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High-energy physics is facing a daunting computing challenge with the large amount of
data expected from the HL-LHC and other future colliders. In addition, the landscape of
computation has been expanding dramatically with technologies beyond the standard x86
CPU architecture becoming increasingly available. Both of these factors necessitate an
extensive and broad-ranging research and development campaign. As quantum
computation has been evolving rapidly over the past few years, it is important to
evaluate how quantum computation could be one potential avenue for development
for future collider experiments. A wide variety of applications have been considered by
different authors. We review here selected applications of quantum computing to high-
energy physics, including topics in simulation, reconstruction, and the use of machine
learning, and their challenges. In addition, recent advances in quantum computing
technology to enhance such applications are briefly highlighted. Finally, we will discuss
how such applications might transform the workflows of future collider experiments and
highlight other potential applications.
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1 INTRODUCTION

The fields of particle physics and computing have long been intertwined. The success of particle
physics depends on the use of cutting-edge computing technology and in certain cases, the
requirements of particle physics experiments have stimulated the development of new
technologies in computing. Perhaps the most notable example is the development of the world
wide web by physicists at the European Council for Nuclear Research (CERN), see [1], and other
examples include the introduction of distributed grid computing in [2].

The state-of-the-art collider in particle physics is the Large Hadron Collider (LHC) [3], which is
located at CERN just outside Geneva in Switzerland. The first proton-proton collisions in the LHC
were recorded in 2010 and a key achievement was the discovery of the Higgs boson in 2012 by the
two general purpose experiments, ATLAS and CMS. The third data-taking run of the LHC (Run 3) is
planned to start in 2022 and to continue for four years. Run 3 is scheduled to be followed by a three
year long shutdown during which the accelerator and experiments will undergo significant upgrades.
The high-luminosity LHC (HL-LHC), as discussed in [4], is expected to start delivering proton-
proton collisions in 2029.

The HL-LHC will deliver collisions at an instantaneous luminosity a factor of five to seven higher
than the original LHC design luminosity. These collisions will increase the number of additional
interactions, or pile up, by up to a factor of five to reach approximately 140–200 average pile up
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interactions per bunch crossing. The experiments will include
new detectors with more readout channels, which will increase
the size of the recorded events by a factor of four to five. In
addition, upgrades to the trigger systems will increase the event
rate by up to an order of magnitude. These extensive upgrades
herald the start of a decades long program in precision and
discovery physics. At the same time, they place strong demands
on computing.

Current projections for future computing budgets for the HL-
LHC follow the so-called flat-budget scenario, in which only
small increases to the budgets are foreseen to account for
expectations from inflation. Extrapolations of the current
computing model to the HL-LHC show a large deficit
compared to the requirements [5–8]. In addition, computing
for particle physics experiments has relied on Moore’s Law.
Moore’s Law is the observation that the number of transistors
on integrated circuits doubles every two years. However, over the
past decade processor speeds have become limited by power
density such that speed increases are due to increases in the
number of cores rather than the speed of individual cores. In
addition, the hardware landscape for computing processors has
become increasingly heterogeneous. A range of development
efforts are ongoing to explore how HEP software can be
adapted to efficiently exploit heterogeneous computing
architectures.

Although we have not yet entered the HL-LHC era, given the
timescales required to build accelerators and detectors for particle
physics experiments, the field is undergoing a series of
international and national review processes to determine the
future collider facilities to follow the HL-LHC. Although
consensus has not yet been reached, many of the future
colliders under consideration would make even more extensive
demands on computing. One such collider, the Future Circular
Collider in [9] would collide protons at a center-of-mass energy of
100 TeV with up to a thousand pile up interactions per bunch
crossing.

The ideas of exploiting quantum mechanics to build a
computer first began to be explored more than four decades
ago. Initial ideas were focused on how a quantum computer could
be used to simulate quantum mechanical systems. A decade later
further interest was stimulated when quantum algorithms, which
could be used to solve classically intractable problems, were
introduced. One of the earliest of these, and one of the most
famous, is Shor’s algorithm for the factorization of prime
numbers. At approximately the same time, the first quantum
computers were built based on existing techniques from nuclear
magnetic resonance. It is sometimes said that we are currently in
the Noisy Intermediate-Scale Quantum (NISQ) era as introduced
in [10]. Quantum computers in the NISQ era have orders of tens
to hundreds physical qubits, and have been shown to surpass
classical computers but only for specifically constructed
problems. They also experience significant noise associated
with the hardware and the electronics for qubit control.

There are two types of quantum computer: quantum annealers
(QA) and circuit-based quantum computers. Quantum annealers
are specifically designed to solve a single class of problem:
minimization problems, and, in particular, to minimization

problems that can be expressed as quadratic unconstrained
binary optimization (QUBO) problems. Circuit-based
quantum computers, on the other hand, can be programmed
to execute more general quantum circuits, and are more similar in
concept to the classical computers. Quantum computers use a
number of different technologies for the qubits including
superconducting transmon qubits, ion traps, photons and
topological qubits and their current status is dicussed in [11,
12]. A typical state-of-the-art quantum annealer is the one
produced by D-Wave with up to 5,000 qubits, while typical
state-of-the-art circuit-based quantum computers are those
from IBM and Google which have O(60 − 120)
superconducting transmon qubits. Thanks to the extensive
investment from governments and companies into the
development of quantum computers, their capabilities have
increased rapidly over the past years. See [13] for a recent
review of the field of quantum computation.

Given the computational challenges faced by high-energy
physics [14] now and in the future, and given the rapid
development and exciting potential of quantum computers,
it is natural to ask whether quantum computers can play a role
in the future computing at HEP. Fault-tolerant quantum
computers with sufficient number of qubits and gates are
still decades away and very likely beyond the HL-LHC era,
yet, future high-energy physics experiments will place even
more extensive demands on computing. This article discusses
selected studies exploring the application of quantum
computers to HEP. In Section 2 we discuss how quantum
computers might be used to improve the quality of simulation
for high-energy physics events. In Section 3 we discuss one of
the key computational challenges in HEP, the reconstruction
of charged particle trajectories, and explore how quantum
computing could be used for such problems. Finally, in
Section 4 we discuss the exciting field of machine learning
with quantum computers and focus on applications of such
techniques to physics analysis. Section 5 concludes the article
with a short summary and future outlook.

2 APPLICATIONS OF QUANTUM
COMPUTING TO SIMULATION

One of the most promising applications for quantum computing
is to simulate inherently quantum-mechanical systems, such as
systems described by Quantum Field Theory (QFT) in particle
physics. Quantum algorithms may perform particle scatterings in
QFTs in polynomial resources using a universal quantum
computer, as proposed by Jordan, Lee and Preskill in [15] and
Preskill in [16]. Since then, a number of pioneering studies have
been done in the contexts of simulation of particle systems, e.g.,
neutrino or neutral Kaon oscillations [17–19], heavy-ion
collisions [20], parton distributions inside proton [21] as well
as low-energy effective field theory [22] and quantum
electrodynamics [23]. However, as represented by the Jordan-
Lee-Preskill algorithm, a full QFT simulation generally requires
prohibitively large resources and therefore cannot be
implemented on near-term quantum computers. An
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alternative approach for quantum computing applications of
QFT is to break down particle scattering processes into pieces
and exploit quantum computations in the place where
conventional classical calculations are intractable.

In Monte Carlo simulations of high-energy hadron collisions,
physics processes are treated by factorizing hard scatterings
which occur at short distances and parton evolutions which
occur at long distances inside hadrons. This factorization
property allows the short- and long-range subprocesses to be
calculated independently. The hard scattering between partons
creates a large momentum transfer and produces a cascade of
outgoing partons called the parton shower (PS). The PS
simulation is a prototypical Markov Chain Monte Carlo
(MCMC) simulation and describes the evolution of the system
from the hard interaction to the hadronization scale. This
technique for PS simulation has been successfully validated by
comparing the MC simulation with experimental data, but
quantum interference and correlation effects are neglected.
Even though these effects are small compared to the current
experimental accuracy, such limitations may become a bottleneck
when the measurement will reach an unprecedented precision in
the HL-LHC era.

Ref. [24] develops a quantum circuit that describes quantum
properties of parton showers, in particular, the quantum
interference that arises from different intermediate particles
using a simplified QFT. They start with a system of n
fermions that can have either one of two flavors, f1 and f2.
These fermions can radiate a scalar particle ϕ, which itself can
split into a f�f pair of the same flavor or different flavors (�f is an
antifermion). In this setup, [24] demonstrates that quantum
interference effects are successfully simulated using a quantum

simulator and hardware, when the ϕ coupling to a f1f2 or f1f2

pair is turned on, due to unobserved intermediate states with
mixed fermion flavors. This behavior is not properly captured by
a classical MCMC simulation. It is also shown that the quantum
circuit has capability to sample parton showers from a full
probability distribution in polynomial time, which is otherwise
difficult with the classical MCMC approach.

Another approach based on a quantum randomwalk is used in
[25] to simulate parton showers. During a random walk, the
movement of a particle termed walker is controlled by a coin flip
operation that determines the direction the walker will move and
a shift operation whichmoves the walker to the next position. The
quantum analogue of the random walk performs these operations
in a superposition of the basis states for the coin and shift
operations, therefore allowing all possible shower histories to
be generated when applied to the parton shower. In [25], the
emission probabilities are controlled by the coin flip operations,
and updating the shower content with a given emission
corresponds to the shift operation of the walker in the
position space. With this novel approach, [25] manages to
simulate a collinear 31-step parton shower, implemented as a
two-dimensional quantum walk with gluons and a quark-
antiquark pair, as shown in Figure 1. This figure shows the
probability distributions of the number of gluons after a 31-step
parton shower for the classical and quantum algorithms, for the
scenario where there are zero (left) and exactly one (right) quark-
antiquark pair in the final state. A very good agreement is seen
between the two algorithms. The quantum random walk
approach demonstrates a significant improvement in the
shower depth with fewer number of qubits from the algorithm
in [24].

FIGURE 1 | Probability distributions of the number of gluons measured after a 31-step parton shower for the classical (CC) and quantum (QC) algorithms for the
scenario where there are zero quark-antiquark pairs (left) and exactly one quark-antiquark pair (right) in the final state. From [25].
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The calculation of the hard scattering also requires significant
computational resources in the conventional techniques based on
squaring the scattering amplitudes. [26] performs the calculation
of hard interactions via helicity amplitudes by exploiting the
equivalence between qubits and helicity spinors. This relies on the
mapping between angles used to parameterize the helicity spinors
and the qubit degrees of freedom in the Bloch sphere
representation. The operators acting on the spinors are
encoded as quantum circuits of unitary operators. With these
helicity-qubit encodings, [26] demonstrates the construction of
two quantum algorithms. The first is the helicity amplitude
calculation in the q → qg process and the second are the
helicity calculations for the s- and t-channel amplitudes of a
q�q → q�q process. The algorithms highlight a unique advantage of
quantum computations by exploiting a superposition of helicity
qubits and allow a simultaneous calculation of the positive and
negative helicities of each particle and the s- and t-channel
amplitudes in the 2 → 2 process.

Despite recent improvements in the implementation of PS
algorithms, running them on NISQ devices and simulating
realistic parton showers involving many shower steps are
currently challenging. This is largely due to the fact that the
shower simulation is performed by repeating many times a circuit
corresponding to a single PS step and this often results in a long
circuit, which is hard to implement to NISQ device due to limited
coherence time, qubit connectivity and hardware noise. One
strategy to improve the performance is to mitigate errors
through modifications to quantum state operation and
measurement protocols. A number of readout and gate error
mitigation techniques have been proposed in the literature, e.g.,
zero-noise extrapolation technique with identity insertions for
gate errors, originally proposed in [27] and generalized in [28].
Another complementary strategy to error mitigation is to
optimize the quantum circuits in the compilation process. A
variety of architecture-agnostic and architecture-specific tools for
circuit optimization have been developed, e.g., an industry
standard tool called t|ket〉 in [29] from Cambridge Quantum
Computing. Ref. [30] introduces a new technique to optimize
quantum circuits by identifying the amplitudes of computational
basis states and removing redundant controlled gates in
polynomial time with quantum measurement. This
optimization protocol has been applied to the PS simulation in
[24], together with the gate-error mitigation method in [28]. Ref.
[30] successfully demonstrates that both the circuit optimization
and the error mitigation methods can simplify the circuit
significantly and improve the performance on NISQ device,
depending on the initial states of the circuit corresponding to
different initial particles of parton showers.

3 APPLICATIONS OF QUANTUM
COMPUTING TO CHARGED PARTICLE
PATTERN RECOGNITION
Raw data recorded by detectors is processed by reconstruction
algorithms before it can be used for physics analyses. The track
reconstruction algorithms used to reconstruct the trajectories of

charged particles passing through the tracking detectors are
typically the most computationally demanding. The required
computing resources for such algorithms scale approximately
quadratically with the number of charged particles per event, i.e.
the amount of pile up, and therefore will become even more
challenging at future colliders. Therefore, new ideas and
approaches for track reconstruction algorithms are currently
an extremely active field of research to ensure that the physics
capabilities of the HL-LHC and beyond can be fully exploited.

Track reconstruction algorithms can be characterized into
global and local approaches. Global algorithms process all the
data, or hits in the detectors, from an event simultaneously and
return a set of tracks. Local algorithms aim to identify the set of
hits corresponding to a single track and are run many times to
identify the full set of tracks. Examples of global methods include
the Hough transform [31, 32] and neural networks [33]. Themost
widely used local method is the Kalman filter [34–36] and
recently there has been extensive exploration into the use of
Graph Neural Networks (GNNs) [37]. A number of different
track reconstruction algorithms have been explored for quantum
computers and, in most cases, the open dataset produced for the
tracking machine learning challenge has been used [38, 39]. This
dataset will be referred to as the TrackML dataset.

The first track reconstruction algorithm developed for
quantum computers is a global track reconstruction algorithm
as presented in [40]. The track reconstruction problem is
formulated as a QUBO problem and quantum annealers are
used to identify the global minimum. This algorithm, as is the
case for all quantum algorithms discussed here, should be
regarded as a hybrid quantum-classical algorithm because it
requires pre- and post-processing on a classical computer.

The algorithm initially groups the hits in the detectors into
doublets and then triplets. A QUBO is constructed from the
triplets and the goal is to identify which pairs of triplets can be
combined to form quadruplets. The weights in the QUBO depend
on the compatibility between the properties of the triplets
including their curvature and the angles between them,
because triplets from the same track are expected to have
identical properties. The QUBO is minimized on the quantum
annealer by selecting the combinations of triplets compatible with
the trajectories of charged particles. However, given the limited
number of qubits available on quantum computers today, the
QUBO is decomposed into smaller sub-QUBOs that are solved
individually using fewer qubits. A software tool, called qbsolve
[41], from D-Wave is used to perform this splitting and to
recombine the solved sub-QUBOs so that the global minimum
can be found. After minimization, a final post-processing step is
performed on a classical computer to convert the accepted triplets
back to doublets. Any duplicates or doublets with unresolved
conflicts with other doublets are removed. The final track
candidates are required to have at least five hits to reduce the
contribution from random combinations of hits, or fakes.

The algorithm was studied using the TrackML dataset but
restricting it to the central region of the detector, or barrel, which
has a simpler geometry and less material and hence is a simpler
problem for pattern recognition algorithms. In addition, events
were filtered to select particular fractions of particles to emulate
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datasets with different amounts of pile up. This allows the
dependence of the performance on the amount of pile up to
be studied. The performance was studied using simulations of
quantum annealers on Cori, a supercomputer located at the
National Energy Research Scientific Computing Center
(NERSC), and on quantum annealing hardware from D-Wave.
Two different quantum annealers were used: the Ising D-Wave
2X located at Los Alamos National Laboratory and the D-Wave
LEAP cloud service, which is an interface provided by D-Wave
that allows users to run on a number of different quantum
computers.

Key performance metrics for track reconstruction include the
efficiency and the purity. The efficiency is the fraction of true
particles that are successfully reconstructed and the purity is the
fraction of reconstructed tracks that correspond to true particles.
Ref. [40] showed that the efficiency is 100% in events with low pile
up and it decreased to 90% in events with the level of pile up
expected at the HL-LHC. However, while the purity is close to
100% at low pile up, it decreases rapidly with increasing pile up to
reach only 50% at HL-LHCmultiplicities. This demonstrates that
the algorithm is impacted by fake tracks from random
combinations of hits. The performance on the quantum
hardware and in simulation is found to be consistent, which
demonstrates that the algorithm is not significantly impacted by
the noise on the quantum annealer.

Ref. [42] improves the performance of this quantum
annealing pattern recognition algorithm by modifying the
weights in the QUBO to include information about the
impact parameters of the triplets. The impact parameters
provide a measure of the distance of closest approach of
tracks to the location where the proton-proton collision
occurred. They are used by [42] to preferentially select
tracks produced at the primary interaction point over
secondaries produced in decays of primary particles or

through interactions in the detector material. The efficiency
and purity are shown in Figure 2 using simulation as a
function of the number of particles per event and results
are shown for two different solving algorithms: qbsolv and
neal. While the efficiency is slightly improved over the results
shown in [40], the purity is dramatically improved to 85% or
95% depending on the solver at HL-LHC multiplicities. While
this approach is very effective at reducing the fake rate, it is also
expected to have a low efficiency to reconstruct tracks from
secondary decays, such as B-hadrons and τ-leptons. The
performance of neal is superior to qsolve in all cases.

[42] also studied the performance of annealing algorithms for
pattern recognition using a digital annealing machine from
Fujitsu. This is a quantum-inspired classical computer
specifically formulated to solve annealing problems.
Comparable physics performance was obtained between the
quantum and digital annealers, however the computational
time on the digital annealer was found to be far superior to
the quantum annealer and to be essentially independent of the
amount of pile up in the event.

A similar algorithm for pattern recognition on quantum
annealers is presented in [43]. They also used triplets and the
objective function depends on the angles between the triplets, a
bias term to preferentially select high-momentum tracks and the
point of origin of the tracks. There are penalty terms
corresponding to bent and poorly oriented tracks.

The TrackML dataset was also used and tracks were
reconstructed in both the barrel and the endcap of the
detector. To ensure that the problem could be solved on
quantum annealers available today, the dataset was split
geometrically into 32 sectors and then sub-QUBOs were
defined within each sector. Results were obtained both using
simulation and a D-Wave 2X machine. In most regions of phase
space, the efficiency was found to be approximately 90% and the
purity greater than 95%.

Track reconstruction algorithms are also used in trigger
detectors to select events which are subsequently processed in
more detail for offline reconstruction. For such applications,
algorithms need to be run in real time but can tolerate lower
precision than offline reconstruction. One approach, which
has been considered is the use of a memory bank of patterns of
measurements. This allows track reconstruction algorithms to
be replaced by looking up patterns in the memory bank. This
means that the problem of the amount of processing power
needed is transformed into memory requirements.

[44] explored how quantum computers, with their potential
for exponential storage capacity, can be used for such
problems. While the amount of classical memory required
to store patterns depends exponentially on the number of
elementary memory units, the amount of quantum memory
depends only logarithmically, which means that far less
memory is required. To demonstrate this, they presented an
implementation of a quantum associative memory protocol
(QuAM) in [45] for 2-bit patterns circuit-based quantum
computers using the IBM Qiskit framework. They used
Trugenberger’s algorithm to store the patterns and the
generalized Grover’s algorithm to retrieve the patterns.

FIGURE 2 | The dependence of the efficiency (open squares) and purity
(closed circles) of the quantum annealing pattern recognition algorithm on the
number of charged particles per event. Results from the qbsolv solver (red)
and the neal solver (black) are compared. From [42].
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They explored IBM circuit-based quantum computers with up
to 14 qubits, however, these did not provide sufficient qubits to
solve 2-bit patterns.

An additional approach for charged particle pattern
recognition, relying on quantum machine learning, a
Quantum Graph Neural Network (QGNN) will be discussed
in Section 4.2.

4 APPLICATIONS OF QUANTUM MACHINE
LEARNING

Recent developments of quantum computing architecture and
algorithms make Quantum Machine Learning (QML) a
promising early application in NISQ era. QML includes a wide
range of research topics, e.g., information theory aspects such as
quantum learning complexity, accuracy and asymptotic behavior
in a fault-tolerant regime, as well as more near-term aspects such
as data encoding, learning circuit models and hybrid architectures
with classical calculations. An important aspect of QML for early
HEP applications [46] is how effectively one can exploit machine
learning to characterize a quantum state generated from input
data in a quantum-classical combined setting. The quantum-
classical hybrid approach is particularly useful for near-term
quantum devices because the quantum part can focus on
classically-intractable calculations while the classical part
handles the rest of the computation including, e.g.,
optimization of the learning model. Classical machine learning
is used extensively in the analysis of HEP experimental data. The
significant growth of the data volume foreseeable for the HL-LHC
era and beyond further motivates quantum-empowered machine
learning in the workflow of future HEP experiments.

A number of experimental applications of QML to data
analysis and event reconstruction in representative HEP
experiments have been explored. They are categorized into
two approaches based on quantum annealing and quantum
circuit models, each having its own advantages and
disadvantages in terms of the maturity and applicability. Most
QML applications in HEP (discussed below) belong to supervised
machine learning, but several applications (mentioned explicitly)
use unsupervised learning techniques.

4.1 Quantum Machine Learning With
Quantum Annealing
QA-based machine learning (QAML) formulates ML as a QUBO
problem (see Section 3) and looks for the best classification. This
is done by minimizing the cost function that quantifies the
difference between the predictions and the true labels. In [47],
QAML is applied to the classification of Higgs events where the
Higgs boson decays into two photons, one of the key channels
used for the Higgs discovery. From eight high-level kinematic
features in a set of training events {xτ, yτ} with τ being the event
index, 36 weak classifiers ci(xτ) are constructed (with i being the
classifier index) in such a way that the signal (background) events
populate at positive (negative) values within the range between −1

and 1. The term weak indicates that these classifiers are
constructed from various combinations of arithmetic
operations on the kinematic features. A strong classifier is then
constructed as a linear combination of the weak classifiers with
binary coefficients wi ∈ {0, 1}. The objective function is defined as:

O w( ) � ∑
i,j

Cijwiwj +∑
i

λ − 2Ci( )wi, (1)

where Cij =∑τci(xτ)cj(xτ), Ci =∑τci(xτ)yτ with the true label yτ ∈ {
+ 1, −1}, and λ is a positive parameter to penalize the number of
non-zero weight, wi, terms. The objective function O is finally
transformed into the problem Hamiltonian by converting the
binary wi to spin variable σ iz ∈ {−1, 1} for quantum annealing.

QAML performance for Higgs classification in two-photon
events is compared in [47] with two classical ML techniques
based on Boosted Decision Tree (BDT) and Deep Neural
Network (DNN). In addition, the same problem
Hamiltonian is adopted to Simulated Annealing (SA), a
classical analogue of QA with energy fluctuations controlled
by artificial temperature variables. The results show that the
QAML and SA have similar classification performance in
terms of the area under receiver operating characteristic
(ROC) curve for the true-positive and false-positive rates,
which correspond to the signal and background efficiencies,
respectively. The annealing-based methods have no clear
advantage over the classical ML methods, though a hint of
slight advantage is seen at small dataset size. The QAML
method has been further extended in [48] to the so-called
QAML-Z, that aims to zoom into the energy surface to
optimize real-valued coefficients and sequentially apply QA
to an augmented set of weak classifiers. The QAML-Z method
is applied in [49] to investigate the selection of
Supersymmetric top (stop) quark events against standard
model background events.

4.2 Quantum Machine Learning With
Quantum Circuits
There are two widely-used ML implementations for near-term
gate-based quantum computers: Variational Quantum
Algorithms (VQA) in [50] and Quantum Support Vector
Machines (QSVM) with kernel method in e.g., [51] and [52].
For both approaches, the input classical data x ∈ Rd is embedded
in a Hilbert space with a unitary operator U(xi) to create a
quantum state |ϕ(xi)〉 = U(xi)|0〉⊗n, where n is the number of
qubits. Since the NISQ devices have only limited resources,
simplified problems have been considered for both approaches
with the circuit-based machine learning.

VQA uses an ansatz created using unitary operator V(θ) with
tunable parameters θ and measures the produced final state
V(θ)|ϕ(xi)〉 with certain Hermitian operators. A cost function is
defined from the measurement outcome and the input ground
truth, and the parameter optimization or training is performed
classically by minimizing the cost function. The minimization of
cost function is an important subject in the field, and one of the
representative methods exploits the gradients of the cost
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function with respect to the θ parameters, which is so-called the
parameter-shift rule [53–56]. This VQA approach has a wide
range of applications including classification, regression and
optimization.

QSVM performs classification in high-dimensional feature
space by constructing the kernel function from the inner
products of embedded quantum states
K(xi, xj) � |〈ϕ(xi)|ϕ(xj)〉|2. The kernel function is sampled
by estimating the probability of measuring the |0〉⊗n state
from the circuit and is used by the classical SVM to build a
hyperplane for data classification. QSVM with a kernel function
often becomes more efficient than VQA in the training stage
because the parameter tuning is performed fully classically with
the obtained kernel function for the SVM. A polynomial number
of quantum gates used in VQA and QSVM, acting on a quantum
state that spans a Hilbert space exponentially, could bring
quantum advantage with near-term NISQ devices in the future.

VQA-based HEP applications have largely focused on the
classification of physics process of interests so far. They include
the classifications of Higgs boson [57, 58], supersymmetric
particles with missing transverse momentum [59], neutrino
events [60], new resonances in di-top final states [61] and B�B
production in e+e− collisions [62].

[57] studies the classification of t�tH events with H → γγ
decays and H → μ+μ− events from the dominant background
processes for each channel using VQA. After reducing the
kinematic variables into 10 variables using a principal
component analysis, [57] encodes the input data as angles of
RZ rotation gates, and produces an ansatz composed of RY and RZ
rotation gates with parameters and an entangling layer of
controlled-Z gates between adjacent qubits. Binary
classification is performed with the VQA framework using
both simulation and quantum hardware. The results show that
the VQA approach has a discrimination power similar to the
classical SVM and BDT, and the performance with quantum
device is comparable to that of a quantum simulator.

Ref. [59] explores the classification of the production of SUSY
events with twoW→ l] decays and two neutralinos against a SM
background process of two W → l] production. Restricting the
input features to 3, 5 and 7 kinematic variables, two different
implementations of VQA with different configurations of data
encoding and ansatz circuits are investigated using a quantum
simulator and quantum hardware. As either the number of input
variables or training events in the sample increase, the classical
techniques using BDTs and DNNs outperform the VQA
classifiers in the simulator. However, the VQA classifiers have
comparable performance when the training sample size or the
number of input variables is small.

In general, it is interesting to investigate the impact of data
encoding on VQA performance, or more specifically if there is
any efficient way to encode data from HEP experiments. [62]
attempts to address this question in the classification of
e+e− → ϒ(4S) → B�B events with B → K+K- decays from
e+e− → q�q background events. The momenta of the final
state particles (input data x) are encoded into the quantum
states |ψ(x)〉. The kernel K(xi, xj) = |〈ψ(xi)|ψ(xj)〉|2 is derived
by measuring the output state, which feeds into the classical

SVM for the classification. In the encoding stage, input particle
momenta are encoded by maintaining the kinematic properties
of individual particles with a dense-encoding technique. An
example data encoding gate proposed by the authors is shown
in Figure 3. In this encoding, individual particles are encoded
first with their momentum variables (p, θ, ϕ) in spherical
coordinates, then each particle is entangled with the other
in the event through one of their qubits. [62] demonstrates that
the classification performance is improved by exploiting this
encoding scheme for the classification of e+e− → ϒ(4S) → B�B
events.

Ref. [58] considers the classification of t�tH with H → b�b
decays using 67 input features. The authors first perform
feature reduction to adapt the large number of input features
to the capacity of current quantum computation with techniques
based on auto-encoding and feature selection. The VQA and
QSVM performance are compared with a DNN and a BDT. The
Area Under Curve (AUC) values of the quantum classifiers are
similar to those from the DNN and BDT, indicating that the
performance is similar.

In the absence of a clear new physics signal in HEP
experiments, a data-driven, signal-agnostic search has gained
considerable interests over years. Unsupervised machine
learning for new physics searches, often realized as anomaly
detection, will be an important tool in future colliders. Several
pioneering studies with unsupervised QML technique have been
done in the contexts of anomaly detection. Ref. [63] attempts to
combine an anomaly detection technique with a graph
representation of HEP events through quantum computation.
In particular, the continuous-variable (CV) model of quantum
computer, programmed using photonic quantum device, is
exploited to survey graph-represented events to search for pp
→ HZ signal. Ref. [63] uses Gaussian boson sampling of CV
events as input into a quantum variant of K-means clustering
algorithm for anomaly detection. A discrete (qubit-based) QML
approach for unsupervised learning is also investigated in [64],
where the feasibility of anomaly detection is explored using
quantum autoencoders (QAE) based on variational quantum
circuits. With the benchmark process of pp → H → t�t for
signal, the QAE performance has been compared with that
from a classical autoencoder for anomaly detection.

Various classical ML techniques have been applied to the tasks
of detector simulation and reconstruction in HEP experiments
(see the review in HEP ML Community). Among them, the
Generative Adversarial Network (GAN) is extensively studied to
simulate calorimeter energy deposits of particle showers as
images, aiming for increased speed compared to a full Geant4-
based detector simulation. The quantum version of a GAN
(QGAN) and its variants have been proposed and investigated
for HEP detector simulation [65] and Monte Carlo event
generation [66]. Ref. [67] employs the Parameterized
Quantum Circuit (PQC) GAN model, which is composed of a
quantum Generator and a classical Discriminator to demonstrate
a proof-of-concept for the QGAN-based shower simulation. In
particular, the GAN model in [67] uses two PQCs to sample two
probability distributions, one for the shower images and the other
for normalized pixel intensities in a single image. This allows a
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full training set of images to be captured. Even though the image
size is restricted only to 2 × 2 pixels, the proposed Dual-PQC
GAN model manages to generate a sample of individual images
and their probability distributions consistent with those in the
training set.

A technique from machine learning that has been applied to
the problem of charged particle pattern recognition are GNNs.
Ref. [68, 69] explored howGNNs can be applied to the problem of
pattern recognition. They developed a hybrid quantum-classical
algorithm, called a QuantumGNN (QGNN) that relies on a series
of quantum edge and quantum node networks. After iterating
through the series, a final edge network obtains the final segment
classification. [69] showed that the QGNN performs similarly to
classical methods when the number of hidden dimensions is low.
They studied the scaling performance of the QGNN in simulation
by varying the number of hidden dimensions and qubits. The
QGNN performance improves with additional hidden
dimensions, however, some saturation of the best loss is
observed. The results were limited to simulation due to the
current status of NISQ hardware. The application of this
technique to the LUXE experiment is explored in [70].

5 CONCLUSION AND OUTLOOK

Quantum computing has been undergoing explosive progress
recently and may have the potential to provide solutions to
computing challenges in HEP. There are many potential
applications and we have reviewed algorithms for quantum
simulation, quantum pattern recognition and quantum
machine learning and their challenges.

QFT simulation with quantum computers is highly motivated
because universal quantum computers can perform such
simulation with exponentially smaller computing resources
than classical computers. However, it would require many
more physical qubits than are currently available. Several
representative studies focusing on a simplified QFT, in
particular parton showers and hard scatterings, have been
reviewed here. These studies considered simple cases
compared to the realistic MC simulations currently employed
in HEP experiments, but demonstrate that interesting quantum

properties can be captured even with current devices. A full QFT
simulation envisioned by Jordan, Lee and Preskill will certainly
require many logical qubits free from errors, composed of
millions of physical qubits, called Fault-Tolerant Quantum
Computers (FTQC). The realization of FTQC is however still
decades away. A near-term goal of quantum simulation is to
develop quantum algorithms for each QFT simulation step and
evaluate the feasibility to realize potential advantage over classical
simulation with near-term technologies.

Pattern recognition algorithms are among the most
computationally demanding algorithms for HEP. A number of
studies have focused on global algorithms using quantum
annealers. These are typically hybrid quantum-classical
algorithms with pre- and post-processing performed on
classical computers and finding the solution on a quantum
annealer. All algorithms were able to obtain excellent
efficiencies, however some reported significant rates of fake
tracks particularly in very busy events. In all cases, the
problems needed to be simplified to be able to run on NISQ
devices. A study on the use of quantum circuits as associated
memory for triggers was presented, which would exploit the
exponential storage capacity of quantum computers. In the
future, it would be interesting to explore local pattern
recognition algorithms, particularly on circuit-based computers.
One of themain challenges for such algorithms is that they require
large amounts of data to be processed on the quantum device, and
the transfer of this data may limit the speed of such algorithms.

Quantum machine learning is a promising early application
in the NISQ era, not only for HEP but also for other scientific
domains and industries. Significant progress has been made
over the past few years in aspects including data encoding,
ansatz design and trainability for VQA and kernel-based
learning architecture. The QAML technique has been
employed for the Higgs-boson classification and
demonstrated that the classification performance is
comparable to the classical approaches based on BDT and
DNN. A number of VQA- and QSVM-based classification
studies have been demonstrated in representative data analyses
for pp and e+e− collisions. The quantum classifiers have
comparable performance to the conventional BDT and/or
DNN methods, meaning that quantum advantage has not

FIGURE 3 | (A) The raw data xi containing two particles with their momenta denoted by (pi, θi, ϕi) in spherical coordinates (i = 1, 2). (B) A proposed data encoding
composed of individual particle encoding with 2 qubits (each surrounded by a dashed box) and entangling between particles through their momentum bits. From [62].
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been demonstrated yet. Anomaly detection using unsupervised
QML methods is being explored. The QML approach has also
been investigated in the detector simulation as well, with the
demonstration of reproducing a calorimeter shower of energy
deposits in a simplified setting. QML applications to HEP data
analysis will pose several challenges in the future. A large-
volume, high-dimensional data produced from HEP
experiments needs to be embedded into quantum states,
which requires significant computing resources. The
encoded states are then processed in VQA by a
parameterized quantum circuit to extract underlying
properties in the data. Recent studies show that the ansatz
needs to have sufficient expressibility for a given problem but
should not be too expressive, making it exponentially harder to
compute the gradients of cost function with the number of
qubits. This infamous problem, so-called barren plateau in the
cost function landscape, and the data encoding are currently
very active areas of research for QML. It will be crucial to
explore them further in the context of HEP-oriented QML

architectures towards realizing quantum advantage for QML
in HEP.

AUTHOR CONTRIBUTIONS

The main contributions from HG were sections 1 and 3 and the
main contributions from KT were sections 2 and 4.

FUNDING

HG has received funding from the Alfred P. Sloan Foundation
under grant no. FG-2020-13732. KT has received funding from
the U.S.-Japan Science and Technology Cooperation Program in
High Energy Physics under the project “Optimization of HEP
Quantum Algorithms” (FY2021-23).

REFERENCES

1. Berners-Lee TJ, Cailliau R, Groff JF, Pollermann B. World Wide Web: An
Information Infrastructure for High-Energy Physics. Conf Proc C (1992) 920:
157–64.

2. Foster I, Kesselman C, Tuecke S. The Anatomy of the Grid - Enabling Scalable
Virtual Organizations. The International Journal of High Performance
Computing Applications (2001). 15 3:200–222. doi:10.1177/
109434200101500302

3. Bruening OS, Collier P, Lebrun P, Myers S, Ostojic R, Poole J, et al. LHCDesign
Report. Tech. Rep. CERN-2004-003-V-1. Geneva: CERN Yellow Reports:
Monographs (2004). doi:10.5170/CERN-2004-003-V-1

4. Apollinari G, Béjar Alonso I, Brüning O, Fessia P, Lamont M, Rossi L, et al.
High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report
V. 0.1. Geneva: Tech. Rep. CERN Yellow Reports: Monographs (2017).

5. ATLAS Collaboration. ATLAS Software and Computing HL-LHC Roadmap.
Tech. Rep. Geneva: CERN (2022).

6. Software CO Computing. Evolution of the CMS Computing Model towards
Phase-2Tech. Rep. Geneva: CERN (2021).

7. Shadura O, Krikler B, Stewart GA. HL-LHC Computing Review Stage 2,
Common Software Projects: Data Science Tools for Analysis. In: J Pivarski,
E Rodrigues, K Pedro, editors. LHCC Review of HL-LHC Computing
(2022).

8. Yazgan E. HL-LHC Computing Review Stage-2. Common Software Projects:
Event Generators (2021). doi:10.48550/arXiv.2109.14938

9. Abada A. FCC-hh: The Hadron Collider: Future Circular Collider Conceptual
Design Report Volume 3. Eur Phys J ST (2019) 228:755–1107. doi:10.1140/
epjst/e2019-900087-0

10. Preskill J. QuantumComputing in the NISQ Era and beyond.Quantum (2018)
2:79. doi:10.22331/q-2018-08-06-79

11. Bruzewicz CD, Chiaverini J, McConnell R, Sage JM. Trapped-ion Quantum
Computing: Progress and Challenges. Appl Phys Rev (2019) 6:021314. doi:10.
1063/1.5088164

12. Kjaergaard M, Schwartz ME, Braumüller J, Krantz P, Wang JI-J, Gustavsson S,
et al. Superconducting Qubits: Current State of Play. Annu Rev Condens
Matter Phys (2020) 11:369–95. doi:10.1146/annurev-conmatphys-031119-
050605

13. Preskill J. Quantum Computing 40 Years Later (2021). doi:10.48550/arXiv.
2106.10522

14. [Dataset] HEP ML Community. A Living Review of Machine Learning for
Particle Physics (2021). doi:10.48550/arXiv.2102.02770

15. Jordan SP, Lee KSM, Preskill J. Quantum Algorithms for Quantum Field
Theories. Science (2012) 336:1130–3. doi:10.1126/science.1217069

16. Preskill J. Simulating Quantum Field Theory with a Quantum Computer
(2018). doi:10.48550/arXiv.1811.10085

17. Argüelles CA, Jones BJP. Neutrino Oscillations in a Quantum Processor. Phys
Rev Res (2019) 1:033176. doi:10.1103/physrevresearch.1.033176

18. Jha AK, Chatla A, Bamba BA. Quantum Simulation of Oscillating Neutrinos
(2020). doi:10.48550/arXiv.2010.06458

19. Chang SY. Quantum Generative Adversarial Networks in a Continuous-
Variable Architecture to Simulate High Energy Physics Detectors (2021).
doi:10.48550/arXiv.2101.11132

20. de Jong WA, Metcalf M, Mulligan J, Płoskoń M, Ringer F, Yao X. Quantum
Simulation of Open Quantum Systems in Heavy-Ion Collisions. Phys Rev D
(2021) 104:L051501. doi:10.1103/physrevd.104.l051501

21. Pérez-Salinas A, Cruz-Martinez J, Alhajri AA, Carrazza S. Determining the
Proton Content with a Quantum Computer. Phys Rev D (2021) 103. doi:10.
1103/physrevd.103.034027

22. Bauer CW, Nachman B, Freytsis M. Simulating Collider Physics on Quantum
Computers Using Effective Field Theories. Phys Rev Lett (2021) 127. doi:10.
1103/physrevlett.127.212001

23. Stetina TF, Ciavarella A, Li X, Wiebe N. Simulating Effective Qed on Quantum
Computers. Quantum (2022) 6:622. doi:10.22331/q-2022-01-18-622

24. Nachman B, Provasoli D, de Jong WA, Bauer CW. Quantum Algorithm for
High Energy Physics Simulations. Phys Rev Lett (2021) 126:062001. doi:10.
1103/PhysRevLett.126.062001

25. Williams S, Malik S, Spannowsky M, Bepari K. A Quantum Walk Approach to
Simulating Parton Showers (2021). doi:10.48550/arXiv.2109.13975

26. Bepari K, Malik S, Spannowsky M, Williams S. Towards a Quantum
Computing Algorithm for Helicity Amplitudes and Parton Showers. Phys
Rev D (2021) 103:076020. doi:10.1103/PhysRevD.103.076020

27. Endo S, Benjamin SC, Li Y. Practical Quantum Error Mitigation for Near-
Future Applications. Phys Rev X (2018) 8:031027. doi:10.1103/PhysRevX.8.
031027

28. He A, Nachman B, de Jong WA, Bauer CW. Zero-noise Extrapolation for
Quantum-Gate Error Mitigation with Identity Insertions. Phys Rev A (2020)
102:012426. doi:10.1103/physreva.102.012426

29. Sivarajah S, Dilkes S, Cowtan A, SimmonsW, Edgington A, Duncan R. t|ket〉: a
Retargetable Compiler for NISQ Devices. Quan Sci. Technol. (2020) 6:014003.
doi:10.1088/2058-9565/ab8e92

30. Jang W, Terashi K, Saito M, Bauer CW, Nachman B, Iiyama Y, et al. Quantum
Gate Pattern Recognition and Circuit Optimization for Scientific Applications.
EPJ Web Conf (2021) 251:03023. doi:10.1051/epjconf/202125103023

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8648239

Gray and Terashi Quantum Computing Applications in Future Colliders

https://doi.org/10.1177/109434200101500302
https://doi.org/10.1177/109434200101500302
https://doi.org/10.5170/CERN-2004-003-V-1
https://doi.org/10.48550/arXiv.2109.14938
https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.1140/epjst/e2019-900087-0
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1063/1.5088164
https://doi.org/10.1063/1.5088164
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.48550/arXiv.2106.10522
https://doi.org/10.48550/arXiv.2106.10522
https://doi.org/10.48550/arXiv.2102.02770
https://doi.org/10.1126/science.1217069
https://doi.org/10.48550/arXiv.1811.10085
https://doi.org/10.1103/physrevresearch.1.033176
https://doi.org/10.48550/arXiv.2010.06458
https://doi.org/10.48550/arXiv.2101.11132
https://doi.org/10.1103/physrevd.104.l051501
https://doi.org/10.1103/physrevd.103.034027
https://doi.org/10.1103/physrevd.103.034027
https://doi.org/10.1103/physrevlett.127.212001
https://doi.org/10.1103/physrevlett.127.212001
https://doi.org/10.22331/q-2022-01-18-622
https://doi.org/10.1103/PhysRevLett.126.062001
https://doi.org/10.1103/PhysRevLett.126.062001
https://doi.org/10.48550/arXiv.2109.13975
https://doi.org/10.1103/PhysRevD.103.076020
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/physreva.102.012426
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1051/epjconf/202125103023
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


31. Hough P. Machine Analysis of Bubble Chamber Pictures. Conf Proc C (1959)
590914:554–8. Available at: https://cds.cern.ch/record/107795?ln=en

32. Duda RO, Hart PE. Use of the Hough Transformation to Detect Lines and
Curves in Pictures. Commun ACM (1972) 15:11–5. doi:10.1145/361237.
361242

33. Hopfield JJ. Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proc Natl Acad Sci U.S.A (1982) 79:2554–8. doi:10.
1073/pnas.79.8.2554

34. Kalman RE. A New Approach to Linear Filtering and Prediction Problems.
J Basic Eng (1960) 82:35–45. doi:10.1115/1.3662552

35. Billoir P. Track Fitting with Multiple Scattering: A New Method. Nucl Instr
Methods Phys Res (1984) 225:352–66. doi:10.1016/0167-5087(84)90274-6

36. Frühwirth R. Application of Kalman Filtering to Track and Vertex Fitting.
Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated
Equipment (1987) 262:444–50. doi:10.1016/0168-9002(87)90887-4

37. Duarte J, Vlimant J-R. Graph Neural Networks for Particle Tracking and
Reconstruction. arxiv (2022) 387–436. doi:10.1142/9789811234033_0012

38. Amrouche S, Basara L, Calafiura P, Estrade V, Farrell S, Ferreira DR, et al. The
Tracking Machine Learning challenge: Accuracy Phase. The NeurIPS (2020)
18:231–64. doi:10.1007/978-3-030-29135-8_9

39. Amrouche S. and others. The Tracking Machine Learning challenge :
Throughput Phase (2021). doi:10.48550/arXiv.2105.01160

40. Bapst F, Bhimji W, Calafiura P, Gray H, Lavrijsen W, Linder L, et al. A Pattern
Recognition Algorithm for Quantum Annealers. Comput Softw Big Sci (2020)
4:1. doi:10.1007/s41781-019-0032-5

41. Booth M, Reinhardt S, Roy A. Partitioning Optimization Problems for Hybrid
Classical/quantum Execution. Tech. Rep. dWave Technical Report (2017).
Available at: https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_
downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf

42. Saito M, Calafiura P, Gray H, Lavrijsen W, Linder L, Okumura Y, et al.
Quantum Annealing Algorithms for Track Pattern Recognition. EPJWeb Conf
(2020) 245:10006. doi:10.1051/epjconf/202024510006

43. Zlokapa A, Anand A, Vlimant JR, Duarte JM, Job J, Lidar D, et al. Charged
Particle Tracking with Quantum Annealing-Inspired Optimization (2019).
doi:10.48550/arXiv.1908.04475

44. Shapoval I, Calafiura P. Quantum Associative Memory in HEP Track Pattern
Recognition. EPJ Web Conf (2019) 214:01012. doi:10.1051/epjconf/201921401012

45. Ventura D, Martinez T. Quantum Associative Memory with Exponential
Capacity. 1998 IEEE International Joint Conference on Neural Networks
Proceedings. IEEE World Congress on Computational Intelligence (Cat.
No.98CH36227) (1998) 11:509–13. doi:10.1109/IJCNN.1998.682319

46. Guan W, Perdue G, Pesah A, Schuld M, Terashi K, Vallecorsa S, et al.
Quantum Machine Learning in High Energy Physics. Mach Learn Sci
Technol (2021) 2:011003. doi:10.1088/2632-2153/abc17d

47. Mott A, Job J, Vlimant J-R, Lidar D, Spiropulu M. Solving a Higgs
Optimization Problem with Quantum Annealing for Machine Learning.
Nature (2017) 550:375–9. doi:10.1038/nature24047

48. Zlokapa A, Mott A, Job J, Vlimant J-R, Lidar D, Spiropulu M. Quantum
Adiabatic Machine Learning by Zooming into a Region of the Energy Surface.
Phys Rev A (2020) 102:062405. doi:10.1103/PhysRevA.102.062405

49. Bargassa P, Cabos T, Cordeiro Oudot Choi AA, Hessel T, Cavinato S.
Quantum Algorithm for the Classification of Supersymmetric Top Quark
Events. Phys Rev D (2021) 104:096004. doi:10.1103/PhysRevD.104.096004

50. Cerezo M, Arrasmith A, Babbush R, Benjamin SC, Endo S, Fujii K, et al.
Variational Quantum Algorithms. Nat Rev Phys (2021) 3:625–44. doi:10.1038/
s42254-021-00348-9

51. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, et al.
Supervised Learning with Quantum-Enhanced Feature Spaces. Nature (2019)
567:209–12. doi:10.1038/s41586-019-0980-2

52. Schuld M, Killoran N. Quantum Machine Learning in Feature hilbert Spaces.
Phys Rev Lett (2019) 122:040504. doi:10.1103/PhysRevLett.122.040504

53. Gian Giacomo Guerreschi MS. Practical Optimization for Hybrid Quantum-
Classical Algorithms (2017). doi:10.48550/arXiv.1701.01450

54. Mitarai K, Negoro M, Kitagawa M, Fujii K. Quantum Circuit Learning. Phys
Rev A (2018) 98:032309. doi:10.1103/PhysRevA.98.032309

55. Schuld M, Bergholm V, Gogolin C, Izaac J, Killoran N. Evaluating Analytic
Gradients on Quantum Hardware. Phys Rev A (2019) 99:032331. doi:10.1103/
PhysRevA.99.032331

56. Mari A, Bromley TR, Killoran N. Estimating the Gradient and Higher-Order
Derivatives on Quantum Hardware. Phys Rev A (2021) 103:012405. doi:10.
1103/PhysRevA.103.012405

57. Wu SL, Chan J, Guan W, Sun S, Wang A, Zhou C, et al. Application of
Quantum Machine Learning Using the Quantum Variational Classifier
Method to High Energy Physics Analysis at the LHC on IBM Quantum
Computer Simulator and Hardware with 10 Qubits. J Phys G: Nucl Part Phys
(2021) 48:125003. doi:10.1088/1361-6471/ac1391

58. Belis V, González-Castillo S, Reissel C, Vallecorsa S, Combarro EF, Dissertori
G, et al. Higgs Analysis with Quantum Classifiers. EPJ Web Conf (2021) 251:
03070. doi:10.1051/epjconf/202125103070

59. Terashi K, Kaneda M, Kishimoto T, Saito M, Sawada R, Tanaka J. Event
Classification with Quantum Machine Learning in High-Energy Physics.
Comput Softw Big Sci (2021) 5:2. doi:10.1007/s41781-020-00047-7

60. Chen SYC. Quantum Convolutional Neural Networks for High Energy Physics
Data Analysis. Phys. Rev. Res. 4, 013231. doi:10.1103/PhysRevResearch.4.
013231 (2020).

61. Blance A, Spannowsky M. Quantum Machine Learning for Particle Physics
Using a Variational Quantum Classifier. J High Energ Phys (2021) 2021:212.
doi:10.1007/jhep02(2021)212

62. Heredge J, Hill C, Hollenberg L, Sevior M. Quantum Support Vector Machines
for Continuum Suppression in B Meson Decays (2021). doi:10.48550/arXiv.
2103.12257

63. Blance A, Spannowsky M. Unsupervised Event Classification with Graphs on
Classical and Photonic Quantum Computers. J High Energ Phys (2021) 2021.
doi:10.1007/jhep08(2021)170

64. Ngairangbam VS, Spannowsky M, Takeuchi M. Anomaly Detection in High-
Energy Physics Using a Quantum Autoencoder (2021). doi:10.48550/arXiv.
2112.04958

65. Chang SY, Herbert S, Vallecorsa S, Combarro EF, Duncan R. Dual-
parameterized Quantum Circuit gan Model in High Energy Physics.
EPJ Web Conf (2021) 251:03050. doi:10.1051/epjconf/202125103050

66. Bravo-Prieto C. Style-based Quantum Generative Adversarial Networks for
Monte Carlo Events (2021). doi:10.48550/arXiv.2110.06933

67. Ying C, Yunheng SZ.Quantum Simulations of the Non-unitary Time Evolution
and Applications to Neutral-Kaon Oscillations (2021).

68. Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novotny K, et al. A
Quantum Graph Neural Network Approach to Particle Track Reconstruction
(2020). doi:10.5281/zenodo.4088474

69. TüysüzC, Rieger C,NovotnyK, Demirköz B,DobosD, Potamianos K, et al. Hybrid
Quantum Classical Graph Neural Networks for Particle Track Reconstruction.
Quan Mach. Intell. (2021) 3:29. doi:10.1007/s42484-021-00055-9

70. Funcke L, Hartung T, Heinemann B, Jansen K, Kropf A, Kühn S. Studying
Quantum Algorithms for Particle Track Reconstruction in the LUXE
experiment. In: 20th International Workshop on Advanced Computing
and Analysis Techniques in Physics Research: AI Decoded - Towards
Sustainable, Diverse, Performant and Effective Scientific Computing
(2022).

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

The reviewer GNP declared a past collaboration with one of the authors KT to the
handling editor.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gray and Terashi. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 86482310

Gray and Terashi Quantum Computing Applications in Future Colliders

https://cds.cern.ch/record/107795?ln=en
https://doi.org/10.1145/361237.361242
https://doi.org/10.1145/361237.361242
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1142/9789811234033_0012
https://doi.org/10.1007/978-3-030-29135-8_9
https://doi.org/10.48550/arXiv.2105.01160
https://doi.org/10.1007/s41781-019-0032-5
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://docs.ocean.dwavesys.com/projects/qbsolv/en/latest/_downloads/bd15a2d8f32e587e9e5997ce9d5512cc/qbsolv_techReport.pdf
https://doi.org/10.1051/epjconf/202024510006
https://doi.org/10.48550/arXiv.1908.04475
https://doi.org/10.1051/epjconf/201921401012
https://doi.org/10.1109/IJCNN.1998.682319
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1038/nature24047
https://doi.org/10.1103/PhysRevA.102.062405
https://doi.org/10.1103/PhysRevD.104.096004
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.48550/arXiv.1701.01450
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.103.012405
https://doi.org/10.1103/PhysRevA.103.012405
https://doi.org/10.1088/1361-6471/ac1391
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1007/jhep02(2021)212
https://doi.org/10.48550/arXiv.2103.12257
https://doi.org/10.48550/arXiv.2103.12257
https://doi.org/10.1007/jhep08(2021)170
https://doi.org/10.48550/arXiv.2112.04958
https://doi.org/10.48550/arXiv.2112.04958
https://doi.org/10.1051/epjconf/202125103050
https://doi.org/10.48550/arXiv.2110.06933
https://doi.org/10.5281/zenodo.4088474
https://doi.org/10.1007/s42484-021-00055-9
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles

	Quantum Computing Applications in Future Colliders
	1 Introduction
	2 Applications of Quantum Computing to Simulation
	3 Applications of Quantum Computing to Charged Particle Pattern Recognition
	4 Applications of Quantum Machine Learning
	4.1 Quantum Machine Learning With Quantum Annealing
	4.2 Quantum Machine Learning With Quantum Circuits

	5 Conclusion and Outlook
	Author Contributions
	Funding
	References


