
Theory of Spin-Excitation Anisotropy
in the Nematic Phase of FeSe
Obtained From RIXS Measurements
Andreas Kreisel 1*, P. J. Hirschfeld2 and Brian M. Andersen3

1Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany, 2Department of Physics, University of Florida, Gainesville,
FL, United States, 3Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Recent resonant inelastic x-ray scattering (RIXS) experiments have detected a significant
high-energy spin-excitation anisotropy in the nematic phase of the enigmatic iron-based
superconductor FeSe, whose origin remains controversial. We apply an itinerant model
previously used to describe the spin-excitation anisotropy as measured by neutron
scattering measurements, with magnetic fluctuations included within the RPA
approximation. The calculated RIXS cross section exhibits overall agreement with the
RIXS data, including the high energy spin-excitation anisotropy.
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1 INTRODUCTION

Identifying the dominant interaction channels, and pinpointing the correct microscopic origin of
preferred electronic ordering tendencies in strongly-correlated materials, constitute a challenge to
the theoretical description of materials. This is particularly relevant in systems where spin, charge,
orbital, and lattice degrees of freedom all strongly couple with one another. For the iron-based
superconductors, the main relevant players are spin-density waves, nematic order, and
unconventional superconductivity. In this regard, iron selenide, FeSe, has played a leading role
in recent years since its superconducting phase condenses directly from a nematic state without
concomitant broken time-reversal symmetry breaking (magnetic order) at lower temperatures [1–3].
In addition, FeSe has been in the spotlight due to its superconducting transition temperature Tc,
which is tunable by intercalation, pressure, or dimensional reduction (monolayer FeSe on STO) [3].

Since FeSe enters an orthorhombic phase below Tn ~ 90K it exhibits 90° rotational symmetry
breaking in all measured quantities (of detwinned crystals). However, from comparisons to
theoretical calculations the degree of measured rotational symmetry breaking is much too large
to be ascribed solely to the bare electronic structure of the orthorhombic phase. Therefore, several
theoretical works have explored the possibility of various interaction-driven feedback effects that
enhance the symmetry breaking [4–10] and strongly influence the shape and orbital content of the
Fermi pockets [7, 8, 11–13]. A particularly simple theoretical framework which includes such effects
is the so-called orbital-selective scenario, where the low-energy self-energy is approximated by
orbital-dependent, but energy- and momentum-independent, quasi-particle weight factors [6, 7,
14–19]. While this is clearly a crude simplification of the full interacting multi-orbital problem, it was
shown to provide overall agreement with a series of different experiments [3].

More recently, spectroscopic probes have revealed that the Fermi surface of FeSe is exceedingly
anisotropic; it appears to be missing an entire electron pocket at the Y-point of the Brillouin zone
(BZ), as shown in Figure 1 [20, 21]. This Fermi surface topology does not naturally arise from DFT
band structure calculations, even with additional nematic order added to the description [3]. This
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finding has reinvigorated the discussion of nematicity and the
origin of the large electronic anisotropy in FeSe. For example, the
lifting of the Y-pocket imposes new constraints on the nature of
the nematic order, leading to studies of the importance of dxy-
orbital contributions [13, 22–27], and important inter-orbital
components in the nematic order [28–30]. The latter were shown
recently to arise naturally from longer-range Coulomb
interactions [29]. Additionally, the possible non-existence of
the Y-pocket has important consequences for
superconductivity and the need for anisotropy-enhancing self-
energy feedback effects. For example, as shown in Ref. [29], the
highly anisotropic superconducting gap structure of FeSe follows
immediately from standard spin-fluctuation mediated pairing
without additional self-energy effects applied to the Fermi
surface without any electron pocket at the Y-point. This
conclusion, however, is mainly a direct consequence of the
missing Y-pocket itself, and does not eliminate the need for
self-energy feedback more generally in the theoretical
description of FeSe. This is seen, for example, in theoretical
modelling of the neutron response of FeSe, where a prominent
momentum anisotropy seems only consistent with calculations
incorporating self-energy feedback effects [29] since the possible
lifting of the Y pocket alone only yields a very weak anisotropy of
the susceptibility between (π, 0) and (0, π) as also presented in
Ref. [27].

Therefore, further experiments probing the momentum
anisotropy of detwinned FeSe are highly desirable. In this
respect, Chen et al. [31] succeeded in measuring the inelastic
neutron scattering response from a mosaic of single FeSe crystals
glued on to BaFe2As2, detwinned at low temperatures by the
single domain stripe magnetism of the (uniaxially strained)
substrate BaFe2As2 material. This experiment revealed highly
anisotropic low-energy (≲ 10 meV) magnetic fluctuations in
(detwinned) FeSe with the main scattering taking place near
the (π, 0) position of the BZ. In the superconducting phase, a
similarly momentum-anisotropic resonance peak was
additionally identified [31]. These results can be explained by
itinerant models that include self-energy effects that 1) suppress

dxy orbital contributions to the spin susceptibility predominantly
near (π, π), and 2) favor (π, 0) dyz over (0, π) dxz orbital
contributions in the nematic phase [32, 33]. Only by allowing
for such orbital-selective self-energy effects can a standard RPA-
like itinerant scenario be made compatible with the neutron data.
We stress that this remains true irrespective of whether or not the
Y-pocket is present at the Fermi surface.

Recently, the spin excitations were measured to higher
energies in detwinned FeSe by RIXS measurements at the Fe-
L3 edge [34]. The RIXS energy spectra revealed clear dispersive
broad spin modes. It was found that the spin-excitation
anisotropy, as seen by comparing the scattering cross section
along the perpendicular H and K high-symmetry directions,
remains to high energies (~ 200 meV). This energy scale is
substantially larger than the orbital splitting associated with
the nematicity, and as pointed out in Ref. [34], the amplitude
of the spin-excitation anisotropy in nematic FeSe is comparable
to that obtained from the spin-wave anisotropy in the
magnetically ordered stripe (π, 0) phase of BaFe2As2 [34, 35].

The RIXS results for detwinned FeSe provide new testing
ground for theories of FeSe. At present the origin of nematicity
and the degree of localization and correlation is still being
discussed. In particular, theoretical works have both applied
models based on fully localized or itinerant electrons, in order
to explain the peculiar electronic ordering tendencies of FeSe [3].
Here, we compute the RIXS cross section within an itinerant RPA
procedure with nematicity included in the bare band structure
[6]. The applied RIXS framework is similar to that used in Ref.
[36] where second order perturbation theory involving the
absorption and emission process is used to calculate the RIXS
intensity from the generalized spin-susceptibility. The latter is
then calculated within a random phase approximation (RPA)
where additional reduced coherence of the electronic structure
[33] is taken into account. We find that the RIXS cross section as
calculated for the fully coherent electronic structure exhibits
relatively sharp modes, but remains nearly isotropic when
comparing the intensity along the (π, 0) and (0, π) directions,
irrespective of whether the Y pocket is present or not at the Fermi

FIGURE 1 | Fermi surface of nematic FeSe with orbital content as indicated by colorbar. (A)Model of an electronic structure exhibiting a Fermi surface pocket at the
Y point which, however, carries incoherent electronic states (sketched by fading colors) [6, 7]. Note that the model in Eq. 1 is a three dimensional electronic structure. For
the full corresponding Fermi surface we refer to Figure 1A of Ref. [7]. (B) Fermi surface of a model including dxy orbital order as proposed in Ref. [27] where the Y pocket
is lifted; similar topology of the Fermi surface was also discussed in [29] with a different orbital order parameter.
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level. A strong spin-excitation anisotropy inherent in the sharp
paramagnons of the itinerant system can be found if self-energy
effects in the nematic state are taken into account. Furthermore,
we note that this anisotropy persists to high energies much larger
than the energy scale of the nematic order parameter of a few tens
of meV, similar to the experimental findings in a recent RIXS
experiment [34]. The spin-excitation anisotropy in the theoretical
intensity at low energies depends sensitively on the orbital
content of the Fermi surface. We discuss implications for our
general understanding of magnetic fluctuations and electronic
structure of FeSe by comparison to the experimentally
determined RIXS data from Ref. [34].

2 MODEL AND METHOD

The following calculations are based on a tight-binding
parametrization for iron-based superconductors [37] with
values of the hopping parameters used earlier [6, 7, 33], that
closely matches the electronic structure measured in
spectroscopic probes. The Fermi surface of this band structure
contains an electron Fermi pocket at the Y-point of the BZ, but its
presence is largely irrelevant for the RIXS results discussed below,
compare Figure 1A of Ref. [7] and Figure 1 for a simplified two
dimensional plot of the Fermi surface. Thus, we start from the
Hamiltonian

H � ∑
kσℓℓ′

tℓℓ′k c†
ℓσ k( )cℓ′σ k( ), (1)

where c†
ℓσ(k) is the Fourier amplitude of an operator c†iℓσ that

creates an electron in Wannier orbital ℓ with spin σ ∈ {↑, ↓} and
tℓℓ′k is the Fourier transform of the hoppings connecting the Fe 3d
orbitals (dxy, dx2−y2 , dxz, dyz, d3z2−r2 ). This term includes an on-
site spin-orbit coupling of type SzLz, giving rise to imaginary
hopping elements [38], which yield a splitting of the two hole-like
bands along the Γ-Z line in the BZ. The nematic state at low
temperatures is modelled by including an onsite and nearest
neighbor bond order term with an energy scale of ≈ 10meV [6,
33] arising from Coulomb interactions [22, 23, 29, 39]. While
other types of orbital order terms have been proposed in the
literature [27, 40], we do not examine these possibilities in
this work.

The Bloch Hamiltonian can be diagonalized by a unitary
transformation with the matrix elements aℓμ(k), such that it
reads H � ∑kσμ

~Eμ(k)c†μσ(k)cμσ(k), where ~Eμ(k) are the
eigenenergies closely matching the maxima of the spectral
function as deduced experimentally [6, 15, 41–44]. c†μσ(k) is
the Fourier amplitude of electrons in band μ and momentum
k. Furthermore, we adopt an ansatz for the Green’s function in
orbital space incorporating correlations via quasiparticle weights
Zℓ in orbital ℓ,

~Gℓℓ′ k,ωn( ) � �����
ZℓZℓ′

√ ∑
μ

aℓμ k( )aℓ′*μ k( )
iωn − ~Eμ k( )

� �����
ZℓZℓ′

√ ∑
μ

aℓμ k( )aℓ′*μ k( ) ~Gμ
k,ωn( ).

(2)

Here ~G
μ(k,ωn) � [iωn − ~Eμ(k)]−1 is the coherent Green’s

function in band space which in the paramagnetic state is
diagonal in spin space, i.e., proportional to δσ,σ′. This ansatz
does not include the actual incoherent spectral weight, and should
therefore only describe the low energy properties of the electronic
structure. While the quasiparticle weights are phenomenological
parameters, these can also be calculated e.g., by using fluctuation
exchange approach [16], or slave-boson methods or dynamical
mean field theory [14, 45–50], qualitatively giving similar trends
for the quasiparticle weights, but in detail yielding different band
renormalizations and Fermi surfaces, i.e., exhibiting a low-energy
Green’s function that is not expected to describe the physical
properties accurately at low energies. Here, we adopt the values
{ ��

Zl
√ } � [0.2715, 0.9717, 0.4048, 0.9236, 0.5916] as used in
previous investigations [6, 7, 33]; conclusions are robust as
long as the quasiparticle weights are chosen within the range
presented in Ref. [33].

To obtain two-particle responses as measured by a RIXS
experiment, we adopt a standard Hubbard-Hund Hamiltonian
for local interactions

H � U∑
i,ℓ

niℓ↑niℓ↓ + U′ ∑
i,ℓ′< ℓ

niℓniℓ′ + J ∑
i,ℓ′< ℓ

∑
σ,σ′

c†iℓσc
†
iℓ′σ′ciℓσ′ciℓ′σ

+ J′ ∑
i,ℓ′≠ℓ

c†iℓ↑c
†
iℓ↓ciℓ′↓ciℓ′↑, (3)

where the parametersU,U′, J, J′ are given in the notation of Kuroki
et al. [51]. Imposing spin-rotational invariance, i.e.,U′ =U − 2J, J =
J′, there are only two parameters U and J/U left to specify the
interactions which we set to values used previously [33].

Within the ansatz of Eq. 2, the paramagnetic orbital
susceptibility is given by

~χ0
ℓ1ℓ2ℓ3ℓ4

q( ) � − ∑
k,μ,]

~M
μ]
ℓ1ℓ2ℓ3ℓ4

k, q( )~Gμ
k + q( ) ~G]

k( ), (4)

where we have adopted the shorthand k ≡ (k, ωn) and defined the
abbreviation

~M
μ]
ℓ1ℓ2ℓ3ℓ4

k,q( )� �����������
Zℓ1Zℓ2Zℓ3Zℓ4

√
aℓ4] k( )aℓ2 ,*] k( )aℓ1μ k+q( )aℓ3 ,*μ k+q( ).

After performing the internal frequency summation
analytically, we calculate ~χ0

ℓ1ℓ2ℓ3ℓ4
by integrating over the full

BZ, which is just the susceptibility χ0
ℓ1ℓ2ℓ3ℓ4

of a fully coherent
Green’s function multiplied by the quasiparticle weights

~χ0
ℓ1ℓ2ℓ3ℓ4

q,ω( ) � �����������
Zℓ1Zℓ2Zℓ3Zℓ4

√
χ0
ℓ1ℓ2ℓ3ℓ4

q,ω( ). (5)
Two-particle correlation functions of the interacting system

with the interacting Hamiltonian of Eq. 3 can be calculated in the
random-phase approximation (RPA) by summing a subset of
diagrams (see, e.g., Ref. [52]) such that the spin part of the RPA
susceptibility, ~χRPA1 , is given by

~χRPA1 ℓ1ℓ2ℓ3ℓ4
q,ω( ) � ~χ0 q,ω( ) 1 − �U

s
~χ0 q,ω( )[ ]−1{ }

ℓ1ℓ2ℓ3ℓ4
. (6)

The interaction matrix �Us in orbital space is composed of
linear combinations ofU,U′, J, J′. For its detailed form, we refer to
e.g., Ref. [53].

Frontiers in Physics | www.frontiersin.org April 2022 | Volume 10 | Article 8594243

Kreisel et al. Theory of Spin-Excitation Anisotropy

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


The total physical spin susceptibility as, for example, measured
in inelastic neutron scattering experiments is then given by
the sum

χ q,ω( ) � 1
2
∑
ℓℓ′

~χRPA1 ℓℓℓ′ℓ′ q,ω( ). (7)

For discussion purposes, and to illustrate the differences
to the RIXS cross section, we present results for FeSe of
this quantity in Figure 2. This is the same calculation as in
Ref. [33], but with focus on the small q regions,
Figures 2A,B.

To calculate the RIXS spectra we follow the approach presented
in Ref. [36], where it is calculated as a second-order perturbation
from the Kramers-Heisenberg equation in the fast-collision
approximation [54]. The transition operator in the dipole
approximation, Dk ≈ ∑j,jz,ℓ,σ,k′c

j,jz
ℓ,σ (ε) c†ℓσ(k)p(k + k′)j,jz +H.c.

is written using the fermionic operator of the Fe 2p electrons,
p(k)j,jz for momentum k and total angular momentum j and
z-projection jz. The dipole transition matrix elements
cj jz
ℓ,σ (ε) � 〈3d; ℓ, σ|ε · r|2p; j, jz〉, depend on the unit vector of
the polarization of the x-rays involved in the process.

Considering the Fe-L3 edge absorption, we restrict to the
intermediate j = 3/2 states of the 2p electrons, and calculate
the matrix elements assuming wavefunctions with pure
hydrogen-like symmetries, i.e., ignoring the deviations of the

true Wannier states due to the lower crystal symmetry. The
contribution from the radial integration of these
wavefunctions will be just a constant (when assuming the
same radial dependence for all Fe 3d and 2p orbitals) while
the angular part is given by integrals of trigonometric functions
on the unit sphere. Having calculated the matrix elements, one
can then obtain the RIXS spectrum from the calculated orbital
susceptibility as a sum over internal spin and orbital degrees of
freedom via [36].

IRIXS q,ω( )∝ − Im{∑
σ i{ }

∑
ℓ1ℓ2ℓ3ℓ4

χ
σ1 ,σ1′( ) σ2 ,σ2′( )

ℓ1ℓ2ℓ3ℓ4
q,ω( )

×[∑
jz,jz′

cj jz
ℓ1 ,σ1 εo( )*cj jz

ℓ2 ,σ1′ εi( )cj jz′ℓ3 ,σ2 εi( )*cj jz′
ℓ4 ,σ2′ εo( )]}, (8)

where εi and εo are the polarization vectors of the incoming and
outgoing x-rays. As discussed in Ref. [36], the spin-orbit coupling
allows spin-flip processes as mediated by the Clebsh-Gordan
coefficients when writing the 2p states in the basis for the total
angular momentum j = 3/2. However, since there is no
magnetism and we ignore the transverse part of the spin-orbit
coupling, the susceptibility turns out to be diagonal,
χ(σ1 ,σ1′)(σ2 ,σ2′)
ℓ1ℓ2ℓ3ℓ4

(q,ω) � δσ1,σ2δσ1′ ,σ2′ ~χ
RPA
1 ℓ1ℓ2ℓ3ℓ4

(q,ω).
Following the experimental details given in Ref. [34],

i.e., setting the scattering angle β = 50°, considering the energy

FIGURE 2 | Spin susceptibility: − Imχ(q, ω). (A,B) Zoom-in to the details of the spin susceptibility as calculated using the modified RPA approach for U = 0.57 eV
and J = U/6, compare Figure 9C of Ref. [33]. Close to q = (0, 0) paramagnon modes are dispersing linearly up as seen towards the X point (A), and towards the Y point
(B). The overall intensity close to q = (π, 0) is much larger and exhibits a dispersion with broad maximum around ω ≥ 0.1 eV (C) compared to the relatively sharp
paramagnon dispersion close to q = (0, 0).
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of the resonance as ω0 = 707 eV, we calculate the polarization
vector for incoming π polarization as

εi � sin αe‖ + cos αez, (9)
where the in plane vector is defined as e‖ = q/q. The polarization
vectors for the two outgoing polarization directions are

εo,σ � sin α + β( )e‖ + cos α + β( )ez, (10)
εo,π � e⊥ (11)

with the perpendicular in – plane vector, i.e. e⊥· q = 0, where
the angle α between wavevector ki = ω0/(Zc) of the incoming
and the outgoing ko x-ray is obtained from solving the
equation for momentum conservation along the surface,
q = ki cos α + ko cos (α + β) for fixed angle β = 50° and
approximating ko ≈ ki. Finally, we note that the energy
resolution of the RIXS experiment in Ref. [34] is given as
80meV. Below, we focus the theory discussion on the as-
calculated (non-broadened) computed results.

3 RESULTS

For convenience, and to contrast expected intensity measured in
an inelastic neutron scattering experiment and a RIXS
measurement, we start by presenting the spin susceptibility as
obtained from Eq. 7 for the case with reduced coherence [33]. In
Figure 2C the susceptibility along a high symmetry cut is
presented exhibiting large intensity together with a broad
dispersive feature close to (π, 0), and, in contrast, essentially
no intensity at (0, π). At higher energies, there is also spectral
weight close to (π, π). Due to the restricted momentum transfer
from the photons, RIXS experiments are only able to access the
momentum transfer close to (0, 0). Therefore the susceptibility in
these regions will contribute to the summation given in Eq. 8,
weighted by the dipole transition matrix elements, shown in
Figure 2A,B (note different color scale). Already at the level of the
(summed) susceptibility, one can see a dispersive and relatively
sharp magnetic mode emanating from (0, 0) with different slopes
along the qx and qy directions.

Next, we present our results for the RIXS intensity along high
symmetry cuts as detailed in Figure 3C, where the sum over the
perpendicular polarizations has been performed. It turns out that

there is a sharp mode along (0, 0) → (π/2, 0) that presumably
originates from the coherent small q-scattering at the Γ-pocket,
which occurs from the dyz orbital component; panel (A). In
contrast, there is only a very broad mode along the (0, π/2)
direction also coming from scattering of the dyz orbital, but at the
X-pocket. Scattering contributions from the other orbital
components are strongly suppressed due to a reduced
quasiparticle weight Zℓ < 1. Along the diagonal direction both
modes are present, giving rise to two relatively sharp features;
panel (B). Note that the black area is due to the mentioned
kinematic RIXS constraint, i.e. the respective q-vectors cannot be
reached.

We can disentangle the polarization dependence by looking at
each polarization separately. As shown in Figure 4A the σ
polarization yields a much weaker intensity along the qx and
qy directions as compared to the π polarization, while along the
diagonal both polarizations have similar structure and
magnitude. One notes also that the broad feature along the qy
cut is only present in the π polarization. Indeed, there are strong
effects on the anisotropy of the RIXS intensity which are mediated
by orbitally selective coherence of the electronic structure, leading
to the presence of a sharp mode only along the qx direction as also
detected experimentally; the broad mode along the qy direction is,
however, enhanced due to orbital selectivity. The experimental
measurement of the polarization dependence might be able to
disentangle scattering contributions from the Γ- and the X-
pockets.

In contrast, a calculation using a fully coherent electronic
structure where self-energy corrections are not taken into
account, Zl = 1, yields a RIXS cross section that is almost
isotropic, as shown in Figure 5A. This result is calculated
with the band structure which exhibits a Y-pocket at the
Fermi level. Except for the very lowest energies < 20 meV,
the same conclusions remain within an electronic structure
where the Y-pocket has been lifted by nematic order from
nearest neighbor Coulomb interactions [29], or
from including dxy nematicity [27]. The reasons for this
almost isotropic result are similar to the spin
susceptibility discussion [7], whereby the missing Y-
pocket only reduces scattering contributions at very low
energies corresponding to the nematic energy scale, while
interband contributions and scattering at larger energies are

FIGURE 3 | RIXS intensity with orbital-selective quasiparticle weight reduction. The RIXS intensity (see common colorbar) at the accessible momentum transfer
exhibits sharp paramagnon-like modes towards q = (π/2, 0), while towards q = (0, π/2) a broad intensity and a much weaker paramagnon mode is visible (A). Along the
diagonal in the BZ, there are multiple quasi-sharp paramagnon modes visible (B). Calculated for U = 0.57 eV, J =U/6. Geometry of the paths along the diagonal (orange)
and along the coordinate axis (blue) as shown in the other panels (C).
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almost identical to the ones from a model with a Y-pocket
present at the Fermi level.

To complete our understanding of the origin of the different
spectral features in the RIXS intensity, we present in Figure 6 a
separation of the intensities in orbitally diagonal components,
i.e., considering in the sum of Eq. 8 only the terms with ℓ1 = ℓ2 =
ℓ3 = ℓ4, panels (a-e), and extracting the off-diagonal contributions
by subtracting diagonal components from the full intensity for
the case of Zl = 1. One clearly sees that the dx2−y2 and the dz2
orbitals do not contribute to the intensity in the energy range at
all. The dxy orbital yields an almost isotropic contribution along
the qx and the qy cuts which, however, should be suppressed given
the correlated nature of that orbital. Finally, the dyz orbital
contributes to a branch along qy from scattering within the X-
pocket, while the dxz orbital contributes with a slightly larger
intensity along the qx direction. Again, these conclusions remain
similar for models without the Y-pocket with the exception of
reduced weight from the dxz orbital at and below the nematic
energy scale of ≈ 20 meV (not shown). Figure 6F demonstrates

that the orbitally off-diagonal contributions are quite sizeable; we
also note that different from the susceptibility extracted from
inelastic neutron scattering experiments, the sum in Eq. 8
contains elements of the susceptibility tensor with all four
orbitals being different. Interestingly, the sharp dispersive
mode along qx as seen in Figure 3A and also Figure 4A,C
does not originate from orbitally diagonal contributions, but
rather appears as blue mode in the subtracted intensity of
Figure 6F. Hence the orbitally off-diagonal contributions give
rise to this intensity, and it is less affected by reduced coherence
and therefore more visible in Figure 3A compared to Figure 5A.

Since the RIXS experiment is kinematically constrained to
momentum space close to (0, 0) the dispersive modes are less
affected by the particular choice of the bare interaction Eq. 3,
i.e., no shift of intensity to lower energy is visible as the magnetic
instability is approached, U → Uc. This is unlike the dispersive
modes close to (π, 0) or (π, π) whose bandwidth is strongly
governed by the denominator in the RPA equation for the
susceptibility, Eq. 6, i.e., the spectral position of the high

FIGURE 4 | Polarization dependence of RIXS intensity. Expected RIXS spectra decomposed in the intensities from σ (A,B) and π polarization of the outgoing
photons (C,D) along the paths defined in Figure 3B; U = 0.57 eV, J = U/6.

FIGURE 5 | RIXS intensity without orbital incoherence. Same as Figure 3, but calculated using Zl = 1 and by setting U = 0.36 eV, J = U/6 as discussed in Ref. [33].
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energy weight presented in Figure 2C is sensitive to the value of
the bare interaction U.

In Ref. [34] the RIXS data was analyzed in terms of a
phenomenological model where the RIXS spectra were fitted
to a general damped harmonic oscillator model, and discussed
in terms of an anisotropic Heisenberg Hamiltonian. In addition,
it was concluded without explicit calculations that itinerant
models are at variance with the RIXS data due to expected
Landau-damped high-energy excitations. The current
calculations invalidates this argumentation since we find
highly dispersive magnetic excitations persisting to high
energies. Indeed, the sharp dispersive mode is visibly strongest
along the qx direction, see Figure 3A. In general, we find a spin-
excitation anisotropy with larger intensity along the qx-directions,
similar to experiments [34]. At the lowest energies, however, the
current band structure produces a larger intensity in the qy
direction; a property which is not seen experimentally [34].
The reason for this discrepancy is the “boosted” dzy orbital
due to the particular choice of quasiparticle weight factors.
This hints at more dxz-orbital content present at the Fermi
level than included in the present modelling.

4 SUMMARY AND CONCLUSION

We have provided a microscopic calculation of the RIXS and
neutron response relevant for nematic FeSe. The model is based
on itinerant electrons with additional interaction-generated self-
energy effects, crudely approximated by simple energy- and

momentum independent quasi-particle weight factors. This
approach offers a consistent picture of spin fluctuations as
detected in inelastic neutron scattering and the recent RIXS
experiments, in addition to other experiments, without further
tuning of parameters. Specifically, the calculations yield overall
agreement with the momentum and energy structure of the low-
energy modes, and their momentum anisotropy. We have also
discussed quantitative discrepancies between the current
calculation, and the recent RIXS measurement by Lu et al.
[34]. The microscopic calculation allowed us to explore
orbital- and band-dependence of the RIXS scattering cross
section, revealing 1) an insensitivity of the RIXS spin-
excitation anisotropy response to the presence or absence of
a Y-pocket at the Fermi level, and 2) a sensitivity of the low-
energy anisotropy to the detailed balance of dxz- and dyx-orbital
content present on the Γ- and X-pockets of the Fermi surface.

While the RPA approach to itinerant spin excitations is
expected to break down at sufficiently high energies, where
exactly this occurs is not clear; the crossover to a more
localized description is expected in the range of 100s of meV.
Here we have shown that for intermediate energies of up to ~
150 meV this approach appears to reproduce qualitative features,
and that well-defined spin excitations are not overdamped by
electron-hole scattering. Of course the theory is not complete in
the sense that the quasiparticle weights are not derived properly
from a self-energy, nor are vertex corrections included.
Nevertheless the current framework appears to be a useful
phenomenology to describe the low-energy physics of this
unusual material.

FIGURE 6 | RIXS intensity from single orbital components. Intensity calculated by setting Zl = 0, except for one orbital component, where Zl* � 1 (A–E), i.e., in the
sum in Eq. 8 only the fully diagonal components of the susceptibility contribute. The off-diagonal contributions are sizeable as showin in panel (F) where the results of
panels (A–E) multiplied by the number of orbitals are subtracted from the full RIXS intensity as shown in Figure 5A.
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