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The discrete-time quantum walk provides a versatile platform for exploring abundant
topological phenomena due to its intrinsic spin-orbit coupling. In this work, we study the
non-Hermitian second-order topology in a two-dimensional non-unitary coinless discrete-
time quantum walk, which is realizable in the three-dimensional photonic waveguides. By
adding the non-unitary gain-loss substep operators into the one-step operator of the
coinless discrete-time quantumwalk, we find the appearance of the four-degenerate zero-
dimensional corner states at ReE = 0 when the gain-loss parameter of the system is larger
than a critical value. This intriguing phenomenon originates from the nontrivial second-
order topology of the system, which can be characterized by a second-order topological
invariant of polarizations. Finally, we show that the exotic corner states can be observed
experimentally through the probability distributions during the multistep non-unitary
coinless discrete-time quantum walks. Our work potentially pave the way for exploring
exotic non-Hermitian higher-order topological states of matter in coinless discrete-time
quantum walks.

Keywords: coinless discrete-time quantum walks, non-Hermitian, higher-order topology, corner states, photonic
waveguides

1 INTRODUCTION

Due to the unique bulk-boundary correspondence, topological phases of matter have attracted great
attention in recent years [1–3]. The standard bulk-boundary correspondence generates the
emergence of robust gapless eigenstates localized at the boundary of the nontrivial topological
sample. However, in 2017, Benalcazar et al extend the concept of the topological phases of matter by
introducing the higher-order topological insulators, which obey a generalized bulk-boundary
correspondence [4, 5]. Specifically, for a d-dimensional nth nontrivial topological system, the
robust gapless eigenstates localized at (d − n)-dimensional boundary of the system will appear [6–8].
Generally speaking, the nontrivial topological phases can be generated through engineering specific
hoppings in lattice models [9, 10]. In addition, more exotic topological properties can arise due to
other characteristics of the system, such as periodic driving [11–13], non-Hermiticity [14–18], and
disorder [19–22], to mention a few.

As a typical time-periodic driving (Floquet) system, the discrete-time quantum walk (DTQW),
which is a dynamical evolution process of particles (called walkers) in discrete position space at
discrete points in time, exhibits abundant topological properties [23, 24] and has been realized
experimentally in systems of cold atoms [25, 26], trapped ions [27, 28], photons [29–32],
superconducting circuits [33], and nuclear magnetic resonance [34]. Although the intriguing
first-order topological phenomena in unitary [35–49] and non-unitary [50–59] DTQWs have
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been widely studied both in theory and experiment, little
attention has been paid to the connection between the
DTQWs and the higher-order topology [60]. As the quantum
counterpart of classical random walk, the walker’s internal degree
of freedom (IDF) of the DTQW plays the role of a quantum coin
[61]. Thus, the walker’s internal state is also called the coin state.
According to the coin state, DTQW can be divided into the
coined DTQW (IDF> 1) and the coinless DTQW (IDF = 1) [62].
Here we study the second-order topology in two-dimensional
non-unitary coinless DTQWs. Compared with the coined
DTQW, in which the walker’s direction of motion depends on
its coin states, the research of the coinless one without coin states
is still lack [63, 64], especially its topological properties [57, 60, 65,
66]. However, the coinless DTQW can be directed constructed
from the static Hamiltonian and thus can easily simulate rich
physical phenomena originate from the static Hamiltonian.
Furthermore, novel phenomena beyond the static Hamiltonian
can emerge in coinless DTQW, such as the emergence of the
topological boundary states at energy π, which is unique for the
Floquet systems.

In this paper, we construct a non-unitary one-step operator of
a two-dimensional coinless DTQW, which can be realized using
three-dimensional photonic waveguides. Through the quasi-
energy spectrum and the collective distributions of the
eigenstates, we observe four energy-degenerate corner-localized
eigenstates induced solely by the gain-loss term in our proposed
non-unitary coinless DTQW. The existence of such corner states
originate from the nontrivial second-order topology of the
system. To characterize the topological properties of the
system, we calculate numerically a second-order topological
invariant of polarizations through constructing the
biorthogonal nested Wilson loops and give the topological
phase diagram. Moreover, we numerically demonstrate that
the corner states governed by the nontrivial second-order
topology can be experimentally observed through the
probability distributions in multistep coinless non-unitary
DTQWs. Our work potentially pave the way for studying
exotic non-Hermitian higher-order topological states of matter
in coinless discrete-time quantum walks.

The structure of this paper is organized as follows. In Section
2, the one-step operator of a two-dimensional coinless non-
unitary DTQW is constructed. In Section 3, we numerically
calculate the quasienergy spectra and observe the second-order
topological corner states. In Section 4, we show the topological
phase diagram characterized by a topological invariant of
polarizations. In Section 5, we illustrate how to observe the
corner states in such system. Discussion and conclusion are
finally drawn in Section 6.

2 NON-UNITARY COINLESS
DISCRETE-TIME QUANTUM WALK

Based on the point that the coinless DTQW can be constructed by
dividing the static Hamiltonian, we first introduce an extended
Benalcazar-Bernevig-Hughes (BBH) Hamiltonian with on-site
gain and loss

Ĥtotal � ĤBBH + Ĥgl. (1)
The first term in Eq. 1 is exactly the BBH Hamiltonian [4, 5].

ĤBBH � ∑
Ny

y�1
∑
Nx

x�1
txâ

†
x+1,yâx,y + −1( )xtyâ†x,y+1âx,y( ) +H.c., (2)

where â†x,y (âx,y) is the creation (annihilation) operator of a
spinless particle at the site (x, y), tx(y) = t + (−1)x(y)δt are the
hopping amplitudes in the x (y) direction respectively, and
H.c. is the Hermitian conjugate. Nx and Ny are the numbers of
the lattice sites in the x and y directions, respectively. We can
see that there are two types of hopping amplitudes t − δt and
t + δt. To simplify the writing in the following paper, we
relabel these two types of hopping amplitudes as t − δt = J1
and t + δt = J2. Furthermore, the on-site gain-loss
Hamiltonian Ĥgl is introduced as

Ĥgl � iγ ∑
Ny/4
y�1

∑
Nx/4

x�1
â†4x−3,4y−3â4x−3,4y−3 − â†4x−2,4y−3â4x−2,4y−3 − â†4x−1,4y−3â4x−1,4y−3 + â†4x,4y−3â4x,4y−3(
−â†4x−3,4y−2â4x−3,4y−2 + â†4x−2,4y−2â4x−2,4y−2 + â†4x−1,4y−2â4x−1,4y−2 − â†4x,4y−2â4x,4y−2
−â†4x−3,4y−1â4x−3,4y−1 + â†4x−2,4y−1â4x−2,4y−1 + â†4x−1,4y−1â4x−1,4y−1 − â†4x,4y−1â4x,4y−1
+â†4x−3,4yâ4x−3,4y − â†4x−2,4yâ4x−2,4y − â†4x−1,4yâ4x−1,4y + â†4x,4yâ4x,4y),

(3)

where γ is the gain-loss parameter. Ĥgl has a period of four
lattice sites (gain-loss-loss-gain) both in x and y directions.
Since the previous work [67, 68] have demonstrated that
such gain-loss-loss-gain typed non-Hermitian term
occurring in one-dimensional lattice system can
dramatically affect the topology of the system, its two-
dimensional extension Ĥgl are also expected to bring
some novel topological phenomena.

In order to construct a coinless discrete-time quantum walk,
we first divide the Hamiltonian (1) into five parts

Ĥtotal � Ĥ2y + Ĥ1y + Ĥ2x + Ĥ1x + Ĥgl (4)
where Ĥ1x (Ĥ2x) and Ĥ1y (Ĥ2y) represent the sum of the
hoppings with parameter J1 (J2) along the x and y directions,
respectively. Thus, in the Hilbert space |x〉 ⊗|y〉 (or |x, y〉) with x ∈
{1, Nx} and y ∈ {1, Ny}, an one-step operator of the coinless
DTQW can be constructed as

Ûstep � e−i
ĤglΔT
4Z e−i

Ĥ2yΔT
Z e−i

ĤglΔT
4Z e−i

Ĥ1yΔT
Z e−i

ĤglΔT
4Z e−i

Ĥ2xΔT
Z e−i

ĤglΔT
4Z e−i

Ĥ1xΔT
Z

� ÛglÛ4ÛglÛ3ÛglÛ2ÛglÛ1

(5)
Other alternative one-step operators will also be
discussed in the next section. For simplicity, we use the
units ΔT = Z = 1 hereafter. By directly calculating the
matrix exponential, we can write these four unitary
substep operators as

Û1 � ∑
Nx/2−1

x�0
V̂2x+1 J1( ) ⊗ Îy, (6)

Frontiers in Physics | www.frontiersin.org May 2022 | Volume 10 | Article 8611252

Meng Topological Coinless Discrete-Time Quantum Walks

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Û2 � ∑
Nx/2−1

x�1
V̂2x J2( ) ⊗ Îy + |1〉〈1| + |Nx〉〈Nx|( ) ⊗ Îy, (7)

Û3 � ∑
Nx

x�1
∑

Ny/2−1
y�0

|x〉〈x|⊗ V̂2y+1 J1( ), (8)

Û4 � ∑
Nx

x�1
∑

Ny/2−1
y�1

|x〉〈x|⊗ V̂2y J2( ) + Îx ⊗ |1〉〈1| + |Ny〉〈Ny|( )

(9)
with the coupling operators defined as

V̂x r( ) � cos r( ) |x〉〈x| + |x + 1〉〈x + 1|[ ] − i sin r( ) |x + 1〉〈x| + |x〉〈x + 1|[ ],
(10)

V̂y r( ) � cos r( ) |y〉〈y| + |y + 1〉〈y + 1|[ ] − i sin r( ) eixπ |y + 1〉〈y| + e−ixπ |y〉〈y + 1|[ ].
(11)

The operator Îx(y) denotes a Nx × Nx (Ny × Ny) identity matrix in
the sub-Hilbert space |x〉 (|y〉).

Similarly, the non-unitary substep operator can be written in
the following form

Ûgl � ∑
Ny/4
y�1

∑
Nx/4

x�1
e
γ
4|4x − 3, 4y − 3〉〈4x − 3, 4y − 3| + e−

γ
4|4x − 2, 4y − 3〉〈4x − 2, 4y − 3|(

+e−γ
4|4x − 1, 4y − 3〉〈4x − 1, 4y − 3| + e

γ
4|4x, 4y − 3〉〈4x, 4y − 3|

+e−γ
4|4x − 3, 4y − 2〉〈4x − 3, 4y − 2| + e

γ
4|4x − 2, 4y − 2〉〈4x − 2, 4y − 2|

+eγ4|4x − 1, 4y − 2〉〈4x − 1, 4y − 2| + e−
γ
4|4x, 4y − 2〉〈4x, 4y − 2|

+e−γ
4|4x − 3, 4y − 1〉〈4x − 3, 4y − 1| + e

γ
4|4x − 2, 4y − 1〉〈4x − 2, 4y − 1|

+eγ4|4x − 1, 4y − 1〉〈4x − 1, 4y − 1| + e−
γ
4|4x, 4y − 1〉〈4x, 4y − 1|

+eγ4|4x − 3, 4y〉〈4x − 3, 4y| + e−
γ
4|4x − 2, 4y〉〈4x − 2, 4y|

+e−γ
4|4x − 1, 4y〉〈4x − 1, 4y| + e

γ
4|4x, 4y〉〈4x, 4y|).

(12)
By applying the one-step operator in Eq. 5 many times, a

multiple non-unitary coinless DTQW can be realized, as shown
schematically in Figure 1. Furthermore, when the gain-loss
parameter γ = 0, the substep operator Ûgl is exactly a (Nx ·
Ny) × (Nx · Ny) identity matrix and the corresponding one-step
operator Ûstep will become unitary.

Based on recent experimental progress of quantum walks in
waveguides [66, 69–73], the realization of Eq. 5 is accessible
under the flexible control of the three-dimensional photonic
waveguides. Specifically, the above discussed coinless DTQW
except the gain-loss term Ûgl can be realized by the directional
coupling of two waveguides [60, 66, 70, 74]. And the alternative
gain or loss can be introduced in a single waveguide [57, 75].

3 SPECTRA AND CORNER STATES

In order to illustrate the effect of the gain-loss term Ûgl on the
topological features of this non-unitary coinless DTQW, in this
section we fix the coupling parameter J1/J2 = 1.1, which
corresponds to a trivial phase when the gain-loss parameter γ
is zero [60]. Since the one-step operator Ûstep is non-unitary, its
effective Hamiltion Ĥeff � i ln Ûstep is non-Hermitian with
complex energy. In Figure 2A, we plot the real part of the
quasi-energy spectrum, obtained from diagonalizing Ĥeff , as a
function of γ under the open boundary condition in both
directions. We find that when the gain-loss parameter γ is
large than a critical value γc, four energy-degenerate states will
emerge at ReE = 0. The value of γc is related to the specific form of
the one-step operator except the value of the coupling parameter
J1/J2. The one-step operator Ûstep of Eq. 5 contains four unitary
operators, each of which is followed by a non-unitary gain-loss
operator Ûgl. However, the one-step operator can also be
constructed as Ûstep′ � Û4ÛglÛ3Û2ÛglÛ1, which consists of
only six substep operators. In Figure 2B, we show the real
part of the quasi-energy spectrum of Ĥeff′ � i ln Ûstep′ varying
with γ. Similarly, we observe the existence of four energy-
degenerate states at ReE’ = 0 when the gain-loss parameter γ
is large than a critical value γc′. Compared with the critical value γc
for Ûstep, the critical value γc′ for Ûstep′ is larger since the latter
contains less gain-loss operators Ûgl. Since the numerical
methods used to analyse the topological features of the

FIGURE 1 | Up: Schematic of the eight-step non-unitary coinless DTQW in a two-dimensional lattice. For the four unitary substep operators Ûi in Eqs 6–9, the
couplings between the different lattice sites are represented by the different thicknesses of the green lines. The two kinds of green lines with different thicknesses
represent two types of coupling strengths J1 (thin) and J2 (thick), respectively. And the dashed green lines in the y direction indicate the required phases of ± π in the
coupling process. Bottom: Schematic of the non-unitary substep operator Ûgl ofEq. 12. The color of red (blue) indicates the on-site gain (loss). Due to the emergent
phases in the y direction, a π-flux will be induced when a walker goes through a closed loop of four sites anticlockwise.
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systems generated by the above two one-step operators are
similar, we only discuss the former in the following paper. We
notice that no four energy-degenerate states will emerge at ReE =
0 in the real part of the quasi-energy varying with γ when the
system is generated by another one-step operator
Û
′′

step � ÛglÛ4Û3Û2Û1. Furthermore, we do not show the imag
part of the quasi-energy varying with γ since no more valuable
information can be obtained.

A unique phenomenon in non-Hermitian systems is the
appearance of the skin effects [14], which means that all of
the eigenstates will be localized near the boundary under the
open boundary conditions. However, the skin effects will not
emerge in all of the non-Hermitian systems [16]. A major
consequence of non-Hermitian systems with the skin effects is
that the bulk bands of the system under the open boundary
conditions are considerably different from those of the system
under the periodic boundary conditions. Thus, we show the
complete quasi-energy spectrum under the open and periodic
boundary conditions in Figures 2C,D, respectively. We find that
the bulk bands under the different boundary conditions are
consistent except the emergence of the four energy-degenerate
states at ReE = 0 when we consider the open boundary conditions.
Figures 2C,D strongly demonstrate that our system does not
suffer from the skin effects and therefore it does not matter
whether the right and/or left eigenstates are used to calculate the
density distribution. In Figure 2E, we show the collective density
distributions of these four energy-degenerate gapless states at
ReE = 0, which are localized at the four corners of the lattice. And

the remaining two energy-degenerate gapped states at ReE ≠ 0 are
indeed extended in the bulk of the lattice, as shown in Figure 2F.

4 TOPOLOGICAL PHASE DIAGRAM

The emergence of the exotic four energy-degenerate corner states
at ReE = 0 can be attributed to the second-order bulk topology,
which corresponds a kind of topological phase supporting
lower-dimensional corner or hinge states, induced by the
gain-loss term Ûgl in Eq. 12. The nontrivial second-order
bulk topology in non-Hermitian systems can be characterized
by introducing the non-Bloch winding numbers or the
biorthogonal nested Wilson loops [76–81]. In addition,
due to the intrinsic 2π period of quasi-energy, a pair of
topological invariants are required to predict the
appearance of zero-energy and π-energy corner states in
the Floquet second-order topological systems [82–87].
Specifically for the second-order topological
characterisation of our model, only one invariant of
polarizations (the quadrupole moments) constructed by
the biorthogonal nested Wilson loops is enough since the
C4 symmetry and the absence of the π-energy corner states.

The second-order topological invariant of polarizations are
constructed inmomentum space. Thus, we first need to renumber
the lattice sites in terms of the unit cell, each of which contains 16
sublattices, as shown in Figure 3. Using the Fourier
transformation, the one-step operator can be written in

FIGURE 2 | (A,B) Real part of the quasi-energy spectrum obtained from the effective Hamiltonian Ĥeff � i ln Ûstep (A) or Ĥeff′ � i ln Ûstep′ (B), as a function of γ under
the open boundary condition. The bulk energy gap begin to close at γ = γc ≈ 1.2 (A) or γ � γc′ ≈ 2.4 (B), where a topological phase transition occurs and in-gap corner
states (red line with fourfold degeneracy) emerge when γ > γc (A) or γ> γc′ (B). The lattice size is chosen as 60, ×, 60. (C,D) Typical quasi-energy spectrum of the system
under the periodic boundary condition (C) or the open boundary condition (D). The gain-loss parameter is γ = 2.5 and the lattice size is same with (A,B). (E,F)
Collective density distributions Σi |ΨR

i (x, y)|2 of the four-degenerate corner states with state numbers {127, 128, 129, 130} (E) and two-degenerate bulk states with state
numbers {161, 162} (F). The eigenstates are sorted by the value of the real part of the quasi-energy. The gain-loss parameter is chosen as γ = 3.5 and the lattice size is 16
× 16. Here the coupling parameter is fixed at J1/J2 = 1.1.
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FIGURE 3 | The unit cells, labeled with (m, n), of our coinless DTQW in the two-dimensional lattice. Each unit cell has 16 sublattices, which are labeled as
{â(i�1,2,3,4),m,n, b̂(i�1,2,3,4),m,n , ĉ(i�1,2,3,4),m,n , d̂(i�1,2,3,4),m,n}, respectively. Here six unit cells are shown for a simple graphical representation.

FIGURE 4 | (A–C) Real quasi-energy spectrum in momentum space of the effective Hamiltonian Ĥeff(k) with different gain-loss parameters. For the trivial (A) and
topological (C) phases, the real spectrums are gapped. While at the phase transition point (B), the real spectrum is gapless. (D–F)Wannier bands structures vy,j (kx) with
different gain-loss parameters. The imaginary parts are always zero. Here the coupling parameter is fixed at J1 = 1.1.
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momentum space as ψ̂†
kÛstep(k)ψ̂k , where ψ̂k �

(â(i�1,2,3,4),k , b̂(i�1,2,3,4),k , ĉ(i�1,2,3,4),k , d̂(i�1,2,3,4),k)T and Ûstep(k) is
a 16 × 16 matrix in the basis of ψ̂k . Then, we consider the
right and left eigenstates of the effective
Hamiltonian Ĥeff(k) � i ln Ûstep(k),

Ĥeff k( )|uR
α,k〉 � Eα k( )|uR

α,k〉,
Ĥ

†

eff k( )|uL
α,k〉 � Eα* k( )|uL

α,k〉,
(13)

which satisfies the biorthogonal normalization 〈uLα,k|uRβ,k〉 � δα,β
with the band indices α and β. Alternatively, one can write the
matrix of the effective Hamiltonian asHeff = VDV−1, where D is a
diagonal matrix of quasi-energies and the columns of the
matrixes V and (V−1)† are corresponding right and left
eigenstates, respectively. Because of the absence of the non-
Hermitian skin effects, the bulk-boundary correspondence
based on the ordinary Bloch band theory is valid here. Thus,

FIGURE 5 | (A) Polarizations p−
x (lines) and p−

y (symbols) versus the gain-loss parameter γwith different coupling parameters J1. The color blue (magenta) indicates
the coupling parameter is fixed at J1 = 1.1 (J1 = 1.5). (B) Topological phase diagram of eight-step non-unitary coinless DTQWs characterized by the topological invariant
W � 4p−

x p
−
y versus the gain-loss parameter γ and the coupling parameter J1. The crimson (blue) filled region corresponds to the topological (trivial) phase withW = 1(W =

0). In the crimson filled region, the part above the yellow line indicates the topological phase induced by the gain-loss term of Eq. 12.

FIGURE 6 | Probability distributions P(x, y, t) � |〈x, y|~ψ(t)〉|2 of multi-step non-unitary coinless DTQWs on a 16 × 16 lattice. After each step of this DTQW, the state
of the walker |ψ(t)〉 � Ûstep|~ψ(t − 1)〉 will be normalized as |~ψ(t)〉 with 〈~ψ(t)|~ψ(t)〉 � 1. The walker is initialized at the upper-left corner (x, y) = (1, 16) (A,B) or bulk (x, y) =
(8, 8) (C) of the lattice. The gain-loss parameter is chosen as γ = 3.5 (A,C) or γ = 0.5 (B), which correspond to the topological or trivial phase, respectively. The steps are
chosen as t = 0, 3, 6, 20. Here the coupling parameter is fixed at J1 = 1.1.
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we can determine the topological phase transition points with the
gapless real quasi-energy spectrum ReE(k), see Figures 4A–C.
When the system is in the topological trivial or nontrivial phases,
the real quasi-energy spectrum ReE(k) is all gapped.

To characterize the gapped phases using polarizations, we
consider the case of half filling and define the biorthogonal
Wilson loop operator along y direction as

Ŵy,k � F̂y,k+ Ny−1( )Δkyey · · · F̂y,k+ΔkyeyF̂y,k , (14)
where F̂y,k is a 8 × 8 matrix with elements
[F̂y,k]αβ � 〈uLα,k+Δkyey |uRβ,k〉(α, β � 1, 2, . . . , 8), ey is the unit
vector in the y direction, and Δky = 2π/Ny. The two-
dimensional Brillouin zone is discretized by using the interval
(2π/Nx, 2π/Ny), such that there are (Nx + 1) (Ny + 1) k-points in
total. Due to the non-Hermiticity of the effective Hmiltonian
Ĥeff(k), the constructed operator Ŵy,k is a non-unitary operator
and corresponds to a non-Hermitian Wannier Hamiltonian
ĤWy(k) � −i ln Ŵy,k . With the periodic boundary conditions,
|uRα,k〉 � |uRα,k+2πey〉 and |uLα,k〉 � |uLα,k+2πey〉, we can obtain the
right and left Wannier states by diagonalizing Eq. 14 as

Ŵy,k|vRy,j,k〉 � ei2πvy,j kx( )|vRy,j,k〉,
Ŵ−1

y,k( )
†

|vLy,j,k〉 � ei2πvy,j* kx( )|vLy,j,k〉,
(15)

where j is the Wannier band index and 〈vLy,j,k|vRy,j′,k〉 � δj,j′.
These eight Wannier bands vy,j (j = 1, 2, . . . 8) can be divided into
three Wannier sectors (labeled by ς = 0, ±) with finite gaps, see
Figures 4D–F. Especially, all Wannier bands will tend to be flat
when γ is pretty large. Each Wannier sector can carry their own
biorthogonal topological invariants, which can be evaluated by
constructing the biorthogonal nested Wilson loops. Utilizing
eigenstates |uR(L)α,k 〉 and |vR(L)y,j,k〉, we can construct the
biorthogonal Wannier states as

|wR L( )
y,j,k〉 � ∑

8

α�1
vR L( )
y,j,k[ ]α|uR L( )

α,k 〉, (16)

where [vR(L)y,j,k]α denotes the αth element of the 8-component state
vector |vR(L)y,j,k〉 and 〈wL

y,j,k|wR
y,j′,k〉 � δj,j′. For eachWannier sector

ς, with the periodic boundary conditions, |wR
y,j,k〉 � |wR

y,j,k+2πex〉

and |wL
y,j,k〉 � |wL

y,j,k+2πex〉, the elements of the constructed
nested Wilson loop operator along x direction are

~̂W
ς

x,k[ ]l,l′ � 〈wL
y,l,k+NxΔkxex |wR

y,r,k+ Nx−1( )Δkxex〉

〈wL
y,r,k+ Nx−1( )Δkxex | . . . |wR

y,s,k+Δkxex〉〈w
L
y,s,k+Δkxex |wR

y,l′,k〉, (17)
where ex is the unit vector in the x direction and Δkx = 2π/Nx, the
indices l, l′ ∈ 1 . . . NW with NW the number of the Wanner bands
in sector ς. In Eq. 17, summation is implied over repeated indices
r, . . . , s ∈ 1 . . . NW over all Wannier bands in sector ς. After that,
we can obtain the polarizations along x direction as

pς
x � − i

2π
1
Ny

∑
ky

log det ~̂W
ς

x,k[ ]. (18)

In a similar way, we can directly obtain the Wannier bands vx,j
and polarizations along y direction pς

y by constructing the
biorthoganal Wilson and nested Wilson loop operator along x
and y directions, respectively. Due to the C4 symmetry, we have
vy,j ≡ vx,j and pς

x ≡ pς
y.

Using the above procedure, we numerically calculate the
polarizations pς

x(y) and find that the polarizations p0
x(y) ≡ 0

and p+
x(y) ≡ p−

x(y). In Figure 5A, we show the polarizations
p−
x(y) varying with γ, which equal to 0.5 (0) for topological

(trivial) phases with (without) corner states. It means strongly
that the polarizations here are good candidates for characterizing
the second-order topology of this system. Thus, we define the
topological invariant with the polarizations p−

x and p−
y,

W � 4p−
xp

−
y. (19)

The topological invariantW has two possible quantized values: 0
and 1, which corresponds to the trivial and topological
phases, respectively. In Figure 5B, we show the topological
phase diagram of the topological invariant P versus the
coupling parameter J1 and the gain-loss parameter γ.
When J1 ∈ (0.5, 1), the system with γ = 0 is in the
topological phase and will still remain topological as γ is
incremented from zero. However, the system with γ = 0 is in
the trivial phase with J1 ∈ (1, 1.5) and will become topological
when γ > γc. Furthermore, the value of γc will increase sharply
as we increase J1.

5 OBSERVATION OF CORNER STATES

Experimentally, the exotic corner states can be observed
through the localization of probability distributions in multi-
step non-unitary coinless DTQWs. Without the existence of the
local states, such as the above discussed corner states, the typical
transfer behavior of the coinless DTQW is ballistic [63]. In this
section, we demonstrate the existence of the corner states by
showing the numerical results of probability distributions of
multistep non-unitary coinless DTQWs with different gain-loss
parameters and initial states. We fix the coupling parameter at J1
= 1.1 and tune the gain-loss parameter γ.

FIGURE 7 | Complete topological phase diagram of eight-step non-
unitary coinless DTQWs characterized by the topological invariant W versus
the coupling parameter J1 and the gain-loss parameter γ.
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First, we tune the gain-loss parameter at γ = 3.5, which
corresponds to a topological phase with the emergence of
localized corner states, and initialize the walker at one corner
(x, y) = (1, 16) of the lattice. As shown in Figure 6A, since the
initial state has a large overlap with the corner state, the most part
of the walker’s wave packet remains localized near the same
corner as increasing the step of the quantum walk. Then, we tune
the gain-loss parameter at γ = 0.5, which corresponds to a trivial
phase. Since the absence of the localized corner states, the
probability distributions of the walker spread ballistically into
the bulk with increasing the step of the quantum walk, see
Figure 6B. When the initial states are prepared at other three
corners of the lattice, the numerical results are similar and thus
are not shown here. Finally, we retune the gain-loss parameter at
γ = 3.5 and initial the walker at the bulk (x, y) = (8, 8) of the lattice.
Similiar to the second case, the walker’s wave packet extends into
the bulk as increasing the step of the quantumwalk, which further
confirms the absence of the non-Hermitian skin effects with the
nonlocalization of the bulk states, see Figure 6C.

6 DISCUSSION AND CONCLUSION

We first give a more detailed illustration of the topological phase
diagram. In Section 4, we only show part of the complete
topological phase diagram for simplicity. Actually, the
complete phase diagram has a period of π in the J1 direction,
see Figure 7. Moreover, when the coupling parameter J1
converges to qπ/2 (q is an integer), the value of γc will go to
infinity. Especially, when the coupling parameter is exactly fixed

at J1 = qπ/2, a 100%-coupling is present for each unitary sub-
evolutionary process governed by Ûi (i = 1, 2, 3, 4). In such a
case, a single walker does not feel the gain or loss after one
step of the eight-step non-unitary coinless DTQW. Thus, the
system with 100%-coupling is always trivial without corner
states no matter the value of the gain-loss parameter γ.

In summary, we have constructed a two-dimensional non-
unitary coinless DTQW which exhibits nontrivial second-order
non-Hermitian topology. We have shown second-order non-
Hermitian topological phase diagram characterized by
polarizations. Finally, we have shown that the corner states
can be observed through the probability distributions. Our
work suggests that the coinless DTQW is a potential platform
to explore novel non-Hermitian higher-order topological
quantum phases, and may shed light on the ongoing
exploration of topologically protected quantum information
processing.
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