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The theoretical framework for the uncertainty relation of Hermitian operators is perfect
and has been applied in many fields. At the same time, non-Hermitian operators are
also widely used in some other fields. However, the uncertainty relation of non-
Hermitian operators remains to be explored. K.W. Bong and his co-workers
proposed the theory of unitary uncertainty relation and verified it in the experiment
[Phys. Rev. Lett. 120, 230402 (2018)]. In this work, we generalized this unitary
uncertainty relation theory and proposed uncertainty relations of non-Hermitian
operators. Due to the difficulties in the direct measurement of non-Hermitian
operators in the uncertainty relations, we simplified the uncertainty relation of two
non-Hermitian operators with pure states and proposed a realizable experimental
measurement scheme by using the Mach–Zehnder interferometer. When the two non-
Hermitian operators are unitary, our result can reduce to Bong et al.’s result.
Furthermore, for two non-Hermitian operators but not unitary, we obtained a
generalized and analogous result of theirs.

Keywords: uncertainty relations, non-Hermitian operators, Mach–Zehnder interferometer, Robertson–Schrödinger
uncertainty relations, Heisenberg uncertainty relations

1 INTRODUCTION

Uncertainty relations are the basis of quantum theory. It was first proposed by Heisenberg [1] and
was rewritten by Kennard [2] and Weyl [3] as the uncertainty relation between position and
momentum. Robertson generalized this to any two observables [4]. Schrödinger strengthened the
inequality and put forward the Schrödinger uncertainty relation [5] as

〈 ΔA( )2〉〈 ΔB( )2〉≥ 1
2
〈 A, B{ }〉 − 〈A〉〈B〉

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2 + 1

4
〈 A, B[ ]〉| |2, (1)

where 〈(ΔO)2〉 stands for the variance of observable O, {A, B} represents the anticommutator of
observables A and B, and [A, B] is their commutator. Uncertainty relations have been used in many
quantum information tasks, including quantum key distribution [6, 7], deeply quantum systems
[8–10], quantum random number generation [11, 12], entanglement witness [13],
Einstein–Podolsky–Rosen (EPR) steering [14, 15], quantum metrology [16], and so on.

In quantum theory, we know that those observable measurements of physics are represented by
Hermitian operators and can be faithfully represented on measuring instruments. In fact, there are
non-Hermitian operators that are not Hermitian conjugated, and these non-Hermitian operators can
be observed by weak measurements [17]. Certainly, the measurement of non-Hermitian operators is
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not limited to this; weak values of non-Hermitian operators can
also be derived from bound state scattering [18]. The problem of
eigenvalues of non-Hermitian operators can also be solved by
introducing generalized ladder operators [19]. In reality, non-
Hermitian operators can be used in many ways such as quantum
open systems [20], quantum optics [21], quantum cosmology
[22], and many other fields. Furthermore, pseudo-Hermitian
operators belong to non-Hermitian operators, which have
many applications [23, 24].

The uncertainty relation of unitary operators can reflect the basic
characteristics of the quantumworld to some extent. In Ref. [25], the
authors proposed the uncertainty relation of the unitary operator,
satisfying the certain commutative condition in finite dimensions.
However, it is not applicable in high dimensions, so Bagchi and Pati
put forward the uncertainty relation of general unitary operators,
which can be applied to high dimensions [26]. In order to get a more
general case, the uncertainty relation of general unitary operators has
been experimentally tested [27]. Furthermore, Bong and his co-
workers put forward an uncertainty relation: strong unitary and
overlap relation, and demonstrated their theory in the experiment
[28]. The subtlety of this theory lies in that it greatly simplifies the
measurement of the experiment and provides a very valuable
experimental idea for reference. In addition, the theory of the
strong unitary uncertainty relation has also been discussed in Ref.
[29] and has been experimentally realized in Ref. [30].

Unitary operators are a kind of non-Hermitian operators, and
the theory about the uncertainty relation of unitary operators has
been relatively mature. But what about the uncertainty relations of
more general non-Hermitian operators? For non-Hermitian
operators, their eigenvalues are complex and cannot be directly
observed in experiments. Therefore, we made corresponding
changes to the measurement method of non-Hermitian
operators. The general derivation of the uncertainty relation of
general non-Hermitian operators is given in Ref. [17], but this form
lacks experimental protocols to measure this uncertainty relation.

In this study, we proposed uncertainty relations of non-
Hermitian operators and designed an experimental scheme to
facilitate measurement for two non-Hermitian operators with
pure states. The article is organized as follows: First, we briefly
proved the uncertainty relation of non-Hermitian operators.
Second, we provided an example of the uncertainty relation of
two non-Hermitian operators in a pure state, explained how to
measure the uncertainty relation of two non-Hermitian operators
in an experiment, and proposed a measurement scheme by using
the Mach–Zehnder interferometer. Finally, we discussed and
summarized the content of the article.

2 UNCERTAINTY RELATIONS FOR
NON-HERMITIAN OPERATORS

To propose the uncertainty relation for non-Hermitian operators,
we first need to define the variance of a non-Hermitian operator.
In Refs. [17, 31], the variance of a non-Hermitian operator O
under a state ρ is defined as 〈(ΔO)2〉≔〈(O† − 〈O†〉) (O− 〈O〉)〉 =
〈O†O〉 − 〈O†〉〈O〉, where 〈O〉 = Tr (ρO). Based on this

definition, we can prove the following uncertainty relation for
non-Hermitian operators:

Proposition 1. Two non-Hermitian operators A and B are
considered in a d-dimensional Hilbert space; the uncertainty
relations for two non-Hermitian operators are

〈 ΔA( )2〉〈 ΔB( )2〉≥ |〈A†B〉 − 〈A†〉〈B〉|2, (2)
where 〈(ΔA)2〉≔〈A†A〉 − 〈A†〉〈A〉 and 〈(ΔB)2〉≔〈B†B〉
− 〈B†〉〈B〉.

Proof. Let us define a 2 × 2 matrix M as

M � 〈 ΔA( )2〉 〈A†B〉 − 〈A†〉〈B〉
〈B†A〉 − 〈B†〉〈A〉 〈 ΔB( )2〉( ). (3)

Now, let us prove thatM is a semi-definite positive matrix. An
arbitrary vector (a,b)T is considered, where a and b are two
arbitrary complex numbers; of both numbers, one has

a*, b*( )M a

b
( )

� a*, b*( )〈 A† − 〈A†〉
B† − 〈B†〉( ) A − 〈A〉, B − 〈B〉( )〉 a

b
( )

� 〈 a*, b*( ) A† − 〈A†〉
B† − 〈B†〉( ) A − 〈A〉, B − 〈B〉( ) a

b
( )〉

� 〈C†C〉
≥ 0,

(4)

where the operator C is defined as

C ≔ a A − 〈A〉( ) + b B − 〈B〉( ). (5)
Since for an arbitrary vector (a,b)T, the result 〈C†C〉 is always

non-negative, and M is semi-definite positive.
If a matrix is semi-definite positive, then its determinant is

non-negative. Thus, we have

det M( )≥ 0, (6)
with

det M( ) � 〈 ΔA( )2〉〈 ΔB( )2〉 − |〈A†B〉 − 〈A†〉〈B〉|2. (7)
Therefore, the uncertainty relations for two non-Hermitian

operators (2) have been proved. □

Remark. The uncertainty relation (2) has also been proved in Ref.
[17]. When A and B are Hermitian operators, the uncertainty
relation (2) reduces to the Schrödinger uncertainty relation (1)
since

|〈AB〉 − 〈A〉〈B〉|2 � 1
2
〈 A, B{ }〉 − 〈A〉〈B〉

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣2 + 1

4
〈 A, B[ ]〉| |2

holds. Moreover, we generalized proposition 1 to the case of n
non-Hermitian operators.

Proposition 2. Consider n non-Hermitian operators {Ai}ni�1 in a
d-dimensional Hilbert space; the uncertainty relations for n non-
Hermitian operators are
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det M( )≥ 0, (8)
where the matrix M is defined as

Mij ≔ 〈A†
i Aj〉 − 〈A†

i 〉〈Aj〉. (9)

Proof. The proof is similar to proposition 1. Let us prove thatM is
a semi-definite positive matrix. An arbitrary vector
(a1, a2, . . . , an)T is considered with {ai}ni�1 as arbitrary complex
numbers, of which one has

ap1 , a
p
2 , . . . , a

p
n( )M

a1
a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ap1 , a
p
2 , . . . , a

p
n( )

〈
A†

1 − 〈A†
1〉

A†
2 − 〈A†

2〉
/

A†
n − 〈A†

n〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A1 − 〈A1〉, A2 − 〈A2〉, . . . , An − 〈An〉( )〉
a1
a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 〈 ap1 , a
p
2 , . . . , a

p
n( )

A†
1 − 〈A†

1〉
A†

2 − 〈A†
2〉

/
A†

n − 〈A†
n〉

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ A1 − 〈A1〉, A2 − 〈A2〉, . . . , An(

−〈An〉)
a1
a2
/
an

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠〉 � 〈C†C〉≥ 0, (10)

where the operator C is defined as C ≔ ∑n
i�1ai(Ai − 〈Ai〉). Thus,

M is semi-definite positive, and det(M) ≥ 0 holds. The uncertainty
relation still holds for such cases. □

3 UNCERTAINTY RELATIONS FOR TWO
NON-HERMITIAN OPERATORS IN PURE
STATES
Now, we focused on the uncertainty relations for two non-
Hermitian operators (2) in pure states. Two non-Hermitian
operators A and B are considered in a d-dimensional Hilbert
space; if the state is a pure state |ϕ〉, then

〈 ΔA( )2〉 � 〈ϕ|A†A|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|A|ϕ〉
� 〈ϕ|A†PA|ϕ〉, (11)

where P is a project operator defined as P ≔ 1 − |ϕ〉〈ϕ|. Similarly,
we observed

〈 ΔB( )2〉 � 〈ϕ|B†B|ϕ〉 − 〈ϕ|B†|ϕ〉〈ϕ|B|ϕ〉
� 〈ϕ|B†PB|ϕ〉, (12)

and

|〈A†B〉 − 〈A†〉〈B〉|2 � |〈ϕ|A†B|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|B|ϕ〉|2
� |〈ϕ|A†PB|ϕ〉|2. (13)

Therefore, the uncertainty relations for two non-Hermitian
operators (2) with a pure state |ϕ〉 become

〈ϕ|A†PA|ϕ〉〈ϕ|B†PB|ϕ〉≥ |〈ϕ|A†PB|ϕ〉|2. (14)

Moreover, if the dimension of the Hilbert space d = 2 (a single
qubit system), the rank of P is 1. Thus, P can be rewritten as P = |
ϕ⊥〉〈ϕ⊥|, where |ϕ⊥〉 is the orthogonal state of |ϕ〉 in the single
qubit system. Thus, the uncertainty relation (14) becomes

〈ϕ|A†|ϕ⊥〉〈ϕ⊥|A|ϕ〉〈ϕ|B†|ϕ⊥〉〈ϕ⊥|B|ϕ〉� |〈ϕ|A†|ϕ⊥〉|2|〈ϕ|B†|ϕ⊥〉|2
≥ |〈ϕ|A†|ϕ⊥〉〈ϕ⊥|B|ϕ〉|2.

(15)

It is obvious that the “ = ” always holds in (15).
Based on the aforementioned proof, one can conclude that we

can always obtain equality in (2) when we only consider pure
states in a one-qubit system.

4 TEST UNCERTAINTY RELATION FOR
TWO NON-HERMITIAN OPERATORS

The uncertainty relation for two non-Hermitian operators in a
one-qubit system is discussed, and the uncertainty relation is
experimentally tested via weak measurements. Since the variance
of a non-Hermitian operator in a state is a concave function of the
state, we focused on the uncertainty relation in pure states.

4.1 Theory
Two non-Hermitian operators A and B are considered in a single-
qubit system. Suppose the polar decompositions of the non-
Hermitian operators A and B are

A � SAUA, (16)
B � SBUB, (17)

where SA and SB are two positive semi-definite operators and UA

and UB are unitary operators. Thus, the variances of A and B in a
pure state |ϕ〉 are

〈 ΔA( )2〉 � 〈ϕ|A†A|ϕ〉 − 〈ϕ|A†|ϕ〉〈ϕ|A|ϕ〉
� 〈ψ|S2A|ψ〉 − 〈ψ|SA|ϕ〉〈ϕ|SA|ψ〉, (18)

〈 ΔB( )2〉 � 〈ϕ|B†B|ϕ〉 − 〈ϕ|B†|ϕ〉〈ϕ|B|ϕ〉
� 〈χ|S2B|χ〉 − 〈χ|SB|ϕ〉〈ϕ|SB|χ〉, (19)

where |ψ〉≔UA|ϕ〉 and |χ〉≔UB|ϕ〉. Moreover, the right hand side
of (2) becomes

|〈A†B〉 − 〈A†〉〈B〉|2
� |〈ψ|SASB|χ〉 − 〈ψ|SA|ϕ〉〈ϕ|SB|χ〉|2. (20)

In the following, for the simplicity of experiments, we chose
the non-Hermitian operators A and B as

A � σzUA, (21)
B � σxUB. (22)

Thus,

〈 ΔA( )2〉 � 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉, (23)
〈 ΔB( )2〉 � 1 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉, (24)

|〈A†B〉 − 〈A†〉〈B〉|2 � |〈ψ|σzσx|χ〉
−〈ψ|σz|ϕ〉〈ϕ|σx|χ〉|2. (25)
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Now the left hand side of the uncertainty relation (2) becomes

〈 ΔA( )2〉〈 ΔB( )2〉
� 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉( ) 1 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉( )
� 1 − 〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉 − 〈χ|σx|ϕ〉〈ϕ|σx|χ〉

+〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉〈ϕ|σx|χ〉.
(26)

Meanwhile, the right hand side of the uncertainty relation (2)
becomes

|〈A†B〉 − 〈A†〉〈B〉|2
� |〈ψ|σzσx|χ〉 − 〈ψ|σz|ϕ〉〈ϕ|σx|χ〉|2
� 〈ψ|σzσx|χ〉 − 〈ψ|σz|ϕ〉〈ϕ|σx|χ〉( ) 〈χ|σxσz|ψ〉(

−〈ϕ|σz|ψ〉〈χ|σx|ϕ〉)
� 〈ψ|σzσx|χ〉〈χ|σxσz|ψ〉 − 〈ψ|σzσx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉

−〈χ|σxσz|ψ〉〈ψ|σz|ϕ〉〈ϕ|σx|χ〉
+〈ψ|σz|ϕ〉〈ϕ|σx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉.

(27)
Therefore, the uncertainty relation (2) reduces to

〈ψ|σz|ϕ〉〈ϕ|σz|ψ〉 + 〈χ|σx|ϕ〉〈ϕ|σx|χ〉
+〈ψ|σzσx|χ〉〈χ|σxσz|ψ〉 − 〈ψ|σzσx|χ〉〈ϕ|σz|ψ〉〈χ|σx|ϕ〉
−〈χ|σxσz|ψ〉〈ψ|σz|ϕ〉〈ϕ|σx|χ〉≤ 1.

(28)
Let us define |φ1〉≔|ϕ〉, |φ2〉≔A|ϕ〉 = σz|ψ〉, |φ3〉≔B|ϕ〉 =

σx|χ〉, and Tjk = 〈φj|φk〉; the uncertainty relation (2) becomes

|T12|2 + |T13|2 + |T23|2 − T23T12T31 − T32T21T13 ≤ 1. (29)
Since T32T21T13 � (T23T12T31)*, we have

T23T12T31 ≔ |T23T12T31|eiΦ, (30)
Re T23T12T31( ) � T23T12T31 + T32T21T13

2� |T23T12T31| cosΦ,
(31)

where Φ is the phase of T23T12T31, and Re (T23T12T31) is the real
part of T23T12T31. Thus, Eq. 29 is equivalent to

cosΦ≥
|T12|2 + |T13|2 + |T23|2 − 1

2|T23T12T31| . (32)

From cosΦ ≤ 1, one has a weaker uncertainty relation of (32),

|T12|2 + |T13|2 + |T23|2 − 2|T23T12T31|≤ 1. (33)

Remark. IfA =UA and B =UB, then the uncertainty relations (32)
and (33) reduce to the case of unitary operators discussed in Ref.
[28]. This theory has a much broader scope and can deal with a
wide variety of situations.

4.2 Scheme
Nowwe discussed how to test the uncertainty relation (32) and its
weaker form (33) by using the Mach–Zehnder interferometer.
According to the theory and measurement ideas proposed by
Bong [28] and Nirala [32], the uncertainty relation of non-
Hermitian operators can also be expressed by calculating the
interference visibility.

In principle, we can test the uncertainty relation of non-
Hermitian operators for any n. Here, we chose a special case
of n = 2, which requires preparation of a strictly pure state |ψ〉 and
tomographic reconstruction of |ψ〉, A|ψ〉, and B|ψ〉.

Non-Hermitian operatorsA and B are considered for example.
As shown in Figure 1, the main component of our setup is the
Mach–Zehnder interferometer. For the single-photon source, we
have a choice to use a continuous-wave diode laser to pump an
optically nonlinear beta barium borate (BBO) crystal. Then,
photon pairs are generated by noncollinear type-I spontaneous
parametric down-conversion (SPDC). The idler photon (Trigger)
heralds the presence of a signal photon. The A and B operators
can be implemented by using combinations of optical
components in the laboratory such as half-wave plates
(HWPs) and quarter-wave plates (QWPs). We used phase
shifters on two branches to adjust the optical path difference
with a certain angle θ.

It is considered that |ψ〉 is the input state of the first beam
splitter, which is further changed as

|Ψ1〉 � 1�
2

√ ieiθ|a〉 + |b〉( )|ψ〉, (34)

where |a〉 and |b〉 are path states corresponding to reflection and
transmission, respectively. We placed the optical elements of the
operators A and B on the corresponding arms. Before passing
through the second beam splitter, the state changes into

|Ψ2〉 � 1�
2

√ ieiθA|ψ〉|a〉 + B|ψ〉|b〉( ). (35)

After passing through the second beam splitter, the ports are
denoted by |c〉 and |d〉. Here, when the two beams finally meet at
the beam splitter, there is a phase difference ϵ between the two
arms due to propagation. The formation of ϵ is independent of A
and B operations.

FIGURE 1 | This scheme can test the uncertainty relation for two non-
Hermitian operators (A and B) by using the Mach–Zehnder interferometer.
Pairs of single photons are generated using a BBO crystal. The signal single-
photon state is prepared in |ψ〉. After entering a displaced
Mach–Zehnder interferometer at a 5050 beam splitter, the photon traverses
the interferometer. B in the transmitted arm is represented in (yellow), and A in
the reflected arm is represented in (purple).
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|Ψ3〉 � 1
2

−eiθA|ψ〉 + eiϵB|ψ〉( )|c〉
+1
2

ieiθA|ψ〉 + ieiϵB|ψ〉( )|d〉. (36)

The detection device is at port |d〉, which means that what we
detected is the component of the total state. This can be carried
out by applying the projectorΠd = |d〉〈d| to the entire state, so the
component of the detection arm state is

|Ψd〉 � Πd|Ψ3〉 � 1
2

ieiθA|ψ〉 + ieiϵB|ψ〉( )|d〉. (37)

Finally, the strength of the detector port is determined by

Nd � |〈d|Ψ3〉|2
� 1
4

〈A†A〉 + 〈B†B〉 + ei ϵ−θ( )〈A†B〉 + e−i ϵ−θ( )〈B†A〉( )
� 1
4

〈A†A〉 + 〈B†B〉 + 2|〈A†B〉| cos ϵ − θ + φ0( )( ),
(38)

where we suppose that 〈A†B〉 � |〈A†B〉|eiφ0 and thus 〈B†A〉 �
|〈A†B〉|e−iφ0 .

Hence, we can obtain the interference visibility γ. Based on Eq.
38, the maximal and minimal values of Nd can be obtained by
varying θ,

Nd( )max � 1
4

〈A†A〉 + 〈B†B〉 + 2|〈A†B〉|( ), (39)

Nd( )min � 1
4

〈A†A〉 + 〈B†B〉 − 2|〈A†B〉|( ). (40)

The interference visibility γ is defined as

γ A, B( ) ≔ Nd( )max − Nd( )min

Nd( )max + Nd( )min

� 2|〈A†B〉|
〈A†A〉 + 〈B†B〉.

(41)

Since A†A and B†B are Hermitian operators, these two
Hermitian operators can be directly measured by von
Neumann measurements. The values of 〈A†〉 and 〈B〉 are
similarly determined from the corresponding interference
visibilities γ(A, I), γ(I, B), where I denotes the identity
operator. Moreover, when A = σzUA, B = σxUB, the
interference visibility is given by γ(A, B) = |〈A†B〉|.
Generally speaking, the expected value that we need to
measure is a complex number, it is necessary to measure
its real part and imaginary part separately, but it is not usually

possible to measure both of them simultaneously. However,
our method is to directly measure the modulus of a complex
number, and the uncertainty relations (29) and (33) are
required to measure the modulus.

5 DISCUSSION AND CONCLUSION

As shown in Figure 1, we tested the uncertainty relation of non-
Hermitian operators very conveniently. However, this is only a
theoretical diagram of the experimental design. If the
experimental design scheme is to be applied in real
experiments, the Mach–Zehnder interferometer can be
displaced by a Sagnac interferometer, which can reduce the
influence of the external environment on the experiment.

In conclusion, the uncertainty relation of non-Hermitian
operators in any quantum state can be measured. This
broadens the practical scope of uncertainty relations, and non-
Hermitian operators also have experimentally observable
uncertainty relations. The theory would be less restrictive and
could be applied to other open systems. In addition, it can be used
to solve scattering problems and entanglement problems.
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