � μa fl(λx) · ϕfl (4)
since μa and the quantum yield of the fluorophore in tissue cannot
be quantified individually from the measured fluorescence
intensity.

TABLE 1 | Ranges of parameters used in the skew normal functions to produce
fluorescence emission spectrum.

Parameter NADH FAD Collagen

μ 400–477 434–505 371–444
σ 65–70 100–120 30–120
α 3–5 3–5 -5–20

TABLE 2 | Concentrations of the materials to construct calibration phantoms for
reflectance.

No Polystyrene(μm−3) Hb(μM)

T1 0.1456 3.16
T2 0.0728 3.16
T3 0.0539 3.16
T4 0.0364 3.16
T5 0.0214 6.32

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8654216

Lin et al. Extracting Tissue Layer-Specific Intrinsic Fluorescence

https://github.com/md703/MCF_GPU
https://github.com/md703/MCF_GPU
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


For multi-layer tissue models such as the two-layer cervical
mucosa model described here, contributions of layer-specific
fluorophores to the detected fluorescence at the tissue surface
can be expressed as

FNADH(λm) � Fsim up(λm) · ENADH

μa up(λx)
· PNADH(λm), and (5)

FCol(λm) � Fsim low(λm) · ECol

μa low(λx)
· PCol(λm) (6)

by combining Eqs. [3, 4] while taking NADH in the upper layer
and collagen in the lower layer as examples. Fsim_up and Fsim_low is
the simulated fluorescence signal originated from the absorption
of excitation photons in the upper and lower layer, respectively;
μa_up and μa_low are the tissue absorption coefficients of the upper
and lower layer, respectively. Finally, the total fluorescence
intensity measured at the tissue surface is obtained by
summing contributions from all of the major tissue fluorophores

Ftotal(λm) � FNADH(λm) + FFAD(λm) + FCol(λm). (7)
where FFAD represents the contribution of FAD in the
epithelial layer.

2.3.2 Extracting Tissue Intrinsic Fluorescence From
Measured Spectra
Major fluorophores considered in this study included NADH and
FAD in the upper layer and collagen crosslinks in the lower layer.
The shape and peak wavelength of intrinsic fluorescence spectra
of NADH in tissue have been shown to be different from those
measured on purified molecules in vitro [3, 10, 37, 38]. In
addition, the major source of fluorescence in the lamina
propria, collagen crosslinks, have been shown to have various
spectral characteristics depending on its specific conformation [3,
4, 10, 37, 39]. To encompass variations in fluorescence emission
spectra in tissue environment we used the skew normal

distribution to model the shape of intrinsic fluorescence
spectra [40]

Fskewed(λ) � 2
σ
· ϕ( λ − μ

σ
) · Φ(α · (λ − μ

σ
)) (8)

where ϕ(·) is the standard normal probability density function, μ
is the mean, σ is the standard deviation, α is a shape parameter,
andΦ(·) is the cumulative distribution function of ϕ(·). When α is
positive the function is right skewed and resembles typical
fluorescence emission spectra. Ranges of the parameters used
are listed in Table 1. To give an idea of the spectral shape used to
model fluorescence emission spectra, Figures 4A,B show the
skew normal functions with each of the three parameters (μ, σ, α)
set at its upper or lower bound for modeling NADH and FAD,
respectively. Finally, the sum of the skew normal functions within
the wavelength range of 408–650 nm was normalized to one to
produce the probability distribution function Pfl (λm) introduced
in Eq. [3].

To extract the intrinsic fluorescence of layer-specific
fluorophores, unknown parameters to be determined included
the fluorescence efficiency (Εfl) and the three parameters (μ, σ, α)
defining the shape of fluorescence spectrum for each fluorophore.
We adopted the genetic algorithm to minimize the error between
modeled and measured fluorescence spectra at three SDSs due to
its ability to find a global minimum and efficiency for a larger
number of unknowns than those extracted from diffuse
reflectance spectra. We used the genetic algorithm tool
provided by Matlab® with a population size of 5,000 and 150
maximum generations.

2.4 Theoretical Evaluation of the Proposed
Two-Layer Model
The proposed method to extract tissue layer-specific intrinsic
fluorescence was validated with simulated spectra with noise

FIGURE 4 | Skew normal distributions used to model the emission spectrum of (A) NADH and (B) FAD. The eight curves in each panel correspond to each of the
three parameters (μ, σ, α) being set to either the upper or the lower bound.
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levels similar to actual experiments. Since the two sets of
detection fibers have similar SDSs the theoretical
investigations were only conducted using detection fibers
#2-#4 (SDS equal to 0.22, 0.41, and 0.61 mm respectively).
Two numerical investigations were performed: [1] evaluating
the accuracy of extracted fluorescence efficiency and spectral
shape of three major fluorophores described in Eq. [7], and [2]
comparison with a single-layer tissue model on the accuracy of
estimating tissue parameters, intrinsic fluorescence, and
fluorescence contribution ratio between NADH and
collagen. In the first investigation we randomly chose 100
sets of parameters to generate diffuse reflectance spectra and
fluorescence spectra using MC simulations. The
corresponding μa(λ) and μs(λ) were within the ranges used
for building ANN diffuse reflectance models (Section 2.2.2).
Ranges of the intrinsic fluorescence efficiency were 0.1–2,
0.018–0.2, and 0.1–2 cm−1 for NADH, FAD, and collagen,
respectively. Noise levels were estimated from
measurements on tissue mimicking phantoms with signal
intensities similar to in-vivo tissue. Random noise with a
normal distribution and standard deviations of 2, 1.5, and
1% with respect to the simulated intensity was added to
simulated spectra for SDS equal to 0.22, 0.41, and 0.61 mm,
respectively.

The purpose of the second investigation was to determine
whether using the proposed two-layer model provides more
accurate estimation of intrinsic fluorescence relevant to the
detection of precancers in cervical mucosa than conventional
single-layer models. Previous studies have shown increased
NADH and decreased collagen fluorescence in precancerous
lesions of the cervix [4, 41]. Since existing research has assumed
homogeneous distributions of fluorophores, as a benchmark we
applied single-layer forward DRS and fluorescence models in
iterative curve fitting and genetic algorithm respectively to
extract the intrinsic fluorescence from diffuse reflectance and
fluorescence spectra simulated using two-layer tissue models. To
compare performance between two-layer and one-layer tissue
models, the ratio of NADH to collagen fluorescence intensity
contribution was used as a quantitative indicator to represent
tissue intrinsic fluorescence relevant to detection of precancers.

In the single-layer forward DRS model, unknown
parameters to be determined included one set of A and K,
CHb, StO2, and anisotropy factor g. The μa(λ) of the tissue was
calculated using Eq. [1], which was the same as the lower layer
in the two-layer model since the epithelial layer was relatively
thin and transparent. The Henyey-Greestein scattering phase
function was used in MC simulations and the anisotropy factor
was used as an additional unknown parameter to improve the
fit to simulated spectra generated by two-layer tissue models.
ANN models were trained to replace forward DRS MC
simulations as described in Section 2.2.2. Ranges of input
parameters μa, μs, and g were 0.01–120 cm−1, 30–1,290 cm−1,
and 0.7–0.99 respectively. In the single-layer fluorescence
model the two fluorophores NADH and collagen were
assumed to be uniformly distributed. That is, the same Fsim
(λm) and tissue μa (λx) were used for both fluorophores in
Eqs. [5, 6].

2.5 Experimental Investigations
2.5.1 Calibration of Measured Spectra
The spectral response of any spectroscopy system is not uniform
and needs to be corrected for quantitative analysis of measured
spectra. In addition, MC simulation results are expressed as the
fraction of detected photon energy out of total injected photon
energy, which are both difficult to measure directly.

For calibration of diffuse reflectance spectra, we prepared
liquid tissue mimicking phantoms with polystyrene
microspheres (0.5 μm Polybead®, Polysciences Inc.) as the
scattering source and hemoglobin (H0267, Sigma Aldrich Inc.)
to provide absorption spectral features similar to mucosa. The
scattering coefficient μs(λ) and phase function of the phantoms
were calculated based on Mie theory. The absorption coefficient
μa(λ) of hemoglobin solution before mixing with microspheres
was measured using a commercial ultraviolet-visible
spectrophotometer. Concentrations of the materials to
construct the phantoms are listed in Table 2. The μa(λ), μs(λ),
and scattering phase function were input into the implemented
DRS MC software to obtain diffuse reflectance spectra. The
phantoms were measured with the constructed spectroscopy
system and a linear calibration equation between the measured
and modeled reflectance was obtained using least squares
regression for each combination of wavelength and SDS [42, 43].

A similar procedure was used to calibrate experimentally
measured fluorescence spectra. We prepared aqueous phantoms
with the same types of polystyrene microspheres and hemoglobin as
in DRS phantoms, and fluorescent dyes fluorescein (F6377, Sigma-
Aldrich Inc.) and stilbene (Stilbene 420, Exciton Inc.).
Concentrations of the materials are summarized in Table 3.
Fluorescence spectra were simulated by the implemented
fluorescence MC code, and linear calibration factors were
obtained for each combination of wavelength and SDS.

Previously, the spectroscopy system, calibration procedure,
and fluorescence MC simulation code have been verified by
measuring a set of homogeneous liquid phantoms and
comparing the calibrated fluorescence spectra to modeled
spectra. Another set of homogeneous liquid phantoms
containing two fluorophores with known emission spectra and
concentrations has been measured to validate the proposed
method’s ability to quantify fluorophore efficiency via iterative
curve fitting of diffuse reflectance spectra to estimate μa(λ) and
μs(λ), running fluorescence MC simulations with the estimated
μa(λ) and μs(λ), and calculating fluorophore efficiencies of the two
fluorophores using least squares regression of Eq. [3], assuming
that Pfl (λm) and ϕfl are known. Details of the phantom validation
experiments are in the Supplementary Material.

TABLE 3 | Concentrations of materials to construct calibration phantoms for
fluorescence.

No Polystyrene(μm−3) Hb(μM) fluorescein(μM) Stilbene(μM)

F1 0.0364 7.27 2.63 1.5
F2 0.0364 7.27 1.31 0.75
F3 0.0364 7.27 0.438 0.25
F4 0.0364 7.27 0.175 0.1
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2.5.2 In-Vivo Clinical Study
A clinical study was conducted at National Taiwan University
Hospital to measure diffuse reflectance and fluorescence spectra
from subjects enrolling in colposcopy examination. The study
was approved by a Research Ethics Committee of National
Taiwan University Hospital, and informed consent was
obtained by all participants. During regular colposcopy
examination the attending physician (CC) applied acetic acid
to the cervix and inspected the appearance of the mucosa. A tissue
site suspicious of dysplasia was measured by gently placing the
fabricated probe on the tissue surface with a pressure of about
6 kPa. Another location appearing normal to the physician was
measured as a control. The measured reflectance intensity under
the probe pressure of 6 kPa was estimated to increase by about 6%
compared to when no pressure was applied. Three diffuse
reflectance spectra and three fluorescence spectra were
measured from each location. Spectra measured from the same
location were averaged after outlier, if any, was removed. The
suspicious tissue site was biopsied and sent for histopathological
examination as a routine procedure.

3 RESULTS

3.1 Theoretical Evaluation of the Proposed
Two-Layer Model
3.1.1 Errors in Extracted Tissue Optical Parameters
and Intrinsic Fluorescence
Both the ANN models to calculate diffuse reflectance for one-
layer and two-layer tissue models showed errors less than 2% as
compared to MC simulated values. Since this level of deviation to
MC simulations was comparable to the random noise in
experimental data, the ANN forward models were considered
sufficiently accurate. The results of fitting the 100 sets of
simulated reflectance spectra showed root-mean-square
spectral errors of 1.9 and 1.7% for the one-layer and two-layer
tissue model, respectively. The spectral errors were no more than
the deviation of ANN-predicted reflectance to MC simulated
values. Therefore, we conclude that the iterative curve fitting was
successful and did not introduce additional errors. Finally, the
errors of estimated μs′_up(λ), μs′_low(λ), CHb, StO2, and Th using
the two-layer model were 8.1, 5.0, 13.3, 2.4, and 6.6%,
respectively. The errors of estimated μs′(λ), CHb, and StO2

using the one-layer model were 3.4,10.9, and 3.4%,
respectively. These results are close to errors reported in a
previous simulation study [24], which verifies the
implementation of the models to accurately extract two-layer
tissue optical parameters and the upper layer thickness from
spatially-resolved reflectance spectra.

In the results of extracting intrinsic fluorescence from the 100
sets of simulated fluorescence spectra, the mean errors in
extracted fluorescence efficiency were 19, 114, and 32% for
NADH, FAD, and collagen respectively for the two-layer
model. The accuracy of extracting the shape of intrinsic
fluorescence spectrum Pfl(λ) was evaluated by calculating the
Pearson correlation coefficient between the fitting result and the
one chosen to generate the simulated target spectra. The resultant

correlation coefficients were 0.98, 0.91, and 0.96 for NADH, FAD,
and collagen respectively. The errors in extracted FAD
fluorescence efficiency were relatively high due to a much
smaller fraction (7 ± 5%) of FAD efficiency to the total
fluorescence efficiency than the other two fluorophores. For
cases with FAD’s fraction above 5% the mean and standard
deviation of absolute percent errors in FAD’s fluorescence
efficiency reduced significantly to 27 ± 21%.

3.1.2 Comparison Between One-Layer and Two-Layer
Models
Figure 5 compares the errors of extracted tissue optical
parameters by the one-layer and two-layer inverse models
from 37 sets of target spectra simulated using the two-layer
tissue model. The preset tissue optical parameters to generate
the target simulated spectra were taken from results of fitting in-
vivo spectra described in Section 3.2. This was to provide spectra
that were actually measured from cervical mucosa in vivo. The
results show that the one-layer inverse model produced much
larger errors than the two-layer model in all parameters. In the
results of the one-layer model, the extracted μs′(λ) had a root-
mean-square error of 40.1% as compared to the target μs′_up(λ),
and a root-mean-square error of 23.8% as compared to the target
μs′_low(λ). The μs′(λ) extracted by the one-layer forward model
was closer to the target μs′_low(λ). This is expected because the
upper layer was thin and the detected reflectance spectra were
more sensitive to the lower layer. It should be noted that CHb

extracted by the one-layer model were always underestimated,
which was also expected because hemoglobin was assumed to be
uniformly distributed in the one-layer model while in actual
cervical mucosa it mainly existed in the connective tissue
underneath a bloodless epithelial layer.

The errors of extracted fluorescence efficiency and the
correlation coefficient between extracted and preset
fluorescence spectra shape functions are shown in Figures
6A,B, respectively. In particular, the errors in fluorescence
efficiency of NADH and collagen estimated by the one-layer
model were at least seven times higher than those by the two-layer
model. The result indicates that the epithelial layer should be
considered in the estimation of the intrinsic fluorescence
intensity. On the other hand, the shape of fluorescence
spectra, Pfl(λ), extracted by the one-layer model was not too
far off. The relatively inaccurate estimation of both fluorescence
efficiency and spectra shape of FAD by the two-layer model was
due to a relatively low fraction of FAD to the total intrinsic
fluorescence efficiency, as described in Section 3.1.1. In nine of
the 37 sets of spectra where the FAD fraction was higher than 5%,
the correlation coefficient increased drastically to 0.94 in the two-
layer results while the one-layer results increased only slightly to
0.86. Similarly, the errors in extracted fluorescence efficiency of
FAD by the two-layer model reduced from 51% as shown in
Figure 6A to 8.5 ± 6.5%, and errors by the one-layer model
increased to 86% when only the nine sets of spectra were
considered.

In the second investigation described in Section 2.4, we
aimed to analyze the effect of simplifying cervical tissue with
a one-layer model on the accuracy of the estimated fluorescence

Frontiers in Physics | www.frontiersin.org June 2022 | Volume 10 | Article 8654219

Lin et al. Extracting Tissue Layer-Specific Intrinsic Fluorescence

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


intensity ratios between NADH and collagen, and compare the
results to using the two-layer model. To generate test spectra we
used MC codes and the same 37 sets of optical parameters
derived from in-vivo data to simulate target spectra with the
NADH-to-collagen intensity ratio for detection fiber #2 (SDS =
0.22 mm) adjusted to be 0.25 and 1 to represent normal and
precancerous cervical mucosa, respectively [44]. The mean and
standard deviation of extracted NADH-to-collagen intensity
ratio from the simulated reflectance and fluorescence spectra
are shown in Figure 7A (simulated intensity ratio = 0.25) and
Figure 7B (simulated intensity ratio = 1). Overall, results of the
two-layer model had smaller errors and narrower standard
deviations than those of the one-layer model. The ground
truth values shown in dashed gray lines decrease with SDS
because detectors at longer SDSs are more sensitive to collagen
in the lower layer. Results of the two-layer model, shown in
black circles, also decreased with SDS. The one-layer model, on
the other hand, did not show a similar trend since the
fluorophores were assumed to be uniformly distributed in the

tissue. The mean and standard deviations of absolute errors
corresponding to Figures 7A,B are summarized in Figures
7C,D, respectively.

3.2 Intrinsic Fluorescence Extracted From
Human Subjects In-Vivo
Twenty-seven subjects were recruited in this study. No biopsy
was taken from four subjects. Acquisition of spectra was not
successful on five of the subjects due to system malfunction or
mistakes by the operator, and on one subject due to bleeding
before probe placement. Spectra from the remaining 17
subjects were analyzed. Good matches between modeled
and measured spectra were achieved in both biopsied and
normal sites for 12 subjects, and results presented in this paper
are from these 12 subjects. For the other five subjects, curve
fitting results of diffuse reflectance spectra showed large errors
in the spectral bands corresponding to hemoglobin absorption
(i.e., 414–423 nm and 530–590 nm). It was suspected that

FIGURE 5 | (A) Comparison between errors of μs′(λ) estimated by the two-layer and one-layer forward models. The errors were calculated as root-mean-square
percentages across the analyzed wavelength range (B) Absolute percent errors of extracted Th andCHb and absolute errors of extracted StO2 obtained by the two-layer
forward model. Errors of the latter two parameters estimated by the one-layer forward model are also shown for comparison.

FIGURE 6 | (A) Comparison between errors in the fluorescence efficiency of the three fluorophores extracted by the two-layer and one-layer forward models (B)
Correlation coefficients between the extracted Pfl(λ) and the Pfl(λ) used to generate the target spectra. Results for the three fluorophores obtained using the two-layer and
one-layer forward models are plotted for comparison.
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excessive blood in the surface or superficial tissue caused
significant mismatch between the modeled and measured
spectra. Therefore, spectra from these five subjects were
excluded from subsequent analysis. An example of the
fitting results is illustrated in Figure 8A for reflectance
spectra and Figure 8B for fluorescence spectra. In both
spectroscopic data the fitting results by the two-layer
forward model showed smaller root-mean-square spectral
errors than those by the one-layer forward model. For all
spectra included in the analysis, the average spectral error was
10 and 19% in reflectance spectra using the two-layer and one-
layer model, respectively. The average spectral error in
fluorescence spectra was 14 and 22% using the two-layer
and one-layer model, respectively. We performed Student’s
t-test and F-test to analyze the spectral errors of fluorescence
fitting results between the two-layer and the one-layer forward
models. The p-value is less than 0.0001 on Student’s t-test and
less than 0.05 on F-test, indicating that the two-layer forward
model performed significantly better than the one-layer model
to match measured spectra. The diagnostic results based on
histopathology for the 12 subjects were two subjects as non-
dysplasia, two subjects with inflammation, two subjects with
mild cervical intraepithelial neoplasia (CIN1), and six subjects
with moderate to severe cervical intraepithelial neoplasia
(CIN2 to CIN3). To investigate the potential of the

extracted intrinsic fluorescence as a biomarker for cervical
precancers, CIN, we calculated the ratio of intrinsic
fluorescence efficiency between NADH and collagen
(ΕNADH/ΕCol) for each measured site [3]. Due to high inter-
subject variations we normalized the ΕNADH/ΕCol calculated
from the biopsied site by that calculated from the normal site
on the same subject [12]. The results, grouped according to
diagnostic results, are shown in Figure 9A. All except one of
the CIN sites showed a ratio above 2, and all of the four non-
CIN sites showed a ratio below 2. This result agrees with the
findings in the literature that cervical precancers are associated
with increased NADH and decrease collagen fluorescence. On
the other hand, fluorescence efficiency results obtained using
the one-layer forward model were processed in the same way.
As shown in Figure 9B, most of the CIN sites showed a ratio
comparable to those of the non-CIN sites. Therefore, the one-
layer results were unable to distinguish subjects with CIN
based on the fluorescence efficiency ratio between NADH and
collagen. The intrinsic spectral shape of the three fluorophores
extracted from in-vivo spectra are shown in Figure 10. Results
of the two non-dysplasia sites were combined with all of the
normal sites in plotting the spectra. There were small redshifts
in the spectra of NADH where the peak wavelength went from
441 nm in normal tissue to 450 nm in CIN tissue. These
intrinsic spectral shapes may be used as basis functions or

FIGURE 7 | (A,B) Comparisons between the two-layer and one-layer models in extracted contribution of collagen to the total detected fluorescence intensity. Gray
dashed lines indicate the ground truth values in the simulated target fluorescence spectra which is 80% in (A) and 50% in (B) for SDS = 0.22 mm. Panels (C,D) show the
absolute errors in extracted collagen contributions corresponding to panels (A,B), respectively.
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initial guesses for future studies aimed at quantifying intrinsic
fluorescence from tissue.

4 DISCUSSION

Previous studies using MC models to extract intrinsic
fluorescence from superficial tissues have built and stored
look-up tables to store the absorption distribution of excitation
photons and the emission probability distribution, and
performed convolution integral once tissue scattering and
absorption coefficients are extracted from in-vivo DRS
measurements [18, 19]. The two-dimensional convolution

integral is time consuming and prevents real-time recovery of
intrinsic fluorescence. Great improvements in speed have been
achieved by combining effects of the excitation and emission
paths into one function using pathlengths [17], or by building a
four-dimensional look-up table indexed with scattering and
absorption coefficients for both excitation and emission
wavelengths [45]. However, these approaches are not suitable
to be extended to tissue models with two or more layers due to
impractically high computational costs to build, store, and search
tables with very high dimensions. We took the direct approach to
perform fluorescence MC simulations with the help of GPU’s
parallel computing capability. Compared to forward models
using look-up tables, our approach does not require

FIGURE 8 | Results of fitting one set of in-vivo spectra (A) Reflectance spectra with spectral errors of 7 and 14% in the results of two-layer and one-layer forward
model, respectively (B) Fluorescence spectra with spectral errors of 12 and 21% in the results of two-layer and one-layer forwardmodel, respectively. Three spectra from
the strongest to the weakest in each group represent the spectrum measured at the SDS of 0.22, 0.41, and 0.61 mm, respectively.

FIGURE 9 |Ratio of NADH to collagen fluorescence efficiency extracted from in-vivo spectra. The ratio extracted from the colposcopically suspicious (biopsied) site
is normalized by that from the normal site on the same subject (A) The result of the two-layer forward model with a dashed horizontal line drawn at a value of two to
separate CIN from non-CIN subjects (B) The result of the one-layer forward model.
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interpolation or approximation, and hence, avoids additional
errors in the forward model. The time needed to perform
fluorescence MC simulations to generate Fsim(λ) consisting of
26 wavelengths was about 5 mins. This time could be readily
reduced by three orders of magnitude using ANN models to
replace the MC simulations [25].

Using multiple distances between the detector and the source
is a useful approach to enhance the sensitivity of spectroscopy
techniques to tissue optical properties at various depths [46, 47].
The ability of this spatially-resolved measurement to discriminate
fluorescence emission originating from two-layered tissues such
as cervical mucosa is demonstrated in Figure 6. As expected,
there is an increased collagen contribution to measured
fluorescence intensity with increased SDSs. One-layer model
does not consider layer-specific fluorophores, that is, NADH
and FAD in the upper layer (epithelial tissue), and collagen in the
lower layer (supporting connective tissue). Therefore, the relative
collagen contribution to the fluorescence intensity measured at
the three SDSs remains approximately constant as shown in

Figures 7A,B. In addition to larger errors in the extracted
fractional contribution of collagen, the fitting results of the
one-layer model also show larger spectral errors, indicating a
mismatch between the assumed one-layer model to solve the
inverse problem and the actual structure from which target
spectra are derived. Results of fitting in-vivo fluorescence
spectra using one-layer tissue model also show significantly
larger spectral errors than using the proposed two-layer
mucosal tissue model (Figure 8B). This finding is not
surprising and agrees with published studies on the modeling
of diffuse reflectance spectra of the skin [23, 48]. Although the
proposed two-layer model improves the quantification of layer-
specific fluorescence, the actual tissue structure is more
heterogeneous and different from the assumption in this
study. For example, blood is in vessels and capillaries, not
homogeneously distributed in the lamina propria. Probe-based
spectroscopy techniques that measure diffusely reflected photons
or multiply scattered fluorescence emission photons are limited
in spatial resolution. Therefore, the estimated hemoglobin

FIGURE 10 | Intrinsic fluorescence spectra of (A) NADH, (B) FAD, and (C) collagen extracted from in-vivo data.
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concentration is a bulk average concentration in the tissue region
within the “probed volume” under the light source and detectors.
Abnormal changes in local tissue regions that are small relative to
the probed volume may not be detected.

The feasibility of the proposed method for extracting layer-
specific intrinsic fluorescence from cervical mucosa in-vivo was
demonstrated by analyzing diffuse reflectance and fluorescence
spectra measured from 12 subjects in a pilot clinical study. Results
of this study as shown in Figure 9, albeit with a very limited
sample size, reveal the same trend of increased NADH and
decreased collagen fluorescence which have been reported in
previous in-vivo [3] and in-vitro [4, 44] studies. However, the
extracted ΕNADH/ΕCol do not increase with the severity of
abnormality. The sensitivity of detecting cervical precancers
using intrinsic fluorescence alone may not be sufficient. Using
an excitation wavelength suitable for FAD can enhance its
fluorescence signal which may provide useful diagnostic
information [47]. Other optical parameters such as tissue
scattering and absorption properties, also shown to correlate
with the progression of precancers [2], have been combined
with intrinsic fluorescence information in previous in-vivo
studies to achieve reasonably good sensitivity and specificity
[39, 41]. On the other hand, accurate extraction of intrinsic
fluorescence highly depends on the accuracy of tissue
parameters extracted from diffuse reflectance spectra. We have
noticed that bleeding is not uncommon under the pressure by the
probe touching the tissue, and may have resulted in mismatch
between modeled reflectance spectra and measured ones around
hemoglobin absorption peaks at 414–423 nm and 530–590 nm.
Using non-contact illumination and detection may improve the
fidelity of spectral measurements. In addition, due to heterogeneity
of tissue it is desirable to measure many different sites of the cervix.
A non-contact measurement scheme is easier than the contact
probe to incorporate a scanning mechanism and achieve mapping
of tissue optical parameters over the whole ectocervix. At present, it
takes about 11 min to analyze a pair of reflectance and fluorescence
spectra. In the future, the time required for extracting tissue optical
properties could be accelerated by a fluorescence ANN forward
model and optimizing the processing speed. Moreover, spectra
captured from scanning a large tissue area could be analyzed
simultaneously through parallel operations to further develop
this method as an instant diagnostic tool.
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