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This article presents a memristor-based sixth-order chaotic circuit which is designed
based on Chua¡ �s circuit using flux-controlled memristors and charge-controlled
memristors. The chaotic characteristics are analyzed, and the chaotic phase diagrams
are drawn. The specific upper bound information of the model uncertainty and external
disturbance is unknown. We design an adaptive terminal sliding-mode control law for such
chaotic systems, which not only compensates the influence of the uncertainty and
disturbance but also ensures that the synchronization error system is fixed-time stable
when the sliding motion takes place. Also, the accessibility of the sliding surface is
guaranteed. Thus, the sufficient conditions for the synchronization of the considered
systems are derived. Simulation examples show the significance and superiority of the
control scheme. The synchronization strategy is applied to image encryption, and the
results show that the encryption effect is excellent and has strong anti-disturbance ability.

Keywords: memristor-based sixth-order chaotic circuit, adaptive sliding-mode control, synchronization, fixed-time
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1 INTRODUCTION

Chaos theory, one of the greatest scientific studies in the 20th century, establishes a link between
determinism and probability theory and shows that even the simplest deterministic system also had
randomness. Lorenz’s weather models [1] showed that small differences in the initial conditions of a
system could make a tremendous effect on the final phenomenon. So, chaos was considered one of
the most creative revolutions in the scientific world [2–6]. Lai et al. [7] presented the latest research
progress in the field of chaotic systems. The memristor is a kind of nonlinear two-terminal device
that expresses the relationship between the magnetic flux and charge. Compared with resistances,
capacitances, and inductances, memristors have memory function and complex nonlinear
characteristics [8], so they are an ideal component for designing complex nonlinear systems.
Sun et al. [9–12] applied various memristors to the Pavlov associative memristor neural network
circuit for enhancing the memory and learning ability of the circuit, which made progress in the
research field of brain-like systems. Li et al. [13, 14] constructed a four-order memristor chaotic
oscillator, which increased the amplitude and frequency of the output waveform and realized an
analog circuit consistent with the theory. If it is introduced into chaos, the chaotic system will
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indicate more complex chaotic characteristics. In [15], the
piecewise magnetically controlled memristor was used for the
first time to replace Chua’s diode, and the memristor chaotic
circuit was designed to obtain the third-order memristor chaotic
system model, and the chaotic characteristics were analyzed. The
results showed abundant chaotic characteristics.

At present, many scholars have improved the chaotic model
with memristors [16, 17]. In [18], the three-dimensional
Lorentzian system was improved to construct a new
memory chaotic system. In [19], a new flux-controlled
memristor with a hyperbolic cosine function for Chua’s
circuit was designed. In [20], the adaptive projective
synchronization of three chaotic systems with three
unknown parameters was studied. However, their models
are all chaotic systems of fifth-order or less, and there is
little research on sixth-order chaotic systems. Compared
with traditional chaotic circuits, memristor chaotic circuits
have stronger randomness, which are more widely used.
Hence, the first innovation of this article is to construct a
novel memristor-based six-order chaotic system. At the same
time, we can also find that it has great significance in solving
the design and synchronization problems of high-dimensional
chaotic systems.

Chaotic synchronization [21, 22] is an important research
hotspot in complex system control and communication. In
recent years, sliding-mode synchronization has attracted the
attention of researchers. The sliding-mode control [23, 24]
forces the synchronization error systems to move along the
sliding surface. Adaptive control [25] could use the running
data to make the estimated value closer to the unknown
quantity, to solve the influence of internal uncertainty and
external disturbance during the system operation. In [26],
sliding-mode controllers and adaptive laws were designed to
solve the transmission synchronization problem. In [27], a
global nonlinear integral sliding-mode controller was
designed, and the simulation results showed that the error
convergence speed was improved. In [28], the synchronization
problem of a class of nonlinear chaotic systems with
mismatched disturbances was studied, and a new non-
singular terminal sliding surface was designed. In addition,
the traditional asymptotic synchronization time range is
infinite, which does not meet the actual requirements.

Finite-time chaos synchronization [29] has attracted more and
more interest due to its dynamic properties, which can reduce the
cost, improve the robustness, and achieve fast convergence. In [30], a
controller to satisfy the finite-time synchronization problem of
chaotic systems was designed. In [31], a multi-switching rule was
used to achieve finite-time hybrid synchronization for multi-
systems. In [32], a finite-time continuous controller was designed
to reduce the control cost of nonlinear systems. In addition, the
setting time of the fixed-time synchronization is independent of the
initial value but is affected by the system model and parameters,
which is better than finite-time hybrid synchronization. In [33], the

fixed-time synchronization was realized for the synchronization
problem of the BAM neural network. Xu et al. [34] studied the
finite-time and fixed-time synchronization of inertial neural
networks and proved the difference between the two methods
through simulation results. Wang et al. [35] realized the fixed-
time and finite-time synchronization of the memristor chaotic
system with sliding-mode control, and the superiority of fixed-
time was proved by simulation. In summary, we will design an
adaptive sliding-mode controller to realize the fixed-time
synchronization of the new chaotic system.

For the application research of chaotic synchronization, it is
known that the unpredictability of initial conditions made chaotic
systems used in the field of image encryption [36, 37]. Lai et al. [38,
39] constructed and studied the image processing of non-equilibrium
chaotic systems and memristor chaotic systems. In [40], the Lorenz
system with an additional Fourier model was applied to the raster
image encryption. In [41], a seventh-order memristor chaotic system
was constructed, and a new and more complex algorithm was
designed, which greatly enhances the effect of pixel encryption. In
[42], a new four-dimensional chaotic system was constructed and
applied to the field of image encryption. Then, we can use the
theoretical results obtained in this article to apply the system to the
application research of image encryption. This is the application
innovation of this article. Event-triggered control [43–45] can save
network resources and reduce energy consumption, which will
become our next important research direction.

Inspired by the aforementioned contents, the contributions lie
in the following three aspects:

1) A memristor-based sixth-order chaotic circuit is achieved
by using flux-controlled memristors and charge-controlled
memristors. Different from the third-order and fourth-
order memristor chaotic systems described previously,
this system has a higher order and a more complex
model structure. The system model is analyzed by
Kirchhoff’s law, and the chaotic characteristics and
stability are analyzed.

2) A terminal sliding-mode surface and adaptive law are
designed to solve the internal uncertainty and external
disturbance. Different from the finite-time synchronization

FIGURE 1 | New memristor-based chaotic circuit.
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described previously, we realize the fixed-time
synchronization scheme between sixth-order chaotic systems.

3) The synchronization method designed is applied to the image
encryption algorithm based on obfuscation diffusion, and the
image encryption process is realized. The results show that the
better the encryption result, the higher the degree of anti-
decryption.

2 MEMRISTOR-BASED SIXTH-ORDER
CHAOTIC CIRCUITS AND THEIR
DYNAMICS ANALYSIS
A memristor-based chaotic circuit based on Chua’s circuit is
designed using two flux-controlled memristors and one charge-
controlled memristor. The circuit diagram is described as follows:
The flux-controlledmemristor model used in this study is as follows:

q φ( ) � kφ + lφ3

W φ( ) � dq φ( )
dφ

� k + 3lφ2,
(1)

where q and φ are the charges and magnetic fluxs, respectively,
k and l are constants, and W(φ) is conductance. Also, the
charge-controlled memristor [46] used in this article is as
follows:

M q( ) � m + nq

dq

dt
� αiM − βq − iMq,

(2)

where M(q) represents the resistance value. dq
dt represents the

internal state. iM is the current flowing through the resistor, and
m, n, α, and β are constants.

Remark 1. Compared with the aforementioned third-
order and fourth-order memristor chaotic systems,
our system is extended to the sixth-order, which has a
more complex structure, and the three memristors
make the model obtain rich chaotic dynamic
characteristics.

In light of Kirchhoff’s voltage and current law analysis in
Figure 1, the following equations can be obtained:

FIGURE 2 | Trajectories of the state variables x1, x2, x3, x4, x5, x6 of the system.
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dV1 t( )
dt

� − 1
C1

V1 t( )W φ1 t( )( ) − V2 t( ) − V1 t( )( )W φ2 t( )( )[ ]
dV2 t( )
dt

� − 1
C2

iL t( ) − V1 t( ) − V2 t( )( )W φ2 t( )( )[ ]
diL t( )
dt

� 1
L

V2 t( ) + iL t( )M q t( )( )( )
dφ1 t( )
dt

� V1 t( )
dφ2 t( )
dt

� V2 t( ) − V1 t( )
dq1 t( )
dt

� −αiL t( ) − βq1 t( ) − iL t( )q1 t( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where iL(t) is the current of L, V1(t) and V2(t) are the voltages of
C1 and C2, respectively, φ1(t), φ1(t), and q1(t) are the magnetic
fluxes and charges of the three memristors, V1(t) = x1, V2(t) = x2,
iL(t) = x3, φ1(t) = x4, φ2(t) = x5, q1(t) = x6, 1

C1
= a, 1

C2
= b, 1L=c, and iM=

− iL(t). After normalization, the system equation is as follows:

_x1 � a x2 − x1( ) n2 +m2x5
2( ) − x1 n1 +m1x4

2( )[ ]
_x2 � b x1 − x2( ) n2 +m2x5

2( ) − x3[ ]
_x3 � c x2 + x3 n3 +m3x6( )( )
_x4 � x1

_x5 � x2 − x1

_x6 � −αx3 − βx6 − x3x6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

The next step is to analyze the dynamic characteristics. First, we
investigate the chaotic characteristics.We choose a= 7, b = 1, c= 12, α
= 0.3, β = 0.3, n1 = −1.2, n2 = 0.9, n3 = 0.03,m1 = 3.1,m2 = 3.0,m3 =
0.12, and then Figure 2 shows the state variables ofEq. 2. Figures 3–6
are the chaotic phase diagrams of x1− x2− x4, x1− x2− x3, x1− x3− x5,
x4 − x5 − x6, which show the double vortex chaotic attractor.Second,
the dissipation value of the calculated system is as follows:

∇V � z _x1

zx1
+ z _x2

zx2
+ z _x3

zx3
+ z _x4

zx4
+ z _x5

zx5
+ z _x6

zx6
� −a n2 +m2x5

2( )
− n1 +m1x4

2( ) − b n2 +m2x5
2( ) + c n3 +m3x6( ) − β − x3

� −4.1116< 0.
(5)

The dissipation value of the system is less than zero, so the system is
dissipative. Then, we calculate the following Lyapunov exponents of
the memristor-based sixth-order chaotic L1 = 0.2733, L2 = 3.5526, L3
= -9.4124, L4 = -0.0071, L5 = -0.0454, L6 = -6.0755. Then, it can be
found that two Lyapunov indices are greater than 0. Referring to the
theory of [47], the system is a chaotic system.

The next step is to analyze the stability of the system. The
equilibrium point of Eq. 4 can be determined by the solution of
Eq. 6,

0 � a x2 − x1( ) n2 +m2x5
2( ) − x1 n1 +m1x4

2( )[ ]
0 � b x1 − x2( ) n2 +m2x5

2( ) − x3[ ]
0 � c x2 + x3 n3 +m3x6( )( )
0 � x1

0 � x2 − x1

0 � −αx3 − βx6 − x3x6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(6)

The equilibrium solution is x1 = x2 = x3 = x6 = 0, x4 = γ, x5 = ε,
where γ and ε are constants. It shows that the chaotic system has a
plane equilibrium point corresponding to x4 and x5. The Jacobian
matrix of the balanced set is shown as follows:

J �

a − n2 +m2ε
2( ) − n1 +m1γ

2( )[ ] a n2 +m2ε
2( ) 0 0 0 0

b n2 +m2ε
2( ) −b n2 +m2ε

2( ) −b 0 0 0
0 c cn3 0 0 0
1 0 0 0 0 0
−1 1 0 0 0 0
0 0 −α 0 0 −β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The characteristic equation is obtained by the Jacobian matrix
Eq. 7 as follows:

λ1 + a n1 +m1γ
2( )[ ] λ2 + b n2 +m2ε

2( ) − b

n3
[ ]

× λ3 − cn3( )λ4λ5 λ6 + β( )
� 0. (8)

There are always two zero eigenvalues, and the other eigenvalues
are determined by the system parameters. Because c, a, n1, n3 are
positive, and λ3 is greater than zero. According to the stability
theory of chaotic systems, the aforementioned memristor-based
chaotic system is unstable at such an equilibrium point.

FIGURE 3 | x1 − x2 − x4.
FIGURE 4 | x1 − x2 − x3.
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3 DESIGN OF THE ADAPTIVE
SLIDING-MODE SYNCHRONIZATION
SCHEME
First, the drive system is Eq. 4, and the response system Eq. 9 is as
follows:

_y1 � a y2 − y1( ) n2 +m2y5
2( ) − y1 n1 +m1y4

2( )[ ] + ϕ1 t( ) + f1 t( ) + u1

_y2 � b x1 − x2( ) n2 +m2y5
2( ) − y3[ ] + ϕ2 t( ) + f2 t( ) + u2

_y3 � c y2 + y3 n3 +m3y6( )( ) + ϕ3 t( ) + f3 t( ) + u3

_y4 � y1 + ϕ4 t( ) + f4 t( ) + u4

_y5 � y2 − y1 + ϕ5 t( ) + f5 t( ) + u5

_y6 � −αy3 − βy6 − y3y6 + ϕ6 t( ) + f6 t( ) + u6,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where ϕi(t) is the uncertain unknown model in Eq. 9, and fi(t) is
the external disturbance, and |ϕi(t)|≤ψi, |fi(t)|≤ωi, ψi and ωi

are constants, and ui(t) is the control input. Therefore, the error
dynamic system can be expressed as:

_e1 � a y2 − y1( ) n2 +m2y5
2( ) − x2 − x1( ) n2 +m2x5

2( )[
+x1 n1 +m1x4

2( ) − y1 n1 +m1y4
2( )] + ϕ1 t( ) + f1 t( ) + u1

_e2 � b x1 − x2( ) n2 +m2y5
2( ) − x1 − x2( ) n2 +m2x5

2( ) − e3[ ] + ϕ2 t( ) + f2 t( ) + u2

_e3 � c e2 + y3 n3 +m3y6( ) − x3 n3 +m3x6( )( ) + ϕ3 t( ) + f3 t( ) + u3

_e4 � e1 + ϕ4 t( ) + f4 t( ) + u4

_e5 � e2 − e1 + ϕ5 t( ) + f5 t( ) + u5

_e6 � −αe3 − βe6 − y3y6 + x3x6 + ϕ6 t( ) + f6 t( ) + u6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

The next step is to design the synchronization controller ui to
realize the stability of the aforementioned error dynamic system.
The sliding-mode control method is used to achieve the adaptive
synchronization of memristor-based chaotic systems. The
following lemmas will be used:

Lemma 1. [36] Consider the system _x � f(x, t), when the
continuous bounded functions V(x, t) satisfy the following
conditions:

(i):V(0) = 0
(ii):V(t) ≤ −aVχ(t) − bVδ(t) − cV(t)where a > 0, b > 0, c > 0, 0 <

χ < 1, δ > 1, and the system will achieve fixed-time stability and

Tmax � 1
c 1 − χ( ) ln 1 + c

a
( ) + 1

c δ − 1( ) ln 1 + c

b
( ). (11)

Lemma 2. [48] For any real numbers ]1, ]2, . . ., ]n and 0 < g1 <
1, 1 < g2, it satisfies that

∑n
i�1

]i| |g1+1 ≥ ∑n
i�1

]i| |2⎛⎝ ⎞⎠ g1+1( )/2

∑n
i�1

]i| |g2+1 ≥ n 1−g2( )/2 ∑n
i�1

]i| |2⎛⎝ ⎞⎠ g2+1( )/2 . (12)

Then, we select the following sliding surface as:

Fi t( ) � ei t( ) + ∫t

0
j ei τ( )| |vb + k ei τ( )| | nm + l ei τ( )| |( )sgn ei τ( )( )dτ,

(13)
where 0 < v < b, 0 <m < n, and j, k, l > 0, i = 1, . . ., 6, and we have

_Fi t( ) � _ei t( ) + j ei t( )| |vb + k ei t( )| |nm + l ei t( )| |( )sgn ei t( )( ). (14)
The adaptive sliding-mode controller is designated as:

u1 t( ) � − j e1 t( )| |vb + k e1 t( )| |nm + l e1 t( )| |( )sgn e1 t( )( ) − a y2 − y1( ) n2 +m2y5
2( ) − x2 − x1( )[

n2 +m2x5
2( ) + x1 n1 +m1x4

2( ) − y1 n1 +m1y4
2( )] − ρ + F1 t( )| |k( )sgn F1 t( )( )

− ψ̂1 + ω̂1( )sgn F1 t( )( )
u2 t( ) � − −j e2 t( )| |vb + k e2 t( )| |nm + l e2 t( )| |( )sgn e2 t( )( ) − b x1 − x2( ) n2 +m2y5

2( )[
− x1 − x2( ) n2 +m2x5

2( ) − e3] − ρ + F1 t( )| |k( )sgn F2 t( )( ) − ψ̂2 + ω̂2( )sgn F2 t( )( )
u3 t( ) � − −j e3 t( )| |vb − k e3 t( )| |nm − l e3 t( )| |( )sgn e3 t( )( ) − c e2 + y3 n3 +m3y6( )(

−x3 n3 +m3x6( )) − ρ + F1 t( )| |k( )sgn F3 t( )( ) − ψ̂3 + ω̂3( )sgn F3 t( )( )
u4 t( ) � − j e4 t( )| |vb + k e4 t( )| |nm + l e4 t( )| |( )sgn e4 t( )( ) − e1 − ρ + F1 t( )| |k( )sgn F4 t( )( )

− ψ̂4 + ω̂4( )sgn F4 t( )( )
u5 t( ) � − j e5 t( )| |vb + k e5 t( )| |nm + l e5 t( )| |( )sgn e5 t( )( ) − e2 − ρ + F1 t( )| |k( )sgn F5 t( )( )

− ψ̂5 + ω̂5( )sgn F5 t( )( )
u6 t( ) � − −j e6 t( )| |vb − k e6 t( )| |nm − l e6 t( )| |( )sgn e6 t( )( ) + αe3 + βe6 + y3y6

−x3x6 − ρ + F1 t( )| |k( )sgn F6 t( )( ) − ψ̂6 + ω̂6( )sgn F6 t( )( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

where ρ, k are positive constants, and ψ̂i, ω̂i are estimates of ψi, ωi.
Also, the adaptive laws ψ̂i, ω̂i are selected as:

_̂ψi � Fi t( )| |
_̂ωi � Fi t( )| |{ (16)

Theorem 1. Under the influence of the controllers Eq. 13 and
the adaptive laws Eq. 15, the error system Eq. 10will reach sliding
surfaces.

Proof. The following Lyapunov function is constructed:

FIGURE 5 | x1 − x3 − x6.

FIGURE 6 | x4 − x5 − x6.
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Vi t( ) � 1
2
∑6
i�1

F2
i t( ) + Δψi

2 + Δωi
2( ). (17)

Taking the derivative of Eq. 17, one has

_Vi t( ) �∑6
i�1

Fi t( ) _Fi t( ) + Δψi
_̂ψi + Δωi

_̂ωi( ). (18)

Substituting Eq. 14 into the aforementioned equation, we have

_Vi t( ) �∑6
i�1

Fi t( )

× _ei t( ) + j ei t( )| |vb + k ei t( )| | nm + l ei t( )| |( )sgn ei t( )( )[ ]
+∑6

i�1
ψ̂i − ψi( ) _̂ψi +∑6

i�1
ω̂i − ωi( ) _̂ωi.

(19)
Furthermore, we take the control scheme Eq. 13 into Eq. 10 and
Eq. 18, we get

_Vi t( ) �∑6
i�1

Fi t( ) ϕi t( ) + fi t( ) − ρ + Fi t( )| |k( )sgn Fi t( )( )[

− ψ̂i + ω̂i( )sgn Fi t( )( )] +∑6
i�1

ψ̂i − ψi( ) _̂ψi + ∑6
i�1

ω̂i − ωi( ) _̂ωi

�∑6
i�1

ϕi t( ) + fi t( )( )Fi t( ) −∑6
i�1

ψ̂i + ω̂i( ) Fi t( )| | −∑6
i�1

ρ Fi t( )| |

+ Fi t( )| |k+1 +∑6
i�1

ψ̂i( −ψi) _̂ψi +∑6
i�1

ω̂i − ωi( ) _̂ωi.

(20)
According to the adaptive laws of Eq. 15, one has

_Vi t( ) �∑6
i�1

ϕi t( ) + fi t( )( )Fi t( ) −∑6
i�1

ψ̂i + ω̂i( ) Fi t( )| |

−∑6
i�1

ρ Fi t( )| | + Fi t( )| |k+1 +∑6
i�1

ψ̂i − ψi( ) Fi t( )| | + ∑6
i�1

ω̂i − ωi( )

× Fi t( )| | ≤ ∑6
i�1

ϕi t( ) + fi t( )( ) Fi t( )| | − ψi + ωi( ) Fi t( )| | − ρ Fi t( )| | − Fi t( )| |k+1[ ].
(21)

Due to |ϕi(t)|≤ψi, |fi(t)|≤ωi, we obtain

_Vi t( ) ≤ ∑6
i�1

ψi + ωi( ) Fi t( )| | − ψi + ωi( ) Fi t( )| |[

− ρ Fi t( )| | + F1 t( )| |k+1( )] ≤ ∑6
i�1

−ρ Fi t( )| | − Fi t( )| |k+1 ≤ 0.

(22)
For the inequality (22), _Vi(t) � 0 if and only if _Fi(t) � 0;
otherwise, _Vi(t)< 0. According to the Lyapunov stability
principle, the error system can move to the sliding
surface.Theorem 2. After the error system Eq. 10 reaches the
sliding surface, then the state variables of Eq. 10 will tend to zero

in a fixed-time T1, which means there will be fixed-time
synchronization between the two chaotic systems Eqs 4, 9.

T1 � v

l v − b( ) ln 1 + 2
v−b
2v l

j
( ) + m

l n −m( ) ln 1 + 2
m−n
2m 6

n−m
2m l

k
( ). (23)

Proof. The following Lyapunov function is constructed:

Vi t( ) � 1
2
∑6
i�1

e2i t( ). (24)

When the system reaches the sliding surface, it will satisfy
Fi(t) � 0, _Fi(t) � 0, i � 1, . . . , 6, that is,

_Fi t( ) � _ei t( ) + j ei t( )| |vb + k ei t( )| | nm + l ei t( )| |( )sgn ei t( )( ) � 0.

(25)
Because the error systems satisfy

_ei t( ) � −j ei t( )| |vb − k ei t( )| | nm − l ei t( )| |( )sgn ei t( )( ). (26)
Therefore,

_Vi t( ) �∑6
i�1

ei t( ) _ei t( )

�∑6
i�1

ei t( ) −j ei t( )| |vb − k ei t( )| | nm − l ei t( )| |( )sgn ei t( )( )[ ]
�∑6

i�1
−j ei t( )| |vb+1 − k ei t( )| | nm+1 − l ei t( )| |2.

(27)
According to Lemma 2, we continue to calculate Eq. 26 as

_Vi t( )≤ ∑6
i�1

−j ei t( )| |2( )v+b2b − 6
m−n
2m k ei t( )| |2( )n+m2m − l ei t( )| |2[ ]

� −2v+b
2b j Vi t( )( )v+b2b − 2

n+m
2m 6

m−n
2m k Vi t( )( )n+m2m − 2lVi t( ).

(28)

According to Lemma 1, we get that the error state variables of Eq.
10 will tend to zero in a fixed-time. Also, using Eq. 27, the setting
time is

T1 � v

l v − b( ) ln 1 + 2
v−b
2v l

j
( ) + m

l n −m( ) ln 1 + 2
m−n
2m 6

n−m
2m l

k
( ). (29)

Then, the proof of Theorem 2 is completed, which means that
fixed-time synchronization is reached between the two chaotic
systems Eqs 4,9.

Remark 2. Different from finite-time synchronization control,
the bounds of fixed-time synchronization discussed in this article
are only affected by system parameters, which are independent of
the values of the initial time of the system.

In order to effectively verify the above theoretical results, a
simulation example shows the significance of the adaptive
sliding-mode synchronization scheme. We choose a = 7, b =
1, c = 12, α = 0.3, β = 0.3, n1 = −1.2, n2 = 0.9, n3 = 0.03,m1 = 3.1,m2

= 3.0, m3 = 0.12. Thus, the equation of the error system, Eq. 10
can be expressed as:
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_e1 � 21 y2 − y1( ) y5
2( ) − x2 − x1( ) x5

2( ) + 6.3e2 − 5.1e1 + 3.1 x1x4
2 − y1y4

2( ) + ϕ1 t( ) + f1 t( ) + u1

_e2 � y1 − y2( ) 0.9 + 3y5
2( ) − x1 − x2( ) 0.9 + 3x5

2( ) − e3[ ] + ϕ2 t( ) + f2 t( ) + u2

_e3 � 12(e2 + 0.03e3 + 0.12y3y6 − 0.12x3x6 + ϕ3 t( ) + f3 t( ) + u3

_e4 � e1 + ϕ4 t( ) + f4 t( ) + u4

_e5 � e2 − e1 + ϕ5 t( ) + f5 t( ) + u5

_e6 � −0.3e3 − 0.3e6 − y3y6 + x3x6 + ϕ6 t( ) + f6 t( ) + u6.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(30)

Selecting j = 10, k = 10, l = 2, v = 1, b = 2.5, n = 4,m = 1, k = 4, ρ = 2,
then the control scheme is

u1 t( ) � − 10 e1 τ( )| |0.4 + 10 e1 τ( )| |4 + 2.5 e1 τ( )| |( )sgn e1 t( )( ) − 21 y2 − y1( ) y5
2( ) − x2 − x1( ) x5

2( )[ ]
−6.3e2 + 5.1e1 − 3.1 x1x4

2 − y1y4
2( ) − 2 + F1 t( )| |4( )sgn F1 t( )( ) − ψ̂1 + ω̂1( )sgn F1 t( )( )

u2 t( ) � − 10 e2 τ( )| |0.4 + 10 e2 τ( )| |4 + 2.5 e2 τ( )| |( )sgn e2 t( )( ) − y1 − y2( ) 0.9 + 3y5
2( ) − x1 − x2( )[

0.9 + 3x5
2( ) − e3] − 2 + F2 t( )| |4( )sgn F2 t( )( ) − ψ̂2 + ω̂2( )sgn F2 t( )( )

u3 t( ) � − 10 ei τ( )| |0.4 + 10 ei τ( )| |4 + 2.5 ei τ( )| |( )sgn e3 t( )( ) − 12 e2 + 0.03e3 + 0.12y3y6−(
0.12x3x6) − 2 + F3 t( )| |4( )sgn F3 t( )( ) − ψ̂3 + ω̂3( )sgn F3 t( )( )

u4 t( ) � − 10 ei τ( )| |0.4 + 10 ei τ( )| |4 + 2.5 ei τ( )| |( )sgn e4 t( )( ) − e1 − 2 + F4 t( )| |4( )sgn F4 t( )( )−
ψ̂4 + ω̂4( )sgn F4 t( )( )

u5 t( ) � − 10 ei τ( )| |0.4 + 10 ei τ( )| |4 + 2.5 ei τ( )| |( )sgn e5 t( )( ) − e2 + e1 − 2 + F5 t( )| |4( )sgn F5 t( )( )−
ψ̂5 + ω̂5( )sgn F5 t( )( )

u6 t( ) � − 10 ei τ( )| |0.4 + 10 ei τ( )| |4 + 2.5 ei τ( )| |( )sgn e6 t( )( ) + 0.3e3 + 0.3e6 + y3y6 − x3x6 − 2+(
F6 t( )| |4)sgn F6 t( )( ) − ψ̂6 + ω̂6( )sgn F6 t( )( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(31)

The initial values are set at xi(0) = [0.01,0,0.01,0,0,0.01], and
yi(0) = [5.01,3.5,10.01,5.5,4,3.01], the external disturbances are set
at f1(t) = 0.25 cos(t), f2(t) = 0.2 sin(t), f3(t) = 0.45 cos(t), f4(t) =
0.15 cos(t), f5(t) = 0.3 cos(t), f6(t) = 0.5 cos(t). The systems
parameters are set at ϕ1(t) = 0.13 cos(2πy2), ϕ2(t) =
0.2 cos(2πy3), ϕ3(t) = 0.4 cos(2πy4), ϕ4(t) = 0.3 cos(πy5), ϕ5(t)
= 0.5 cos(5πy6), ϕ6(t) = 0.6 cos(2πy1). Then, we can obtain the
following simulation results:Figures 7, 8 show the memristor-
based chaotic systems realize synchronization rapidly in fixed-
time under the action of the adaptive sliding-mode controller.
Figures 9, 10 show the time response curves of adaptive
parameters mi, ni(i = 1, . . ., 6).

From Figures 7, 8, the response time of the error systems and
state variables is less than 1.2s under the adaptive sliding-mode
controller Eq. 15 and the adaptive laws (16). From Figures 9, 10,
update parametersm and n converge to fixed values at 0.82 s. The
simulation results, show the superiority of the designed adaptive
sliding-mode controller. Our next step is to apply the simulation
results to image encryption.

Remark 3. Different from the simulation results of finite-time
synchronization control, the memristor-based sixth-order
chaotic systems achieve fixed-time synchronization, which has

a shorter stable time and whose setting time only depends on our
system’s parameters.

4 APPLICATIONS IN IMAGE ENCRYPTION

Because the memristor chaotic circuit has stronger noise like
initial value sensitivity and long-term unpredictability, the
application of the memristor-based chaotic circuit to image
encryption will make the experimental images have a stronger
anti-decoding function. We verify the effectiveness of the
adaptive sliding-mode synchronization scheme in image
encryption by using a chaotic obfuscation-diffusion
mechanism [49], and the specific implementation process is
shown in Figure 11.According to Figure 11, we first read
three data matrices, R, G, and B, of the original image. Three
parameters are selected from the driving system (4), x2, x3, and x4
are selected from the memristor-based chaotic system designed in
this article, which is to do the ascending and descending sequence
and row displacement of R,G, B. We can obtain the data of R′,G′,
and B′. Next, the pixel value is replaced by x5 to get R″, G″, and
B″. We choose the following parameter as:

nzx � abs x5 z, x( )( ) − round x5 z, x( ))( ) × 102

mzx � abs x5 z, x( ) − round x5 z, x( )( )( ) × 103
{ . (32)

The intermediate variable Q is as follows:

Q � nzx × z +mzx × x( )mod S, (33)
where z and x are pixel row and row position, S is gray value. We
get the matrix of the encrypted image R″, G″, B″ as:

R″ � R′ ⊕ Q
G″ � G′ ⊕ Q
B″ � B′ ⊕ Q.

⎧⎪⎨⎪⎩ (34)

The binary sequence R″, G″, B″ is converted into a two-
dimensional matrix R′′′, G′′′, B′′′, and the two-dimensional
matrix R′′′, G′′′, B′′′ is reconstructed to obtain the
encrypted image.

FIGURE 7 | Trajectories of all synchronization error states.
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FIGURE 8 | The trajectories of state variables xi, yi(i = 1, . . ., 6), (A-F).

FIGURE 9 | Trajectories of the update vector parameter m.

FIGURE 10 | Trajectories of the update vector parameter n.
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The above process belongs to the image encryption
process. For the image decryption process, we read the
three color data matrices R′′′, G′′′, B′′′ of the encrypted
image. Then the pixel value is replaced by y5 to get R″, G″,
B″. And we set

n′zx � abs y5 z, x( )( ) − round y5 z, x( ))( ) × 102

m′zx � abs y5 z, x( ) − round y5 z, x( )( )( ) × 103
{ (35)

Then, we can easily get

Q′ � nzx × z +mzx × x( )mod S′. (36)
From the aforementioned equations, we can get

R″ � R′′′ ⊕ Q′
G″ � G′′′ ⊕ Q′
B″ � B′′′ ⊕ Q′

⎧⎪⎨⎪⎩ (37)

The binary sequence R″, G″, B″ is converted into a two-
dimensional matrix R′, G′, B′. Three parameters are selected
from the response system Eq. 9, y2, y3, y4 are selected to do the
ascending and descending sequence and row displacement of R′,
G′, B′ to R, G, B, which is reconstructed to obtain the decryption
images. The memristor-based six-order chaotic circuit and
adaptive sliding-mode synchronization scheme are used to
make the initial value and synchronization simulation, and the

FIGURE 11 | Image encryption process.

FIGURE 12 | Experimental dataset and their encrypted and decrypted versions (A-F).
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image encryption experiment is carried out. We selected two
images for the encryption experiment, and the experimental
results are shown in Figure 12.

We use histogram analysis, which is an important tool to assess
encryption performance, to analyze Figure 12. The experimental
results are shown in Figure 13.Then, we use chi-square test Eq. 38 to
analyze the encrypted images’ histograms in Figure 13,

x2 �∑255
q�0

fq − n( )2
n

, (38)

where fq is the frequency distribution of the encrypted images’
histograms and n = (α*β)/256, for a α*β dimension image. We get
x2
image01 � 271.4377 and x2

image02 � 268.2371. Compared with
x2
0.05(255) � 293.24783, x2

image01, x
2
image02 <x2

0.05(255). It can be
seen that the original images’ histograms fluctuate greatly, while
the encrypted images’ histograms are evenly distributed and have
fluctuation. A good encryption algorithm can make the
distribution of encrypted images as uniform as possible.
Therefore, the adaptive sliding-mode controller makes the
memristor-based sixth-order chaotic system suitable for image
encryption, which improves the security of signal transmission.

CONCLUSION

This article has established a memristor-based sixth-order
chaotic circuit. The dynamic analysis and sliding-mode
synchronization and its application have been studied. A
sixth-order chaotic system has been constructed by using
flux-controlled memristors and charge-controlled
memristors. For the synchronization of sixth-order
memristor chaotic systems with unknown models and
external disturbances, a class of terminal sliding-mode
surface and adaptive control laws is designed. After
coming to the sliding-mode surface by asymptotic
stabilization, the system achieves synchronization in a
fixed time, and a simulation example shows the
effectiveness of the scheme. Furthermore, the sixth-order
chaotic system and synchronization scheme have been
applied to image protection. The results show that the
algorithm can be combined with the system, which has a
good encryption effect and high anti-interference. This work
applies the proposed memristor-based sixth-order chaotic
system as a network node to the synchronization of
complex networks.

FIGURE 13 | Histograms of the original, encrypted and decrypted greyscale images (A-F) in Figure 12.
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