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Editorial on the Research Topic

The Fluctuation-Dissipation Theorem Today

The concept of FDT is rooted in analysis of response relations appearing in systems subject to stimuli
and driven away from equilibrium. In a linear response regime, close to equilibrium, use of Onsager’s
reciprocity relations [1] allows to calculate transport coefficients (see a following didactic review by
Maes, this volume). Another form of response refers to the Einstein-Smoluchowski relation [2–5]
between the coefficient of diffusion and the mobility, derived for a free Brownian particle in a fluid
environment. At the level of Langevin equation [6] this result can be further rephrased as the relation
between inverse of mobility and autocorrelation of the fluctuating force experienced by the Brownian
particle. In his seminal works Onsager [1] demonstrated that symmetries in the susceptibility
(response functions) were associated with the crystal symmetry. Later the quantum formula of FDT
was given by Callen andWelton [7] who extended the Nyquist relation for the voltage fluctuations in
electrical impedances of conductors. Advancements by Mori generalized the Langevin equation to
include quantum effects and memory, next Kubo obtained the proper FDT for the Mori equation
[8–10] Reggiani and Alfinito. Those historical series of results grounded the theory of relaxation of
macroscopic perturbations and dynamics of fluctuations in systems around equilibrium.

Further developments in fluctuation-dissipation theory addressed the issue of interesting non-
equilibrium phenomena—like slow relaxing structural glasses and proteins, mesoscopic radiative
heat transfer or driven granular media where the violation of FDT was observed [11–18]. For growth
phenomena such as those described by the Kadar-Parisi-Zhang equation [19] different formulations
of the FDT have been proposed [20, 21]. Yet another approach has been put forward to investigate
fluctuation-dissipation relation in systems exhibiting anomalous transport properties, including sub-
and super-diffusion [22, 23].

The contents of this special topic devoted to FDT and applications is organized as follows: The
article by Maes features derivation of response relations stemming from a trajectory-based
description. Author presents an approach based on dynamical ensembles determined by an
action on trajectory space and reviews fluctuation-dissipation relations of the first and second
kind. Notion on active particles, where local detailed balance does not hold is reviewed, along with a
discussion of open problems pertinent to response around nonequilibrium states. Within the article
the concept of frenesy (or dynamical activity) as a complement to entropy in systems acting far from
equilibrium is revisited [24]. Frenesy, defined as the time-symmetric part of the path-space action
measuring difference between activated traffic and the path-wise escape, plays a crucial role in
understanding selection of occupation and current statistics in systems with broken time-reversal
symmetry. The excess in dynamical activity is proposed as a new Lyapunov functional.

Next, in the article Beyond the Formulations of the Fluctuation Dissipation Theorem Given by
Callen and Welton (1951) and Expanded by Kubo (1966) Reggiani and Alfinito discuss the quantum
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FDT and some challenges associated with it. The zero point
contribution that is present in the quantum formulation of FDT
as given by Callen-Welton and Kubo is known to lead to the so
called vacuum catastrophe (it produces an ultraviolet catastrophe
of the noise power spectral density). They propose a solution to
this challenge by taking into account the Casimir energy [17] that,
in turn, is found to be responsible for a quantum correction of the
Stefan-Boltzmann law Reggiani and Alfinito, [25].

Florencio and Bonfim in Recent Advances in the Calculation of
Dynamical Correlation Functions review some theoretical
methods that have been used to calculate dynamical
correlation functions of many-body systems. Time-dependent
correlation functions and their associated frequency spectral
densities are the quantities of interest, since they are
fundamental to understanding both the theoretical and
experimental dynamic properties. In particular, dynamic
correlation functions appear in the FDT, where the response
of a many-body system to an external perturbation is given in
terms of the relaxation function of the unperturbed system,
provided the disturbance is small. The method of recurrence
relation has, at its foundation, the solution of Heisenberg
equation of motion of an operator in a many-body interacting
system [10]. The approach based on recurrence relations has been
used in quantum systems such as dense electron gas, transverse
Ising model, Heisenberg model, XY model, Heisenberg model
with Dzyaloshinskii-Moriya interactions, as well as for classical
harmonic oscillator chains. Effects of disorder have been
considered in some of those systems. In the cases where
analytical solutions were not feasible, approximation schemes
have been used, although they have shown to be highly model-
dependent.

Precise determination of diffusive properties for a system
described by the generalized Langevin equation is discussed in
Time-dependent Fractional Diffusion and Friction Functions for
Anomalous Diffusion by Bao. The time-dependent fractional
diffusion function and Green-Kubo relation, as well as the
generalized Stokes-Einstein formula, in the spirit of ensemble
averages, are reconfigured. The effective friction function is
introduced as a measure of the influence of a frequency-
dependent friction on the evolution of the system. Ergodicity
is discussed from genaralization of the Debye model. Some results
of the literature are critically reviewed.

In the work Chen Application of the Brown Dynamics
Fluctuation-Dissipation Theorem to the Study of Plasmodium
berghei Transporter Protein PbAQP, Chen gives an example of
application of the FDT in biology. There he study the parasite
Plasmodium berghei (Pb), which causes diseases, via the
investigation of the fluctuations in the transport across the
membrane of neutral solutes. This is explicted via a Brownian
dynamics fluctuation-dissipation theorem (BD-FDT). Laboratory
mice infected by Pb exhibit symptoms that are equivalent to
human malaria Bao caused by Plasmodium falciparum (Pf). The
parasite Pb has been used as basic organism to investigate the
human malaria, mainly due to the simplicity of its genetic
engineering. The investigation of the flux of water, glycerol
and the wastes of used material, across the cell membrane,
give us a good example of application of the FDT. In addition

to the results exposed in his investigation, an analysis of the
method developed there suggest that it is general and can be
applied in similar situations. i.e., in the transport of neutral
material across membranes of another parasites.

The article Characterizing the Non-equilibrium Dynamics of
Field-Driven Correlated Quantum Systems, by Fotso and
Freericks reviews recent studies on non-equilibrium dynamical
mean-field theory (DMFT) of both transient and steady states of a
DC field-driven correlated quantum system. They have shown
that for an isolated system the relaxation to a steady state
satisfying the fluctuation-dissipation theorem can be observed.
The monotonic thermalization scenario is analyzed with the
system monotonically approaching an infinite temperature
thermal state (satisfyng the FDT) evolving through a series of
consecutive quasi-thermal states satisfying the FDT only
approximately. Focusing on the DMFT for the Falicov-Kimball
model, they describe a Fermi-Fermi mixture of heavy and light
particles, driven away from equilibrium by a constant electric
field, showing a complex range of relaxation behaviors. For
instance, the density of states shows the formation of
Wannier-Stark ladders and the dielectric breakdown arising in
presence of mid-gap states, absent in equilibrium. Authors
describe also emergence of some key timescales in the current,
manifested in the Wigner distribution function and its evolution
towards infinite temperature. Their results illustrate the rich
physics behind field-driven correlated quantum systems and
the role that FDT plays in understanding of such behavior.

In Generalized Fluctuation-Dissipation Theorem for Non-
equilibrium Spatially Extended Systems Wu and Wang have
established a generalized form of the FDT for spatially
extended non equilibrium stochastic systems described by
continuous fields. Such a generalized FDT is formulated
exploiting the non-equilibrium force decomposition in the
potential landscape and flux field theoretical framework.
Through concrete studies they support and validated the
generalized FDT. Among others, a feature worth to be
highlighted is that this generalized FDT represents a ternary
relation at variance with the binary one arising in the equilibrium
case. That is, in addition to the field correlation and the response
function, existing in the equilibrium FDT, an additional flux
correlation, entering into the FDT and qualitatively altering its
structure, transforms it into a ternary relation.

Another article in this volume by Feng and Wang tackles the
problem of non-equilibrium quantum systems characterized by
detailed balance breaking. By using coherent phase space
representation in quantum mechanics, the authors derive the
gauge field and internal curvature to a generic class of non-
equilibrium bosonic quantum systems coupled with the
environments. It is shown that the internal curvature of the
derived gauge field provides a direct measure of detailed
balance breaking for non-equilibrium quantum systems.
Moreover, it delivers a new, geometric view for the general
nature and behaviors of non-equilibrium quantum systems,
such as the fluctuation-dissipation theorem (FDT).

It is quite clear that after one hundred years the FDT still
remains a central result and amajor theorem in statistical physics,
with many different formulations in classical and quantum

Frontiers in Physics | www.frontiersin.org March 2022 | Volume 10 | Article 8597992

Gudowska-Nowak et al. Editorial: Fluctuation-Dissipation Theorem Today

https://www.frontiersin.org/articles/10.3389/fphy.2020.00238/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.557277/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.597161/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00119/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00119/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.597161/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00324/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00324/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.567523/full
https://www.frontiersin.org/articles/10.3389/fphy.2020.00129/full
https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


theories. Two distinct aspects of the FTD are pursued: On the one
hand, the theorem is of great practical importance because it
establishes the relationship between susceptibilities; i.e., responses
of the system Florencio and Bonfim, Bao, Chen to the
perturbation field and correlations of physical observables
measured in the reference unperturbed state. On the other, the
FDT is closely connected to some basic principles in statistical
mechanics such as ergodicity breaking and the Khinchin theorem
[10, 26]. The standard form of FDT applies only to weak
perturbations, close to thermal equilibrium states. However,
over the past years a great effort has been made to generalize
the FDT to classical systems far from equilibrium and to quantum
systems, where FDT proved useful to study multipartite
entanglements of complex quantum systems [27].

As an example, the FDT does not work in the KPZ equation for
higher dimensions. This observation became an impediment to
determining the KPZ exponents. Recently Anjos et al. [28]
proposed that the growth dynamics builds up an interface with a
fractal dimension df, which filters the original fluctuations given
origin to new fluctuations which, by it turns, yields a new FDT in the
fractal space. This allows a possible solution for the KPZ exponents
[29]. There is much hope that this approach will drive us to

unexpected hidden symmetries and new formulations of the FDT,
in line with a visionary comment expressed by Giorio Parisi in the
year of physics concept [30]. Last but not least, it is important to
mention that Giorgio Parisi was awarded the Nobel Prize in Physics
2021 “for the discovery of the interplay of disorder and fluctuations in
physical systems from atomic to planetary scales” [31].
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