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Due to the serious problem of population aging, monitoring of domestic activities is
increasingly important. Audio tagging of domestic activities is very suitable when the visual
data are unavailable due to the interference from light and the environment. Aiming at
solving this problem, a neural network model based on the tensor network is proposed for
audio tagging of domestic activities that is more interpretable than traditional neural
networks. The introduction of the tensor network can compress the network
parameters and reduce the redundancy of the training model while maintaining a good
performance. First, the important features of a Mel spectrogram of the input audio are
extracted through the convolutional neural networks (CNNs). Then, they are converted into
the high-order space corresponding with the tensor network. The spatial structure
information and important features can be further extracted and retained through the
matrix product state (MPS). Large patches of the featured data are divided into small local
orderless patches when using the tensor network. The final tagging results are obtained
through the MPS layers which is just a tensor network structure based on the tensor train
decomposition. In order to evaluate the proposed method, the DCASE 2018 challenge
task 5 dataset for monitoring domestic activities is selected. The results showed that the
average F1-score of the proposed model in the test set of the development dataset and
validation dataset reached 87.7 and 85.9%, which are 3.2 and 2.8% higher than the
baseline system, respectively. It is verified that the proposedmodel can perform better and
more efficiently for audio tagging of domestic activities.
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1 INTRODUCTION

The world is facing the problem of population aging. It is estimated that by 2050, the number of
people over 64 years will exceed 20% of the world’s population. According to the survey, 40% of the
elderly will live alone at home [1]. This will lead to many social problems, such as the increase in
diseases and healthcare costs, the shortage of nursing staff, and the increase in the number of people
unable to live independently. Therefore, it is imperative to develop ambient intelligence-assisted
living tools to help the elderly live independently at home [2]. The first task is to detect what is
happening at home. Audio tagging is very suitable when the visual data are unavailable due to the
interference from light and the environment. Audio tagging associate tags with the audio and
identifies the events that generate the audio. Audio tagging of domestic activities has important
applications in smart home robots, monitoring of domestic activities, and the lives of the elderly [3].

Edited by:
Shengchen Li,

Xi’an Jiaotong-Liverpool University,
China

Reviewed by:
Qiuqiang Kong,

University of Surrey, United Kingdom
Xi Shao,

Nanjing University of Posts and
Telecommunications, China

*Correspondence:
Jing Wang

wangjing@bit.edu.cn

Specialty section:
This article was submitted to

Interdisciplinary Physics,
a section of the journal

Frontiers in Physics

Received: 27 January 2022
Accepted: 15 March 2022
Published: 12 April 2022

Citation:
Yang LD, Yue RB, Wang J and Liu M
(2022) Neural Network Model Based

on the Tensor Network for Audio
Tagging of Domestic Activities.

Front. Phys. 10:863291.
doi: 10.3389/fphy.2022.863291

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8632911

ORIGINAL RESEARCH
published: 12 April 2022

doi: 10.3389/fphy.2022.863291

http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2022.863291&domain=pdf&date_stamp=2022-04-12
https://www.frontiersin.org/articles/10.3389/fphy.2022.863291/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.863291/full
https://www.frontiersin.org/articles/10.3389/fphy.2022.863291/full
http://creativecommons.org/licenses/by/4.0/
mailto:wangjing@bit.edu.cn
https://doi.org/10.3389/fphy.2022.863291
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2022.863291


For the problem of audio tagging, Gong [4] proposed PSLA, a
collection of model-agnostic training techniques. It includes
ImageNet pre-training, balanced sampling, data augmentation,
label augmentation, and model aggregation. The results we
obtained outstripped the best previous systems. Puy [5]
proposed a model based on separable convolutions, which uses
separable convolutions in channel, time, and frequency
dimensions to control the complexity of the network and
achieved good results in terms of effect and complexity. The
widely used dataset for audio signals is DCASE (Detection and
Classification of Acoustic Scenes and Events). DCASE 2018
Challenge Task 5 [6] is specifically used for audio tagging for
domestic activities. This tagging task provides the development
and validation datasets and baseline system and requires
identifying nine classes of events in domestic activities within
10-s clips. The audio data are collected by four linearly arranged
microphones. There are many ways to process microphone array
audio, among which Wang [7] proposed a modeling method that
uses the channel mode, time mode, and frequency mode as the
three dimensions to construct a three-dimensional tensor space,
which has achieved good results. In the tensor completion
method proposed by Yang [8], tensor modeling of multi-
channel audio signals with the missing data has achieved good
results.

Among the submitted systems in DCASE 2018 Challenge Task
5, the baseline system of this task trains a single classifier model
that takes a single channel as the input. The learner in the baseline
system is based on a neural network architecture using
convolutional and dense layers. As input, log Mel-band
energies are provided to the network for each microphone
channel separately [9]. Inoue [10] put forward a combination
method of a data-enhanced front-end module and a back-end
module based on the CNN classification method. First, it
enhances the input data by shuffling and mixing the sound
clips. Its data enhancement method helped increase the
variation of training samples and reduce the impact of
unbalanced datasets. Then, the input of the CNN, as a
classifier, is the log-Mel spectrogram of the enhanced data.
The system proposed by Tanabe [11] is a combination of the
front-end modules based on blind signal processing and the back-
end modules based on machine learning. The front-end modules
employ blind dereverberation and blind source separation. They
use spatial cues without machine learning to avoid overfitting.
The back-end modules employ one-dimensional convolutional
neural network (1DCNN)-based architecture and VGG16-based
architecture for the individual front-end modules. All of the
probability outputs are ensembled. In addition, through mix-
up-based data augmentation, overfitting is avoided in the back-
end modules. TC2DCNN [12] is extended by operating the
convolutions along the two dimensions of time and channel,
not along the frequency axis, since similar patterns in different
frequency bands do not necessarily belong to the similar audio
event. INRC_2D [13] combines a deep neural network with a
scattering transform. Each audio segment is first represented by
two layers of scattering transform. The four denoised transforms
of each of the two layers are combined together. Each of the fused
layers is processed in parallel by two neural network (NN)

architectures, RESNET, and a long short-term memory
(LSTM) network, with a joint fully connected layer. The
VGGish model proposed by Kong [14], which has an
AlexNetish 8-layer CNN with global max pooling, has
achieved good results.

The tensor network is a sparse data structure designed for the
efficient representation and manipulation of the ultra-high
dimensional data to achieve better interpretability of the data.
It is similar to the kernel method in machine learning [15].
Through feature mapping, the original linearly inseparable data
are converted to a high-dimensional space. In this space, a
hyperplane can be linearly separable. But the number of
parameters will be very large. Tensor train decomposition
(also called the matrix product state) is a kind of tensor
decomposition specifically for high-dimensional data. Wang
[16] uses tensor train decomposition in a compressed HRTF,
which is closer to the original HRTF than other methods.
Therefore, tensor train decomposition is used to approximate
the tensor networks. Matrix product state is the first tensor
network to be discovered and used, which can be efficiently
used in the simulation of the ground state of an infinite one-
dimensional system. In recent years, tensor networks based on
matrix product states have shown good performance in
classification. For example, Stoudenmire [17] encoded the
MNIST data into a tensor network, and the tensor network
was trained to obtain the probability of each class to complete
the classification. Efthymiou [18] proposed a new contraction
method for Fashion-MNIST, which realizes the parallel
compression of the horizontal edges, and then the vertical
compression, which further accelerates the training speed.
Selvan [19] proposed a lonet tensor network, which overcomes
the shortcomings of the MPS tensor network, that is, the loss of
spatial correlation when used for large resolutions. It is used for
the two-dimensional classification of medical images and has
achieved good results. While achieving good results, compared
with other models, the GPU usage is significantly lower than that
of the other models. PEPS [20] is a two-dimensional extension of
the matrix product state. Although it has achieved great success,
its algorithmic complexity is much higher than that of the matrix
product state. MERA [20] is an experimental state of the ground
state of a one-dimensional quantum system, which is inherently
scale-invariant. In the MERA, tensors are connected to reproduce
the holographic geometry. There are also other kinds of tensor
network structures which have higher complexity than the MPS
and can be used in other applications such as applied
mathematics, chemistry, physics, machine learning, and many
other fields.

In the article, a neural network model based on the tensor
network is proposed for audio tagging of domestic activities. This
article draws on the research results of the simplest and most
mature matrix product state in the tensor network, hoping to
achieve a balance between the complexity and effectiveness of the
network model. An end-to-end tensor network-based neural
network model is constructed and trained with the Mel
spectrograms. After going through the convolutional layers,
important features are extracted. Then, the MPS tensor
network further extracts the features and gives the tagging
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results. This can not only achieve good tagging results but also
compresses the network through tensor train decomposition,
which has a smaller number of parameters than the traditional
CNN. The F1-score is used to evaluate the performance of the
proposed method. In terms of tagging performance, the
performance of the proposed model is compared with other
models. Compared with the results of the development dataset
and the validation dataset of DCASE 2018 challenge task 5, the
proposed method achieved better results. This article is a
beneficial attempt to combine the tensor networks and neural
networks and can also be extended to other deep learning sound
signal processing fields.

The rest of this article is organized as follows: Section 2
introduces the neural network model based on the tensor
network proposed in this article in detail. Section 3 introduces
the parameter settings and experimental results of the proposed
method, which are analyzed in terms of precision, recall, and F1-
score, respectively. This article is concluded in Section 4.

2 NEURAL NETWORK MODEL BASED ON
TENSOR NETWORK

As the experimental flowchart shows in Figure 1, the proposed
audio tagging method consists of three main stages, namely, data
preprocessing, data augmentation, and neural network model based
on the tensor network. Data preprocessing first performs channel
fusion [21] on the audio, then takes the log after FFT, and then the
Mel spectrogram is obtained by mapping the Mel frequency.

The structure of the neural network model based on the tensor
network is shown in Figure 2. Convolutional layers are used for

extracting deeper feature representations. Important spatial
structure and time information will be retained in the middle
MPS layers. Finally, the retained information enters the MPS
decision layer after being flattened to obtain the audio tagging
results.

2.1 Data Preprocessing and Augmentation
The Mel spectrogram as the audio feature of the original signal is
used in the proposed method. The Mel spectrogram converts the
ordinary frequency scale of the spectrogram into the Mel
frequency scale. After framing, the fbank feature is extracted
through the Mel filter bank [22]. The energy value distribution
range is summarized and is then linearly corresponded to blue-
yellow [23]. In this article, 128 triangular filters are used to form a
Mel filter bank, which corresponds to the objective law that the
higher the frequency, the duller the human ear is.

Data augmentation uses horizontal flip, vertical flip, and
random rotation to enlarge the training data, avoid overfitting,
and enhance the robustness of the model.

2.2 Neural Network Model Based on the
Tensor Network
2.2.1 CNN Feature Extraction
CNN [24] is used to process the multi-dimensional data, such as the
two-dimensional images with many channels. CNN uses shared
weights, local connections, pooling, and other layers to organize the
attributes of natural signals. The convolutional layer, ReLU layer,
and pooling layer are the most commonly used CNN layers.

The basic purpose of the convolutional layer is to determine
the local connections between the features and map their

FIGURE 1 | Flow chart of audio tagging.

FIGURE 2 | Structure of the neural network model based on the tensor network.
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information to a specific feature map. The convolution of the
input I with filter F ∈ R2a1+2a2 is given as follows:

(IpF)n,m � ∑a1
k�−a1

∑a2
l�−a2

Fk,lIn−k,m−l, (1)

where a1 and a2 determine the size of the convolution kernel
along the x and y directions. ReLU (g(z) � max(0, z)) [25] is a
non-linear function which is applied to feature mapping created
by the convolutional layer. The BN [26] layer normalizes each
mini batch throughout the entire network, reducing the internal
covariate shift caused by the progressive transforms. The BN layer
is used to reduce the training time of the CNN and the sensitivity
of network initialization. Therefore, this layer is used for
normalization in the proposed network model.

2.2.2MPS Tensor Network
The tensor network notation is a brief graphical representation of
the high-dimensional tensors. It not only makes it easier and
more intuitive to process the high-dimensional tensors but also
provides an insight into how to achieve more efficient operations.
For a more comprehensive introduction to the tensor networks,
references in [27]can be referred.

The MPS (matrix product state) [17, 18] is a one-dimensional
tensor network structure, which is based on tensor train
decomposition [28]. It uses chain-connected small tensors to
represent the high-dimensional tensors.

For a neural network model based on the tensor network, the
generated Mel spectrograms must first be mapped to the high-
dimensional space corresponding to the tensor network.
According to Eq. 2, each pixel of the Mel spectrogram is
mapped to a two-dimensional space.

∣∣∣∣x[l]
n 〉 � cos

x[l]
n π

2
|0〉 + sin

x[l]
n π

2
|1〉, (2)

where |〉 is the Dirac symbol in physics, representing the state
vector. |0〉 means blue with low energy, and |1〉 means yellow
with high energy, where l represents the order of the Mel
spectrogram, and n represents the pixel order in the Mel
spectrogram. The function with cos(πx/2) and sin(πx/2) is one
of the mapping methods. After inputting the spectrogram, the
data of each pixel are normalized to be between 0 and 1; using
cos(πx/2) and sin(πx/2) can accurately represent the information
in the pixel. After mapping, |x[l]

n 〉 can represent all the
magnitudes of energy in the Mel spectrogram. After all the
pixels are mapped, Mel spectrograms can be expressed as Eq.
3 and also be expressed as Eq. 4 using the tensor network
notation. ∣∣∣∣X[l]〉 � ∣∣∣∣x[l]

1 〉 ⊗
∣∣∣∣x[l]

2 〉 ⊗ ... ⊗
∣∣∣∣x[l]

N 〉, (3)
Φ(x) � ϕ(x1) ⊗ ϕ(x2) ⊗ ... ⊗ ϕ(xN), (4)

where ⊗ represents the tensor product. x represents the Mel
spectrogram of each input, andN is the total number of pixels in
the Mel spectrogram. ϕ(x1) is the representation of the first pixel
in the Mel spectrogram mapped to a two-dimensional space, and
Φ(x) is the high-dimensional mapping form of the Mel

spectrogram. Given the high-dimensional features, for the
input Mel spectrogram, the decision function of the event
tagging can be expressed as

fm(x) � ψm ·Φ(x), (5)
m � argmaxfm(x). (6)

Here, m represents M categories, m � [0, 1, ...,M − 1], where
ψm is the trainable weight tensor. The model of the decision
module in audio tagging is shown on the left of Figure 3 and
in Eq. 5. ψm is a weight tensor, and its dimension is as high as
M · 2N, which is difficult to be calculated. After decomposing ψm

into the chained small tensors through the MPS, the two-
dimensional space that can be mapped with each pixel can be
contracted with the weight tensor ψm. In this way, the calculation
can only be carried out between the small tensors, without directly
calculating the weight tensors with high dimensionality. Figure 3 is
a linear model of the decision module in audio tagging represented
by the tensor network notation. For details on the tensor network
notation, reference in [27]can be referred. As shown by the small
green tensor in Figure 3, Φ(x) is the form in which the two-
dimensional spacemapped by each pixel is connected to the weight
tensor ψm. The nodes in the first column are the pixels of eachMel
spectrogram after being mapped to the two-dimensional space.
They are connected to the weight tensor obtained after the training.
There is an indexm on the right side ofψm, whose dimension is the
number of the final tagging classes.

FIGURE 3 | Linear model of the decision module in audio tagging.
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This mapping method will result in a huge number of
parameters in the weight tensor. The matrix product state is
the name for tensor train decomposition in physics. It
approximates a large tensor to the product form of several
second-order and third-order tensors. In this way, the
contraction can be performed in the way on the right side of
Figure 3, to avoid the direct calculation of the ultra-high
dimensional tensor, and the calculation amount will be greatly
reduced. A high-dimensional tensor T is decomposed into an
approximate tensor ~T by the tensor train [28], as shown in Eq. 7.

~T � ∑
a1a2 ...aN−1

A(1)
S1a1A

(2)
S1a1a2 ...A

(N−1)
SN−1aN−2aN−1A

(N)
SNaN−1 . (7)

The weight tensor ψm is approximated by the product form of
some two-dimensional and three-dimensional tensors according
to Eq. 7. The approximated weight tensor is shown in Eq. 8 and
on the right of Figure 3.

ψm,i1 ,i2 ,...,iN � ∑
α1 ,α2 ,...αN

Ai1
α1
Ai2

α1α2
Ai3

α2α3
...Am,ij

αjαj+1 ...A
iN
αN
, (8)

whereA is the decomposed second-order and third-order tensors.
The subscript ij is called the free index, and the free index m
corresponds to the right side of Figure 3, and its dimension is the
number of tagging classes. The subscript aj is an auxiliary
indicator, and its dimension is called the bond dimension,
which controls the quality of the approximation. The size of
the bond dimension determines the size of the tensor. The
components of the tensor A are the variational parameters
determined through the training.

2.2.3 Local Orderless Operation
Since MPS is a one-dimensional tensor network, the neighboring
pixels in the spectrogram are usually highly correlated. Therefore,
directly flattening and inputting the Mel spectral feature into the
MPS layer will cause the loss of spatial information. Spatial
information includes the information of a single frame in the
vertical direction, as well as the information between the frames
in the horizontal direction, which is very important for audio
tagging. In order to solve this problem, the local orderless
operation according to the local orderless theory is used in the
tensor network [29, 30]. The local orderless operation divides a large
patch into many small patches. After the small patches are

contracted, the dimension of the output vector is v , and v is set
to the same size as the bond dimension. This step can be interpreted
as using a vector of dimension v to represent small patches of
information, similar to feature extraction. Each small patch contains
global features, which can better preserve the spatial information.

First, the Mel spectrogram is divided into four parts, as shown
in Figure 4. The first pixel of each part is taken out and combined
into a 2 × 2 local orderless small patch, as shown in the red box in
Figure 4. Then, the pixels of each part are combined according to
this step, until the last pixel in the black box, as shown in Figure 4.
The pixel order in the patch is shown in Eq. 9.

ΡK � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
K , K + W

2

K + H × W
2

, K + (H + 1) × W
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ∀K

� 1, ..., (H × W)/4, (9)
where PK represents the local orderless small patch, the
superscript K represents the sequential number of small
patches, and H and W represent the height and width of the
Mel spectrogram, respectively.

Then the small patches are flattened and input into the MPS
layer to contract. Then all the output vectors v are reshaped into
images. The converted graph has a smaller resolution than the
previous Mel spectrogram, but the important information will be
preserved. This operation is repeated on the converted image.
After the three MPS layers, the resolution of the generated image
is already very small, but the features and spatial information of
the original Mel spectrogram are well-preserved.

2.2.4 Contraction and Optimization
After the three MPS layers of contraction, a small size image has
been generated. It has spatial structure information and
important features of the Mel spectrogram. It is flattened into
the last MPS layer, as shown in Figure 4. In line with the
implementation method from the MPS in Miller [31], the
horizontal edges are first contracted in parallel to get the
contracted tensors, and then, these tensors are contracted
vertically. The output is generated by connecting the free
indicators of the tensor. A recent work has proposed a more
effective calculation method [32, 33], which is expected to further
accelerate the calculation speed.

FIGURE 4 | Local orderless operation and contraction.
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3 EXPERIMENTS

3.1 Datasets
In the experiment, development and validation datasets of
DCASE 2018 challenge task 5 are used to evaluate the audio
tagging for domestic activities. DCASE 2018 challenge task 5 is a
derivative of the SINS dataset. It contains a continuous recording
of one person living in a holiday home over a period of 1 week. It
was collected using a network of 13 microphone arrays
distributed over the entire home. The microphone array
consisted of four linearly arranged microphones. For this task,
seven microphone arrays are used in the living room and kitchen
area combined. The continuous recordings are split into audio
segments of 10 s. These audio segments are provided as individual
files along with the ground truth. The dataset contains 72,984
audio files. Each audio segment contains four channels. It is
organized with nine class labels consisting of absence, cooking,
dishwashing, eating, social activity, vacuum cleaning, watching
TV, and working. The audio files are recorded with 16 kHz
sampled frequency, and the number of files in each class are
not the same.

3.2 Evaluation Method
In this experiment, the development dataset and validation
dataset are divided into the training set, validation set, and
test set with a ratio of 8:1:1, respectively. The evaluation
criteria include the precision rate, recall rate, and F1-score.
Precision is the ratio of real positive samples to samples that
are predicted to be positive, which is specific to the predicted
samples. Recall is the ratio of the correct predictions to the
positive cases in the sample, which is specific to the actual
samples. The F1 score is calculated based on recall and
precision. The experimental results in this article are the
results of the development and the validation datasets in the
divided test set, respectively. These criteria are obtained by
calculating the confusion matrix given by Eqs 10–12.

Precision � TP

TP + FP
, (10)

Recall � TP

TP + FN
, (11)

F1 − Score � 2 × Precision × Recall

Precision + Recall
� 2TP
2TP + FP + FN

, (12)

where TP is the number of true positive results, TN is the number
of true negative results, FP is the number of false positive results,
and FN is the number of false negative results.

3.3 Experimental Setup and Result
There are four channels (C1, C2, C3, C4) within one audio signal.
The four channels are manually averaged [21] to yield C5, where
C5 � (C1 + C2 + C3 + C4)/4 so as to better fuse the four channels
and augment the dataset. The audio signal is converted to a Mel
spectrogram, as described in Section 2. The window type,
window size, overlap, and FFT size parameters are set to
Hamming, 480, 240, and 480, respectively. The Hamming
window is adopted for signal framing as it can effectively
overcome the leakage phenomenon [34]. The dimension of the

Mel spectrogram is 336 × 336 × 3 as the input of the neural
network model based on the tensor network, which is composed
of the two convolutional layers and four MPS layers. It is then the
horizontal flip, vertical flip, and random rotation that enlarge the
training data, avoid overfitting, and enhance the robustness of the
model. The batch size is set to 256, bond dimension is set to 5, and
the initial learning rate is 0.001. The optimizer and loss function
used in the training are Adam and cross-entropy loss function.
The structure of the neural network model based on the tensor
network is shown in Figure 2, and the states of TP, TN, FP, and
FN in the test set of the development dataset are shown for each
class on the confusion matrix in Figure 5.

As can be seen from the confusion matrix in Figure 5, the
abscissa is the true class, and the ordinate is the predicted class.
The blue square indicates that the predicted class is the same as
the true class. The color intensity corresponds to the number of
audio tagging. It can be found from Figure 5 that the proposed
model judges 165 working audios as absence and 134 absence
audios as working. Because people may make very small noises at
work, it is easy to confuse it with the absence class. In addition, the
model judges 39 and 33 other class audios as absence and working
class, and many labels for other class audios cannot be
distinguished since the other class is not a class of specific
activities. There are many types of features extracted from the
other class audio, and the common features of other class are
difficult to learn. As a result, a lot of audio signals are near the
decision boundary, and it is easy to be misjudged as absence,
working, and eating. But for the prediction results, it can be found
from Figure 5 that the prediction results for the other class are
more accurate, proving the better learning ability of the tensor
network model.

In order to compare with other models more intuitively, other
performance criteria including precision, recall, and F1-score are
separately given in Table 1 for each class of DCASE 2018
challenge task 5. It can be seen from the Table 1 that the

FIGURE 5 |Confusionmatrix for the test set of the development dataset.
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precision rate of the other class is much higher than the recall rate.
This shows that the prediction of the other class is more accurate,
but many other class audios are prone to judgment errors. Since
the other class is not a class of specific activities, the tensor
network can better learn the common features of the class. But for
the other class audio with less commonality, it is less possible to
identify the deeper rules.

Table 2 is a comparison between the proposed model and
other models, which represent several typical and commonly
used networks, including the CNN, RESNET, and LSTM. This
experiment selected the three models to compare with the
neural network model based on tensor network (NNMBTN)
model, namely, the baseline system [9], TC2DCNN [12], and
INRC_2D [13]. The baseline system uses a neural network
architecture based on the convolutional layers and dense
layers. TC2DCNN is extended by operating the
convolutions along the two dimensions of time and
channel. INRC_2D is processed in parallel by RESNET and
long short-term memory (LSTM) network, with a fully joint
connected layer.

It can be seen from Table 2 that the F1-score of the proposed
method on the test set of the DCASE 2018 challenge task 5
development set is 87.70%, which is 3.2% higher than the
baseline system, 1.95% higher than the TC2DCNN system,
and 0.86% higher than INRC_2D system. The proposed
method has five classes that are higher than the baseline,
TC2DCNN, and INRC_2D. This shows that the tensor

network model can identify the important features well after
obtaining the features extracted by the convolutional layer. At
the same time, the spatial information of the audio is well-
preserved. Compared with the other models, the tensor network
has powerful representation ability in the high-dimensional
space and can separate the different classes of audio with
hyperplane. There is little difference in the F1-score
performance on cooking, vacuum cleaning, and working. The
score advantage of other classes is more obvious, 5.61% higher
than the INRC_2D system, which shows that for classes of not
specific activities, the tensor network can also learn the features
better.

The data provided in the evaluation set are based on the sensor
nodes that do not exist in the development set and can provide
data from the same nodes in the development set. The F1-scores
of each model in the test set of the validation set are shown in
Table 3.

Compared with the results on the development set, it can be
seen from Table 3 that the proposed model in the test set of the
validation set is lower than the other models in the two categories
of eating and social activities and higher than the other models in
both categories of dishwashing and vacuuming. The advantages
of the other categories are still obvious. The average F1-score
reaches 85.9%, which is 9.0% higher than TC2DCNN, 4.2%
higher than INRC2D, and 2.8% higher than the baseline. The
F1-scores of the neural network model based on the tensor
network are relatively stable, which proves that the proposed
network has a good generalization ability. On the whole, the
proposed model has better ability to extract and learn the
important features of the data.

In order to better demonstrate the compression ability of
the MPS to the network, the MPS layer in the proposed model
is replaced by the convolutional layer, max pooling layer, and
fully connected layer. We compared the proposed model
(NNMBTN: 2CNN+4MPS) with the traditional CNN-based
model which is composed of four CNNs, Maxpool, and a fully
connected layer. The model comparison results are shown in
Table 4.

It can be seen from Table 4 that the parameters of the
proposed model are one quarter smaller than that of the
traditional neural network after replacement, and the effect is
also better than that of the traditional neural network, which

TABLE 1 | Neural network model based on the tensor network performance
criteria in the test set of the development dataset.

Class Precision/% Recall/% F1-score/%

Absence 89.00 92.63 90.78
Cooking 95.69 95.30 95.49
Dishwashing 82.61 79.72 81.14
Eating 82.61 74.03 78.09
Other 79.84 50.00 61.49
Social activity 96.11 94.95 95.53
Vacuum cleaning 98.00 100.00 98.99
Watching TV 99.79 99.57 99.68
Working 87.18 89.14 88.15

Average value 90.09 86.15 87.70

TABLE 2 | Comparison of the neural network model based on the tensor network with other models in the test set of the development dataset.

Class Detecting F1-score (%) for the used methods

Baseline system [9] TC2DCNN [12] INRC_2D [13] NNMBTN

Absence 85.41 86.62 83.95 90.78
Cooking 95.14 93.34 95.47 95.49
Dishwashing 76.73 72.68 78.00 81.14
Eating 83.64 87.03 89.68 78.09
Other 44.76 53.81 55.88 61.49
Social activity 93.92 93.94 93.97 95.53
Vacuum cleaning 99.31 99.79 100.00 98.99
Watching TV 99.59 99.38 99.40 99.68
Working 82.03 85.14 85.22 88.15

Average value 84.50 85.75 86.84 87.70

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8632917

Yang et al. Neural Network Model for Tagging

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


shows that the MPS layer has better compression ability for the
network.

To further investigate the effect of combining the proposedmodel
with the state-of-the-art model, separable convolutions network [5]
are used to verify the feasibility of the proposed model. Separable
convolutions network consists of four convolutional layers using
5 × 5 filters, followed by a global pooling layer and a final MLP
(Multilayer Perceptron). The separate convolution network
structure is improved to be combined with the MPS tensor
network in which only two layers of separate convolutions
network are retained. In the comparison experiments, only the
network structure was changed, and the rest remained
unchanged. The experimental results are shown in Table 5.

It can be seen from Table 5 that the GPU occupancy in the
training procedure is reduced by 55% after combining with the
tensor network under the same conditions except for the network
structure. This shows that the tensor network can better reduce
the redundancy of the network during the training. In terms of
parameter quantity, the parameter quantity of the separate
convolution is slightly smaller than that of ordinary
convolution. The F1-score is slightly lower than the split
convolutional network. Compared with the state-of-the-art
model, the combination of the tensor network can reduce the
redundancy of the network to achieve a balance between
efficiency and accuracy. In the future, more research practices
could be carried out to find a better way when combining the
tensor network with the new neural network approaches.

4 CONCLUSION

In this article, the neural network model based on the tensor
network is proposed for audio tagging of domestic activities,
which takes the advantage of the CNN in extracting spatial
features and the MPS tensor network for better interpretability
and the ability to compress the network with tensor train
decomposition. The MPS is one-dimensional tensor network
structure, which is based on tensor train decomposition. It uses
the chain-connected small tensors to represent the high-
dimensional tensors. The proposed model is composed of
two convolutional layers and four MPS layers. The function
of the first three MPS layers is to extract the features, and the
last MPS layer is used as a classifier. The DCASE 2018
challenge task 5 datasets are considered in the experiment,
and the F1-score is calculated for performance evaluation. The
experimental results show that the neural network model
based on the tensor network proposed in this article has a
good learning ability. The results show that the average F1-
Score of the proposed neural network model based on the
tensor network in the test set of the development dataset and
validation dataset of DCASE 2018 challenge task 5 reached
87.7 and 85.9%, which were 3.2 and 2.8% higher than the
baseline system, respectively. When compared with the state-
of-the-art model, the combination of the tensor network can
reduce the redundancy of the network to achieve a balance
between the efficiency and accuracy. It is verified that the

TABLE 3 | Comparison of the neural network model based on the tensor network with other models in the test set of the validation dataset.

Class Detecting F1-score (%) for the used methods

Baseline system [9] TC2DCNN [12] INRC_2D [13] NNMBTN

Absence 87.7 79.8 79.7 90.2
Cooking 93.0 88.7 86.9 95.0
Dishwashing 77.2 71.8 73.8 82.3
Eating 81.2 78.9 82.2 77.0
Other 35.0 17.6 42.7 55.5
Social activity 96.6 96.2 97.1 93.4
Vacuum cleaning 95.8 94.4 97.4 98.2
Watching TV 99.9 99.7 99.9 99.5
Working 81.4 64.6 75.5 82.3

Average value 83.1 76.9 81.7 85.9

TABLE 4 | Performance and parameter comparison between the proposed model and the traditional neural network.

Model Precision/% Recall/% F1-score/% Parameter quantity (M)

4CNN + Maxpool + fully connected 74.11 64.08 65.8 23.70
NNMBTN (2CNN+4MPS) 88.08 84.13 85.9 17.74

TABLE 5 | Performance comparison between the separable convolution model and the separable convolution model combined with tensor networks.

Model F1-score/% Parameter quantity (M) GPU(GB)

Separable Convolutions [5] (batch size = 128) 90.78 4.20 3.85
(2SepConv+3MPS) (batch size = 128) 89.52 4.16 1.72
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proposed model can function better for the task of audio
tagging of domestic activities.

In the future, it is necessary to extract more representative
audio features in the face of a huge database. There are some other
structures of tensor networks, such as PEPS and MERA, and the
combination of these models with the neural networks deserves a
further in-depth study. In addition, the classes of the sound events
in household activities are more complex, so expanding the
dataset and improving the audio tagging accuracy are also
necessary.
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